Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/layers/attention/additive_attention.py: 36%

28 statements  

« prev     ^ index     » next       coverage.py v7.4.0, created at 2024-01-03 07:57 +0000

1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 

2# 

3# Licensed under the Apache License, Version 2.0 (the "License"); 

4# you may not use this file except in compliance with the License. 

5# You may obtain a copy of the License at 

6# 

7# http://www.apache.org/licenses/LICENSE-2.0 

8# 

9# Unless required by applicable law or agreed to in writing, software 

10# distributed under the License is distributed on an "AS IS" BASIS, 

11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

12# See the License for the specific language governing permissions and 

13# limitations under the License. 

14# ============================================================================== 

15"""Additive attention layer that can be used in sequence DNN/CNN models. 

16 

17This file follows the terminology of https://arxiv.org/abs/1706.03762 Figure 2. 

18Attention is formed by three tensors: Query, Key and Value. 

19""" 

20 

21 

22import tensorflow.compat.v2 as tf 

23 

24from keras.src.layers.attention.base_dense_attention import BaseDenseAttention 

25 

26# isort: off 

27from tensorflow.python.util.tf_export import keras_export 

28 

29 

30@keras_export("keras.layers.AdditiveAttention") 

31class AdditiveAttention(BaseDenseAttention): 

32 """Additive attention layer, a.k.a. Bahdanau-style attention. 

33 

34 Inputs are `query` tensor of shape `[batch_size, Tq, dim]`, `value` tensor 

35 of shape `[batch_size, Tv, dim]` and `key` tensor of shape 

36 `[batch_size, Tv, dim]`. The calculation follows the steps: 

37 

38 1. Reshape `query` and `key` into shapes `[batch_size, Tq, 1, dim]` 

39 and `[batch_size, 1, Tv, dim]` respectively. 

40 2. Calculate scores with shape `[batch_size, Tq, Tv]` as a non-linear 

41 sum: `scores = tf.reduce_sum(tf.tanh(query + key), axis=-1)` 

42 3. Use scores to calculate a distribution with shape 

43 `[batch_size, Tq, Tv]`: `distribution = tf.nn.softmax(scores)`. 

44 4. Use `distribution` to create a linear combination of `value` with 

45 shape `[batch_size, Tq, dim]`: 

46 `return tf.matmul(distribution, value)`. 

47 

48 Args: 

49 use_scale: If `True`, will create a variable to scale the attention 

50 scores. 

51 dropout: Float between 0 and 1. Fraction of the units to drop for the 

52 attention scores. Defaults to `0.0`. 

53 

54 Call Args: 

55 

56 inputs: List of the following tensors: 

57 * query: Query `Tensor` of shape `[batch_size, Tq, dim]`. 

58 * value: Value `Tensor` of shape `[batch_size, Tv, dim]`. 

59 * key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. 

60 If not given, will use `value` for both `key` and `value`, 

61 which is the most common case. 

62 mask: List of the following tensors: 

63 * query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`. 

64 If given, the output will be zero at the positions where 

65 `mask==False`. 

66 * value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`. 

67 If given, will apply the mask such that values at positions 

68 where `mask==False` do not contribute to the result. 

69 training: Python boolean indicating whether the layer should behave in 

70 training mode (adding dropout) or in inference mode (no dropout). 

71 return_attention_scores: bool, it `True`, returns the attention scores 

72 (after masking and softmax) as an additional output argument. 

73 use_causal_mask: Boolean. Set to `True` for decoder self-attention. Adds 

74 a mask such that position `i` cannot attend to positions `j > i`. 

75 This prevents the flow of information from the future towards the 

76 past. Defaults to `False`. 

77 

78 Output: 

79 

80 Attention outputs of shape `[batch_size, Tq, dim]`. 

81 [Optional] Attention scores after masking and softmax with shape 

82 `[batch_size, Tq, Tv]`. 

