Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/data_flow_grad.py: 58%
48 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
16"""Gradients for operators defined in data_flow_ops.py."""
18from tensorflow.python.framework import dtypes
19from tensorflow.python.framework import indexed_slices
20from tensorflow.python.framework import ops
21from tensorflow.python.ops import array_ops
22from tensorflow.python.ops import data_flow_ops
23from tensorflow.python.ops import math_ops
26@ops.RegisterGradient("DynamicPartition")
27def _DynamicPartitionGrads(op, *grads):
28 """Gradients for DynamicPartition."""
29 data = op.inputs[0]
30 indices = op.inputs[1]
31 num_partitions = op.get_attr("num_partitions")
33 prefix_shape = array_ops.shape(indices)
34 original_indices = array_ops.reshape(
35 math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape)
36 partitioned_indices = data_flow_ops.dynamic_partition(
37 original_indices, indices, num_partitions)
38 reconstructed = data_flow_ops.parallel_dynamic_stitch(partitioned_indices,
39 grads)
40 reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data))
41 return [reconstructed, None]
44@ops.RegisterGradient("DynamicStitch")
45@ops.RegisterGradient("ParallelDynamicStitch")
46def _DynamicStitchGrads(op, grad):
47 """Gradients for DynamicStitch and ParallelDynamicStitch."""
49 num_values = len(op.inputs) // 2
50 indices_grad = [None] * num_values
52 def AsInt32(x):
53 return (x if op.inputs[0].dtype == dtypes.int32 else
54 math_ops.cast(x, dtypes.int32))
56 inputs = [AsInt32(op.inputs[i]) for i in range(num_values)]
57 if isinstance(grad, indexed_slices.IndexedSlices):
58 output_shape = array_ops.shape(op.outputs[0])
59 output_rows = output_shape[0]
60 grad = math_ops.unsorted_segment_sum(grad.values, grad.indices, output_rows)
61 values_grad = [array_ops.gather(grad, inp) for inp in inputs]
62 return indices_grad + values_grad
65ops.NotDifferentiable("Queue")
66ops.NotDifferentiable("QueueEnqueue")
67ops.NotDifferentiable("QueueEnqueueMany")
68ops.NotDifferentiable("QueueDequeue")
69ops.NotDifferentiable("QueueDequeueMany")
70ops.NotDifferentiable("QueueDequeueUpTo")
71ops.NotDifferentiable("QueueClose")
72ops.NotDifferentiable("QueueSize")
74ops.NotDifferentiable("Stack")
75ops.NotDifferentiable("StackPush")
76ops.NotDifferentiable("StackPop")
77ops.NotDifferentiable("StackClose")
79ops.NotDifferentiable("GetSessionHandle")
80ops.NotDifferentiable("GetSessionHandleV2")
81ops.NotDifferentiable("GetSessionTensor")
82ops.NotDifferentiable("DeleteSessionTensor")