Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/feature_column/utils.py: 23%
61 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Defines functions common to multiple feature column files."""
17import six
19from tensorflow.python.framework import dtypes
20from tensorflow.python.framework import ops
21from tensorflow.python.ops import array_ops
22from tensorflow.python.ops import math_ops
23from tensorflow.python.util import nest
26def sequence_length_from_sparse_tensor(sp_tensor, num_elements=1):
27 """Returns a [batch_size] Tensor with per-example sequence length."""
28 with ops.name_scope(None, 'sequence_length') as name_scope:
29 row_ids = sp_tensor.indices[:, 0]
30 column_ids = sp_tensor.indices[:, 1]
31 # Add one to convert column indices to element length
32 column_ids += array_ops.ones_like(column_ids)
33 # Get the number of elements we will have per example/row
34 seq_length = math_ops.segment_max(column_ids, segment_ids=row_ids)
36 # The raw values are grouped according to num_elements;
37 # how many entities will we have after grouping?
38 # Example: orig tensor [[1, 2], [3]], col_ids = (0, 1, 1),
39 # row_ids = (0, 0, 1), seq_length = [2, 1]. If num_elements = 2,
40 # these will get grouped, and the final seq_length is [1, 1]
41 seq_length = math_ops.cast(
42 math_ops.ceil(seq_length / num_elements), dtypes.int64)
44 # If the last n rows do not have ids, seq_length will have shape
45 # [batch_size - n]. Pad the remaining values with zeros.
46 n_pad = array_ops.shape(sp_tensor)[:1] - array_ops.shape(seq_length)[:1]
47 padding = array_ops.zeros(n_pad, dtype=seq_length.dtype)
48 return array_ops.concat([seq_length, padding], axis=0, name=name_scope)
51def assert_string_or_int(dtype, prefix):
52 if (dtype != dtypes.string) and (not dtype.is_integer):
53 raise ValueError(
54 '{} dtype must be string or integer. dtype: {}.'.format(prefix, dtype))
57def assert_key_is_string(key):
58 if not isinstance(key, six.string_types):
59 raise ValueError(
60 'key must be a string. Got: type {}. Given key: {}.'.format(
61 type(key), key))
64def check_default_value(shape, default_value, dtype, key):
65 """Returns default value as tuple if it's valid, otherwise raises errors.
67 This function verifies that `default_value` is compatible with both `shape`
68 and `dtype`. If it is not compatible, it raises an error. If it is compatible,
69 it casts default_value to a tuple and returns it. `key` is used only
70 for error message.
72 Args:
73 shape: An iterable of integers specifies the shape of the `Tensor`.
74 default_value: If a single value is provided, the same value will be applied
75 as the default value for every item. If an iterable of values is
76 provided, the shape of the `default_value` should be equal to the given
77 `shape`.
78 dtype: defines the type of values. Default value is `tf.float32`. Must be a
79 non-quantized, real integer or floating point type.
80 key: Column name, used only for error messages.
82 Returns:
83 A tuple which will be used as default value.
85 Raises:
86 TypeError: if `default_value` is an iterable but not compatible with `shape`
87 TypeError: if `default_value` is not compatible with `dtype`.
88 ValueError: if `dtype` is not convertible to `tf.float32`.
89 """
90 if default_value is None:
91 return None
93 if isinstance(default_value, int):
94 return _create_tuple(shape, default_value)
96 if isinstance(default_value, float) and dtype.is_floating:
97 return _create_tuple(shape, default_value)
99 if callable(getattr(default_value, 'tolist', None)): # Handles numpy arrays
100 default_value = default_value.tolist()
102 if nest.is_nested(default_value):
103 if not _is_shape_and_default_value_compatible(default_value, shape):
104 raise ValueError(
105 'The shape of default_value must be equal to given shape. '
106 'default_value: {}, shape: {}, key: {}'.format(
107 default_value, shape, key))
108 # Check if the values in the list are all integers or are convertible to
109 # floats.
110 is_list_all_int = all(
111 isinstance(v, int) for v in nest.flatten(default_value))
112 is_list_has_float = any(
113 isinstance(v, float) for v in nest.flatten(default_value))
114 if is_list_all_int:
115 return _as_tuple(default_value)
116 if is_list_has_float and dtype.is_floating:
117 return _as_tuple(default_value)
118 raise TypeError('default_value must be compatible with dtype. '
119 'default_value: {}, dtype: {}, key: {}'.format(
120 default_value, dtype, key))
123def _create_tuple(shape, value):
124 """Returns a tuple with given shape and filled with value."""
125 if shape:
126 return tuple([_create_tuple(shape[1:], value) for _ in range(shape[0])])
127 return value
130def _as_tuple(value):
131 if not nest.is_nested(value):
132 return value
133 return tuple([_as_tuple(v) for v in value])
136def _is_shape_and_default_value_compatible(default_value, shape):
137 """Verifies compatibility of shape and default_value."""
138 # Invalid condition:
139 # * if default_value is not a scalar and shape is empty
140 # * or if default_value is an iterable and shape is not empty
141 if nest.is_nested(default_value) != bool(shape):
142 return False
143 if not shape:
144 return True
145 if len(default_value) != shape[0]:
146 return False
147 for i in range(shape[0]):
148 if not _is_shape_and_default_value_compatible(default_value[i], shape[1:]):
149 return False
150 return True