Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_count_ops.py: 16%
167 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
23_DenseCountSparseOutputOutput = collections.namedtuple(
24 "DenseCountSparseOutput",
25 ["output_indices", "output_values", "output_dense_shape"])
28def dense_count_sparse_output(values, weights, binary_output, minlength=-1, maxlength=-1, name=None):
29 r"""Performs sparse-output bin counting for a tf.tensor input.
31 Counts the number of times each value occurs in the input.
33 Args:
34 values: A `Tensor`. Must be one of the following types: `int32`, `int64`.
35 Tensor containing data to count.
36 weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
37 A Tensor of the same shape as indices containing per-index weight values. May
38 also be the empty tensor if no weights are used.
39 binary_output: A `bool`.
40 Whether to output the number of occurrences of each value or 1.
41 minlength: An optional `int` that is `>= -1`. Defaults to `-1`.
42 Minimum value to count. Can be set to -1 for no minimum.
43 maxlength: An optional `int` that is `>= -1`. Defaults to `-1`.
44 Maximum value to count. Can be set to -1 for no maximum.
45 name: A name for the operation (optional).
47 Returns:
48 A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape).
50 output_indices: A `Tensor` of type `int64`.
51 output_values: A `Tensor`. Has the same type as `weights`.
52 output_dense_shape: A `Tensor` of type `int64`.
53 """
54 _ctx = _context._context or _context.context()
55 tld = _ctx._thread_local_data
56 if tld.is_eager:
57 try:
58 _result = pywrap_tfe.TFE_Py_FastPathExecute(
59 _ctx, "DenseCountSparseOutput", name, values, weights, "minlength",
60 minlength, "maxlength", maxlength, "binary_output", binary_output)
61 _result = _DenseCountSparseOutputOutput._make(_result)
62 return _result
63 except _core._NotOkStatusException as e:
64 _ops.raise_from_not_ok_status(e, name)
65 except _core._FallbackException:
66 pass
67 try:
68 return dense_count_sparse_output_eager_fallback(
69 values, weights, minlength=minlength, maxlength=maxlength,
70 binary_output=binary_output, name=name, ctx=_ctx)
71 except _core._SymbolicException:
72 pass # Add nodes to the TensorFlow graph.
73 # Add nodes to the TensorFlow graph.
74 binary_output = _execute.make_bool(binary_output, "binary_output")
75 if minlength is None:
76 minlength = -1
77 minlength = _execute.make_int(minlength, "minlength")
78 if maxlength is None:
79 maxlength = -1
80 maxlength = _execute.make_int(maxlength, "maxlength")
81 _, _, _op, _outputs = _op_def_library._apply_op_helper(
82 "DenseCountSparseOutput", values=values, weights=weights,
83 binary_output=binary_output,
84 minlength=minlength, maxlength=maxlength,
85 name=name)
86 _result = _outputs[:]
87 if _execute.must_record_gradient():
88 _attrs = ("T", _op._get_attr_type("T"), "minlength",
89 _op._get_attr_int("minlength"), "maxlength",
90 _op._get_attr_int("maxlength"), "binary_output",
91 _op._get_attr_bool("binary_output"), "output_type",
92 _op._get_attr_type("output_type"))
93 _inputs_flat = _op.inputs
94 _execute.record_gradient(
95 "DenseCountSparseOutput", _inputs_flat, _attrs, _result)
96 _result = _DenseCountSparseOutputOutput._make(_result)
97 return _result
99DenseCountSparseOutput = tf_export("raw_ops.DenseCountSparseOutput")(_ops.to_raw_op(dense_count_sparse_output))
102def dense_count_sparse_output_eager_fallback(values, weights, binary_output, minlength, maxlength, name, ctx):
103 binary_output = _execute.make_bool(binary_output, "binary_output")
104 if minlength is None:
105 minlength = -1
106 minlength = _execute.make_int(minlength, "minlength")
107 if maxlength is None:
108 maxlength = -1
109 maxlength = _execute.make_int(maxlength, "maxlength")
110 _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ])
111 _attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
112 _inputs_flat = [values, weights]
113 _attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength,
114 "binary_output", binary_output, "output_type", _attr_output_type)
115 _result = _execute.execute(b"DenseCountSparseOutput", 3,
116 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
117 name=name)
118 if _execute.must_record_gradient():
119 _execute.record_gradient(
120 "DenseCountSparseOutput", _inputs_flat, _attrs, _result)
121 _result = _DenseCountSparseOutputOutput._make(_result)
122 return _result
124_RaggedCountSparseOutputOutput = collections.namedtuple(
125 "RaggedCountSparseOutput",
126 ["output_indices", "output_values", "output_dense_shape"])
129def ragged_count_sparse_output(splits, values, weights, binary_output, minlength=-1, maxlength=-1, name=None):
130 r"""Performs sparse-output bin counting for a ragged tensor input.