83 

84 The meaning of `query`, `value` and `key` depend on the application. In the 

85 case of text similarity, for example, `query` is the sequence embeddings of 

86 the first piece of text and `value` is the sequence embeddings of the second 

87 piece of text. `key` is usually the same tensor as `value`. 

88 

89 Here is a code example for using `AdditiveAttention` in a CNN+Attention 

90 network: 

91 

92 ```python 

93 # Variable-length int sequences. 

94 query_input = tf.keras.Input(shape=(None,), dtype='int32') 

95 value_input = tf.keras.Input(shape=(None,), dtype='int32') 

96 

97 # Embedding lookup. 

98 token_embedding = tf.keras.layers.Embedding(max_tokens, dimension) 

99 # Query embeddings of shape [batch_size, Tq, dimension]. 

100 query_embeddings = token_embedding(query_input) 

101 # Value embeddings of shape [batch_size, Tv, dimension]. 

102 value_embeddings = token_embedding(value_input) 

103 

104 # CNN layer. 

105 cnn_layer = tf.keras.layers.Conv1D( 

106 filters=100, 

107 kernel_size=4, 

108 # Use 'same' padding so outputs have the same shape as inputs. 

109 padding='same') 

110 # Query encoding of shape [batch_size, Tq, filters]. 

111 query_seq_encoding = cnn_layer(query_embeddings) 

112 # Value encoding of shape [batch_size, Tv, filters]. 

113 value_seq_encoding = cnn_layer(value_embeddings) 

114 

115 # Query-value attention of shape [batch_size, Tq, filters]. 

116 query_value_attention_seq = tf.keras.layers.AdditiveAttention()( 

117 [query_seq_encoding, value_seq_encoding]) 

118 

119 # Reduce over the sequence axis to produce encodings of shape 

120 # [batch_size, filters]. 

121 query_encoding = tf.keras.layers.GlobalAveragePooling1D()( 

122 query_seq_encoding) 

123 query_value_attention = tf.keras.layers.GlobalAveragePooling1D()( 

124 query_value_attention_seq) 

125 

126 # Concatenate query and document encodings to produce a DNN input layer. 

127 input_layer = tf.keras.layers.Concatenate()( 

128 [query_encoding, query_value_attention]) 

129 

130 # Add DNN layers, and create Model. 

131 # ... 

132 ``` 

133 """ 

134 

135 def __init__(self, use_scale=True, **kwargs): 

136 super().__init__(**kwargs) 

137 self.use_scale = use_scale 

138 

139 def build(self, input_shape): 

140 v_shape = tf.TensorShape(input_shape[1]) 

141 dim = v_shape[-1] 

142 dim = tf.compat.dimension_value(dim) 

143 if self.use_scale: 

144 self.scale = self.add_weight( 

145 name="scale", 

146 shape=[dim], 

147 initializer="glorot_uniform", 

148 dtype=self.dtype, 

149 trainable=True, 

150 ) 

151 else: 

152 self.scale = None 

153 super().build(input_shape) 

154 

155 def _calculate_scores(self, query, key): 

156 """Calculates attention scores as a nonlinear sum of query and key. 

157 

158 Args: 

159 query: Query tensor of shape `[batch_size, Tq, dim]`. 

160 key: Key tensor of shape `[batch_size, Tv, dim]`. 

161 Returns: 

162 Tensor of shape `[batch_size, Tq, Tv]`. 

163 """ 

164 # Reshape tensors to enable broadcasting. 

165 # Reshape into [batch_size, Tq, 1, dim]. 

166 q_reshaped = tf.expand_dims(query, axis=-2) 

167 # Reshape into [batch_size, 1, Tv, dim]. 

168 k_reshaped = tf.expand_dims(key, axis=-3) 

169 if self.use_scale: 

170 scale = self.scale 

171 else: 

172 scale = 1.0 

173 return tf.reduce_sum(scale * tf.tanh(q_reshaped + k_reshaped), axis=-1) 

174 

175 def get_config(self): 

176 config = {"use_scale": self.use_scale} 

177 base_config = super().get_config() 

178 return dict(list(base_config.items()) + list(config.items())) 

179