Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/layers/merging/multiply.py: 62%
13 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Layer that multiplies (element-wise) several inputs."""
18from keras.src.layers.merging.base_merge import _Merge
20# isort: off
21from tensorflow.python.util.tf_export import keras_export
24@keras_export("keras.layers.Multiply")
25class Multiply(_Merge):
26 """Layer that multiplies (element-wise) a list of inputs.
28 It takes as input a list of tensors, all of the same shape, and returns
29 a single tensor (also of the same shape).
31 >>> tf.keras.layers.Multiply()([np.arange(5).reshape(5, 1),
32 ... np.arange(5, 10).reshape(5, 1)])
33 <tf.Tensor: shape=(5, 1), dtype=int64, numpy=
34 array([[ 0],
35 [ 6],
36 [14],
37 [24],
38 [36]])>
40 >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
41 >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
42 >>> multiplied = tf.keras.layers.Multiply()([x1, x2])
43 >>> multiplied.shape
44 TensorShape([5, 8])
45 """
47 def _merge_function(self, inputs):
48 output = inputs[0]
49 for i in range(1, len(inputs)):
50 output = output * inputs[i]
51 return output
54@keras_export("keras.layers.multiply")
55def multiply(inputs, **kwargs):
56 """Functional interface to the `Multiply` layer.
58 Example:
60 >>> x1 = np.arange(3.0)
61 >>> x2 = np.arange(3.0)
62 >>> tf.keras.layers.multiply([x1, x2])
63 <tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 1., 4.], ...)>
65 Usage in a functional model:
67 >>> input1 = tf.keras.layers.Input(shape=(16,))
68 >>> x1 = tf.keras.layers.Dense(
69 ... 8, activation='relu')(input1) #shape=(None, 8)
70 >>> input2 = tf.keras.layers.Input(shape=(32,))
71 >>> x2 = tf.keras.layers.Dense(
72 ... 8, activation='relu')(input2) #shape=(None, 8)
73 >>> out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8)
74 >>> out = tf.keras.layers.Dense(4)(out)
75 >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
77 Args:
78 inputs: A list of input tensors.
79 **kwargs: Standard layer keyword arguments.
81 Returns:
82 A tensor, the element-wise product of the inputs.
83 """
84 return Multiply(**kwargs)(inputs)