Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow_addons/layers/sparsemax.py: 56%
18 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
16import tensorflow as tf
17from tensorflow_addons.activations.sparsemax import sparsemax
18from typeguard import typechecked
21@tf.keras.utils.register_keras_serializable(package="Addons")
22class Sparsemax(tf.keras.layers.Layer):
23 """Sparsemax activation function.
25 The output shape is the same as the input shape.
27 See [From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification](https://arxiv.org/abs/1602.02068).
29 Args:
30 axis: Integer, axis along which the sparsemax normalization is applied.
31 """
33 @typechecked
34 def __init__(self, axis: int = -1, **kwargs):
35 super().__init__(**kwargs)
36 self.supports_masking = True
37 self.axis = axis
39 def call(self, inputs):
40 return sparsemax(inputs, axis=self.axis)
42 def get_config(self):
43 config = {"axis": self.axis}
44 base_config = super().get_config()
45 return {**base_config, **config}
47 def compute_output_shape(self, input_shape):
48 return input_shape