132 Counts the number of times each value occurs in the input.
134 Args:
135 splits: A `Tensor` of type `int64`.
136 Tensor containing the row splits of the ragged tensor to count.
137 values: A `Tensor`. Must be one of the following types: `int32`, `int64`.
138 Tensor containing values of the sparse tensor to count.
139 weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
140 A Tensor of the same shape as indices containing per-index weight values.
141 May also be the empty tensor if no weights are used.
142 binary_output: A `bool`.
143 Whether to output the number of occurrences of each value or 1.
144 minlength: An optional `int` that is `>= -1`. Defaults to `-1`.
145 Minimum value to count. Can be set to -1 for no minimum.
146 maxlength: An optional `int` that is `>= -1`. Defaults to `-1`.
147 Maximum value to count. Can be set to -1 for no maximum.
148 name: A name for the operation (optional).
150 Returns:
151 A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape).
153 output_indices: A `Tensor` of type `int64`.
154 output_values: A `Tensor`. Has the same type as `weights`.
155 output_dense_shape: A `Tensor` of type `int64`.
156 """
157 _ctx = _context._context or _context.context()
158 tld = _ctx._thread_local_data
159 if tld.is_eager:
160 try:
161 _result = pywrap_tfe.TFE_Py_FastPathExecute(
162 _ctx, "RaggedCountSparseOutput", name, splits, values, weights,
163 "minlength", minlength, "maxlength", maxlength, "binary_output",
164 binary_output)
165 _result = _RaggedCountSparseOutputOutput._make(_result)
166 return _result
167 except _core._NotOkStatusException as e:
168 _ops.raise_from_not_ok_status(e, name)
169 except _core._FallbackException:
170 pass
171 try:
172 return ragged_count_sparse_output_eager_fallback(
173 splits, values, weights, minlength=minlength, maxlength=maxlength,
174 binary_output=binary_output, name=name, ctx=_ctx)
175 except _core._SymbolicException:
176 pass # Add nodes to the TensorFlow graph.
177 # Add nodes to the TensorFlow graph.
178 binary_output = _execute.make_bool(binary_output, "binary_output")
179 if minlength is None:
180 minlength = -1
181 minlength = _execute.make_int(minlength, "minlength")
182 if maxlength is None:
183 maxlength = -1
184 maxlength = _execute.make_int(maxlength, "maxlength")
185 _, _, _op, _outputs = _op_def_library._apply_op_helper(
186 "RaggedCountSparseOutput", splits=splits, values=values,
187 weights=weights,
188 binary_output=binary_output,
189 minlength=minlength, maxlength=maxlength,
190 name=name)
191 _result = _outputs[:]
192 if _execute.must_record_gradient():
193 _attrs = ("T", _op._get_attr_type("T"), "minlength",
194 _op._get_attr_int("minlength"), "maxlength",
195 _op._get_attr_int("maxlength"), "binary_output",
196 _op._get_attr_bool("binary_output"), "output_type",
197 _op._get_attr_type("output_type"))
198 _inputs_flat = _op.inputs
199 _execute.record_gradient(
200 "RaggedCountSparseOutput", _inputs_flat, _attrs, _result)
201 _result = _RaggedCountSparseOutputOutput._make(_result)
202 return _result
204RaggedCountSparseOutput = tf_export("raw_ops.RaggedCountSparseOutput")(_ops.to_raw_op(ragged_count_sparse_output))
207def ragged_count_sparse_output_eager_fallback(splits, values, weights, binary_output, minlength, maxlength, name, ctx):
208 binary_output = _execute.make_bool(binary_output, "binary_output")
209 if minlength is None:
210 minlength = -1
211 minlength = _execute.make_int(minlength, "minlength")
212 if maxlength is None:
213 maxlength = -1
214 maxlength = _execute.make_int(maxlength, "maxlength")
215 _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ])
216 _attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
217 splits = _ops.convert_to_tensor(splits, _dtypes.int64)
218 _inputs_flat = [splits, values, weights]
219 _attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength,
220 "binary_output", binary_output, "output_type", _attr_output_type)
221 _result = _execute.execute(b"RaggedCountSparseOutput", 3,
222 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
223 name=name)
224 if _execute.must_record_gradient():
225 _execute.record_gradient(
226 "RaggedCountSparseOutput", _inputs_flat, _attrs, _result)
227 _result = _RaggedCountSparseOutputOutput._make(_result)
228 return _result
230_SparseCountSparseOutputOutput = collections.namedtuple(
231 "SparseCountSparseOutput",
232 ["output_indices", "output_values", "output_dense_shape"])
235def sparse_count_sparse_output(indices, values, dense_shape, weights, binary_output, minlength=-1, maxlength=-1, name=None):
236 r"""Performs sparse-output bin counting for a sparse tensor input.
