Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow_addons/activations/snake.py: 57%
7 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
16import tensorflow as tf
18from tensorflow_addons.utils import types
21@tf.keras.utils.register_keras_serializable(package="Addons")
22def snake(x: types.TensorLike, frequency: types.Number = 1) -> tf.Tensor:
23 r"""Snake activation to learn periodic functions.
25 Computes snake activation:
27 $$
28 \mathrm{snake}(x) = \mathrm{x} + \frac{1 - \cos(2 \cdot \mathrm{frequency} \cdot x)}{2 \cdot \mathrm{frequency}}.
29 $$
31 See [Neural Networks Fail to Learn Periodic Functions and How to Fix It](https://arxiv.org/abs/2006.08195).
33 Usage:
35 >>> x = tf.constant([-1.0, 0.0, 1.0])
36 >>> tfa.activations.snake(x)
37 <tf.Tensor: shape=(3,), dtype=float32, numpy=array([-0.29192656, 0. , 1.7080734 ], dtype=float32)>
39 Args:
40 x: A `Tensor`.
41 frequency: A scalar, frequency of the periodic part.
42 Returns:
43 A `Tensor`. Has the same type as `x`.
44 """
45 x = tf.convert_to_tensor(x)
46 frequency = tf.cast(frequency, x.dtype)
48 return x + (1 - tf.cos(2 * frequency * x)) / (2 * frequency)