Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/layers/reshaping/flatten.py: 28%
53 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Contains the flatten layer."""
18import functools
19import operator
21import numpy as np
22import tensorflow.compat.v2 as tf
24from keras.src.engine.base_layer import Layer
25from keras.src.engine.input_spec import InputSpec
26from keras.src.utils import conv_utils
28# isort: off
29from tensorflow.python.util.tf_export import keras_export
32@keras_export("keras.layers.Flatten")
33class Flatten(Layer):
34 """Flattens the input. Does not affect the batch size.
36 Note: If inputs are shaped `(batch,)` without a feature axis, then
37 flattening adds an extra channel dimension and output shape is `(batch, 1)`.
39 Args:
40 data_format: A string,
41 one of `channels_last` (default) or `channels_first`.
42 The ordering of the dimensions in the inputs.
43 `channels_last` corresponds to inputs with shape
44 `(batch, ..., channels)` while `channels_first` corresponds to
45 inputs with shape `(batch, channels, ...)`.
46 When unspecified, uses
47 `image_data_format` value found in your Keras config file at
48 `~/.keras/keras.json` (if exists) else 'channels_last'.
49 Defaults to 'channels_last'.
51 Example:
53 >>> model = tf.keras.Sequential()
54 >>> model.add(tf.keras.layers.Conv2D(64, 3, 3, input_shape=(3, 32, 32)))
55 >>> model.output_shape
56 (None, 1, 10, 64)
58 >>> model.add(Flatten())
59 >>> model.output_shape
60 (None, 640)
62 """
64 def __init__(self, data_format=None, **kwargs):
65 super().__init__(**kwargs)
66 self.data_format = conv_utils.normalize_data_format(data_format)
67 self.input_spec = InputSpec(min_ndim=1)
68 self._channels_first = self.data_format == "channels_first"
70 def call(self, inputs):
71 if self._channels_first:
72 rank = inputs.shape.rank
73 if rank and rank > 1:
74 # Switch to channels-last format.
75 permutation = [0]
76 permutation.extend(range(2, rank))
77 permutation.append(1)
78 inputs = tf.transpose(inputs, perm=permutation)
80 if tf.executing_eagerly():
81 # Full static shape is guaranteed to be available.
82 # Performance: Using `constant_op` is much faster than passing a
83 # list.
84 flattened_shape = tf.constant([inputs.shape[0], -1])
85 return tf.reshape(inputs, flattened_shape)
86 else:
87 input_shape = inputs.shape
88 rank = input_shape.rank
89 if rank == 1:
90 return tf.expand_dims(inputs, axis=1)
91 else:
92 batch_dim = tf.compat.dimension_value(input_shape[0])
93 non_batch_dims = input_shape[1:]
94 # Reshape in a way that preserves as much shape info as
95 # possible.
96 if non_batch_dims.is_fully_defined():
97 last_dim = int(
98 functools.reduce(operator.mul, non_batch_dims)
99 )
100 flattened_shape = tf.constant([-1, last_dim])
101 elif batch_dim is not None:
102 flattened_shape = tf.constant([int(batch_dim), -1])
103 else:
104 flattened_shape = [tf.shape(inputs)[0], -1]
105 return tf.reshape(inputs, flattened_shape)
107 def compute_output_shape(self, input_shape):
108 input_shape = tf.TensorShape(input_shape).as_list()
109 if not input_shape:
110 output_shape = tf.TensorShape([1])
111 else:
112 output_shape = [input_shape[0]]
113 if np.all(input_shape[1:]):
114 output_shape += [np.prod(input_shape[1:], dtype=int)]
115 else:
116 output_shape += [None]
117 return tf.TensorShape(output_shape)
119 def get_config(self):
120 config = super().get_config()
121 config.update({"data_format": self.data_format})
122 return config