238 Counts the number of times each value occurs in the input.
240 Args:
241 indices: A `Tensor` of type `int64`.
242 Tensor containing the indices of the sparse tensor to count.
243 values: A `Tensor`. Must be one of the following types: `int32`, `int64`.
244 Tensor containing values of the sparse tensor to count.
245 dense_shape: A `Tensor` of type `int64`.
246 Tensor containing the dense shape of the sparse tensor to count.
247 weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
248 A Tensor of the same shape as indices containing per-index weight values.
249 May also be the empty tensor if no weights are used.
250 binary_output: A `bool`.
251 Whether to output the number of occurrences of each value or 1.
252 minlength: An optional `int` that is `>= -1`. Defaults to `-1`.
253 Minimum value to count. Can be set to -1 for no minimum.
254 maxlength: An optional `int` that is `>= -1`. Defaults to `-1`.
255 Maximum value to count. Can be set to -1 for no maximum.
256 name: A name for the operation (optional).
258 Returns:
259 A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape).
261 output_indices: A `Tensor` of type `int64`.
262 output_values: A `Tensor`. Has the same type as `weights`.
263 output_dense_shape: A `Tensor` of type `int64`.
264 """
265 _ctx = _context._context or _context.context()
266 tld = _ctx._thread_local_data
267 if tld.is_eager:
268 try:
269 _result = pywrap_tfe.TFE_Py_FastPathExecute(
270 _ctx, "SparseCountSparseOutput", name, indices, values, dense_shape,
271 weights, "minlength", minlength, "maxlength", maxlength,
272 "binary_output", binary_output)
273 _result = _SparseCountSparseOutputOutput._make(_result)
274 return _result
275 except _core._NotOkStatusException as e:
276 _ops.raise_from_not_ok_status(e, name)
277 except _core._FallbackException:
278 pass
279 try:
280 return sparse_count_sparse_output_eager_fallback(
281 indices, values, dense_shape, weights, minlength=minlength,
282 maxlength=maxlength, binary_output=binary_output, name=name,
283 ctx=_ctx)
284 except _core._SymbolicException:
285 pass # Add nodes to the TensorFlow graph.
286 # Add nodes to the TensorFlow graph.
287 binary_output = _execute.make_bool(binary_output, "binary_output")
288 if minlength is None:
289 minlength = -1
290 minlength = _execute.make_int(minlength, "minlength")
291 if maxlength is None:
292 maxlength = -1
293 maxlength = _execute.make_int(maxlength, "maxlength")
294 _, _, _op, _outputs = _op_def_library._apply_op_helper(
295 "SparseCountSparseOutput", indices=indices, values=values,
296 dense_shape=dense_shape, weights=weights,
297 binary_output=binary_output,
298 minlength=minlength, maxlength=maxlength,
299 name=name)
300 _result = _outputs[:]
301 if _execute.must_record_gradient():
302 _attrs = ("T", _op._get_attr_type("T"), "minlength",
303 _op._get_attr_int("minlength"), "maxlength",
304 _op._get_attr_int("maxlength"), "binary_output",
305 _op._get_attr_bool("binary_output"), "output_type",
306 _op._get_attr_type("output_type"))
307 _inputs_flat = _op.inputs
308 _execute.record_gradient(
309 "SparseCountSparseOutput", _inputs_flat, _attrs, _result)
310 _result = _SparseCountSparseOutputOutput._make(_result)
311 return _result
313SparseCountSparseOutput = tf_export("raw_ops.SparseCountSparseOutput")(_ops.to_raw_op(sparse_count_sparse_output))
316def sparse_count_sparse_output_eager_fallback(indices, values, dense_shape, weights, binary_output, minlength, maxlength, name, ctx):
317 binary_output = _execute.make_bool(binary_output, "binary_output")
318 if minlength is None:
319 minlength = -1
320 minlength = _execute.make_int(minlength, "minlength")
321 if maxlength is None:
322 maxlength = -1
323 maxlength = _execute.make_int(maxlength, "maxlength")
324 _attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ])
325 _attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
326 indices = _ops.convert_to_tensor(indices, _dtypes.int64)
327 dense_shape = _ops.convert_to_tensor(dense_shape, _dtypes.int64)
328 _inputs_flat = [indices, values, dense_shape, weights]
329 _attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength,
330 "binary_output", binary_output, "output_type", _attr_output_type)
331 _result = _execute.execute(b"SparseCountSparseOutput", 3,
332 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
333 name=name)
334 if _execute.must_record_gradient():
335 _execute.record_gradient(
336 "SparseCountSparseOutput", _inputs_flat, _attrs, _result)
337 _result = _SparseCountSparseOutputOutput._make(_result)
338 return _result