Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/optimizers/legacy/adagrad.py: 34%
53 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Adagrad optimizer implementation."""
17import numpy as np
18import tensorflow.compat.v2 as tf
20from keras.src import backend_config
21from keras.src.optimizers.legacy import optimizer_v2
23# isort: off
24from tensorflow.python.util.tf_export import keras_export
27@keras_export(
28 "keras.optimizers.legacy.Adagrad",
29 v1=["keras.optimizers.Adagrad", "keras.optimizers.legacy.Adagrad"],
30)
31class Adagrad(optimizer_v2.OptimizerV2):
32 r"""Optimizer that implements the Adagrad algorithm.
34 Adagrad is an optimizer with parameter-specific learning rates,
35 which are adapted relative to how frequently a parameter gets
36 updated during training. The more updates a parameter receives,
37 the smaller the updates.
39 Args:
40 learning_rate: Initial value for the learning rate:
41 either a floating point value,
42 or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance.
43 Note that `Adagrad` tends to benefit from higher initial learning rate
44 values compared to other optimizers.
45 To match the exact form in the original paper, use 1.0.
46 Defaults to `0.001`.
47 initial_accumulator_value: Floating point value.
48 Starting value for the accumulators (per-parameter momentum values).
49 Must be non-negative.
50 epsilon: Small floating point value used to maintain numerical stability.
51 name: Optional name prefix for the operations created when applying
52 gradients. Defaults to `"Adagrad"`.
53 **kwargs: keyword arguments. Allowed arguments are `clipvalue`,
54 `clipnorm`, `global_clipnorm`.
55 If `clipvalue` (float) is set, the gradient of each weight
56 is clipped to be no higher than this value.
57 If `clipnorm` (float) is set, the gradient of each weight
58 is individually clipped so that its norm is no higher than this value.
59 If `global_clipnorm` (float) is set the gradient of all weights is
60 clipped so that their global norm is no higher than this value..
62 Reference:
63 - [Duchi et al., 2011](
64 http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf).
65 """
67 _HAS_AGGREGATE_GRAD = True
69 def __init__(
70 self,
71 learning_rate=0.001,
72 initial_accumulator_value=0.1,
73 epsilon=1e-7,
74 name="Adagrad",
75 **kwargs
76 ):
77 if initial_accumulator_value < 0.0:
78 raise ValueError(
79 "initial_accumulator_value must be non-negative: %s"
80 % initial_accumulator_value
81 )
82 if epsilon is None:
83 epsilon = backend_config.epsilon()
84 super().__init__(name, **kwargs)
85 self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
86 self._set_hyper("decay", self._initial_decay)
87 self._initial_accumulator_value = initial_accumulator_value
88 self.epsilon = epsilon or backend_config.epsilon()
90 def _create_slots(self, var_list):
91 for var in var_list:
92 dtype = var.dtype.base_dtype
93 init = tf.compat.v1.constant_initializer(
94 self._initial_accumulator_value, dtype=dtype
95 )
96 self.add_slot(var, "accumulator", init)
98 def _prepare_local(self, var_device, var_dtype, apply_state):
99 super()._prepare_local(var_device, var_dtype, apply_state)
100 apply_state[(var_device, var_dtype)].update(
101 dict(
102 epsilon=tf.convert_to_tensor(self.epsilon, var_dtype),
103 neg_lr_t=-apply_state[(var_device, var_dtype)]["lr_t"],
104 zero=tf.zeros((), dtype=tf.int64),
105 )
106 )
108 def set_weights(self, weights):
109 params = self.weights
110 # Override set_weights for backward compatibility of Keras V1 optimizer
111 # since it does not include iteration at head of the weight list. Set
112 # iteration to 0.
113 if len(params) == len(weights) + 1:
114 weights = [np.array(0)] + weights
115 super().set_weights(weights)
117 @classmethod
118 def from_config(cls, config, custom_objects=None):
119 """Creates an optimizer from its config.
121 This method is the reverse of `get_config`,
122 capable of instantiating the same optimizer from the config
123 dictionary.
125 Args:
126 config: A Python dictionary, typically the output of get_config.
127 custom_objects: A Python dictionary mapping names to additional
128 Python objects used to create this optimizer, such as a function
129 used for a hyperparameter.
131 Returns:
132 An optimizer instance.
133 """
134 if "initial_accumulator_value" not in config:
135 config["initial_accumulator_value"] = 0.1
136 if "lr" in config:
137 config["learning_rate"] = config.pop("lr")
138 return cls(**config)
140 def _resource_apply_dense(self, grad, var, apply_state=None):
141 var_device, var_dtype = var.device, var.dtype.base_dtype
142 coefficients = (apply_state or {}).get(
143 (var_device, var_dtype)
144 ) or self._fallback_apply_state(var_device, var_dtype)
146 acc = self.get_slot(var, "accumulator")
147 return tf.raw_ops.ResourceApplyAdagradV2(
148 var=var.handle,
149 accum=acc.handle,
150 lr=coefficients["lr_t"],
151 epsilon=coefficients["epsilon"],
152 grad=grad,
153 use_locking=self._use_locking,
154 )
156 def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
157 var_device, var_dtype = var.device, var.dtype.base_dtype
158 coefficients = (apply_state or {}).get(
159 (var_device, var_dtype)
160 ) or self._fallback_apply_state(var_device, var_dtype)
162 acc = self.get_slot(var, "accumulator")
163 return tf.raw_ops.ResourceSparseApplyAdagradV2(
164 var=var.handle,
165 accum=acc.handle,
166 lr=coefficients["lr_t"],
167 epsilon=coefficients["epsilon"],
168 grad=grad,
169 indices=indices,
170 use_locking=self._use_locking,
171 )
173 def get_config(self):
174 config = super().get_config()
175 config.update(
176 {
177 "learning_rate": self._serialize_hyperparameter(
178 "learning_rate"
179 ),
180 "decay": self._initial_decay,
181 "initial_accumulator_value": self._initial_accumulator_value,
182 "epsilon": self.epsilon,
183 }
184 )
185 return config