Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_optional_ops.py: 17%
155 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
24def optional_from_value(components, name=None):
25 r"""Constructs an Optional variant from a tuple of tensors.
27 Args:
28 components: A list of `Tensor` objects.
29 name: A name for the operation (optional).
31 Returns:
32 A `Tensor` of type `variant`.
33 """
34 _ctx = _context._context or _context.context()
35 tld = _ctx._thread_local_data
36 if tld.is_eager:
37 try:
38 _result = pywrap_tfe.TFE_Py_FastPathExecute(
39 _ctx, "OptionalFromValue", name, components)
40 return _result
41 except _core._NotOkStatusException as e:
42 _ops.raise_from_not_ok_status(e, name)
43 except _core._FallbackException:
44 pass
45 try:
46 return optional_from_value_eager_fallback(
47 components, name=name, ctx=_ctx)
48 except _core._SymbolicException:
49 pass # Add nodes to the TensorFlow graph.
50 # Add nodes to the TensorFlow graph.
51 _, _, _op, _outputs = _op_def_library._apply_op_helper(
52 "OptionalFromValue", components=components, name=name)
53 _result = _outputs[:]
54 if _execute.must_record_gradient():
55 _attrs = ("Toutput_types", _op.get_attr("Toutput_types"))
56 _inputs_flat = _op.inputs
57 _execute.record_gradient(
58 "OptionalFromValue", _inputs_flat, _attrs, _result)
59 _result, = _result
60 return _result
62OptionalFromValue = tf_export("raw_ops.OptionalFromValue")(_ops.to_raw_op(optional_from_value))
65def optional_from_value_eager_fallback(components, name, ctx):
66 _attr_Toutput_types, components = _execute.convert_to_mixed_eager_tensors(components, ctx)
67 _inputs_flat = list(components)
68 _attrs = ("Toutput_types", _attr_Toutput_types)
69 _result = _execute.execute(b"OptionalFromValue", 1, inputs=_inputs_flat,
70 attrs=_attrs, ctx=ctx, name=name)
71 if _execute.must_record_gradient():
72 _execute.record_gradient(
73 "OptionalFromValue", _inputs_flat, _attrs, _result)
74 _result, = _result
75 return _result
78def optional_get_value(optional, output_types, output_shapes, name=None):
79 r"""Returns the value stored in an Optional variant or raises an error if none exists.
81 Args:
82 optional: A `Tensor` of type `variant`.
83 output_types: A list of `tf.DTypes` that has length `>= 1`.
84 output_shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`) that has length `>= 1`.
85 name: A name for the operation (optional).
87 Returns:
88 A list of `Tensor` objects of type `output_types`.
89 """
90 _ctx = _context._context or _context.context()
91 tld = _ctx._thread_local_data
92 if tld.is_eager:
93 try:
94 _result = pywrap_tfe.TFE_Py_FastPathExecute(
95 _ctx, "OptionalGetValue", name, optional, "output_types",
96 output_types, "output_shapes", output_shapes)
97 return _result
98 except _core._NotOkStatusException as e:
99 _ops.raise_from_not_ok_status(e, name)
100 except _core._FallbackException:
101 pass
102 try:
103 return optional_get_value_eager_fallback(
104 optional, output_types=output_types, output_shapes=output_shapes,
105 name=name, ctx=_ctx)
106 except _core._SymbolicException:
107 pass # Add nodes to the TensorFlow graph.
108 # Add nodes to the TensorFlow graph.
109 if not isinstance(output_types, (list, tuple)):
110 raise TypeError(
111 "Expected list for 'output_types' argument to "
112 "'optional_get_value' Op, not %r." % output_types)
113 output_types = [_execute.make_type(_t, "output_types") for _t in output_types]
114 if not isinstance(output_shapes, (list, tuple)):
115 raise TypeError(
116 "Expected list for 'output_shapes' argument to "
117 "'optional_get_value' Op, not %r." % output_shapes)
118 output_shapes = [_execute.make_shape(_s, "output_shapes") for _s in output_shapes]
119 _, _, _op, _outputs = _op_def_library._apply_op_helper(
120 "OptionalGetValue", optional=optional, output_types=output_types,
121 output_shapes=output_shapes, name=name)
122 _result = _outputs[:]
123 if _execute.must_record_gradient():
124 _attrs = ("output_types", _op.get_attr("output_types"), "output_shapes",
125 _op.get_attr("output_shapes"))
126 _inputs_flat = _op.inputs
127 _execute.record_gradient(
128 "OptionalGetValue", _inputs_flat, _attrs, _result)
129 return _result
131OptionalGetValue = tf_export("raw_ops.OptionalGetValue")(_ops.to_raw_op(optional_get_value))
134def optional_get_value_eager_fallback(optional, output_types, output_shapes, name, ctx):
135 if not isinstance(output_types, (list, tuple)):
136 raise TypeError(
137 "Expected list for 'output_types' argument to "
138 "'optional_get_value' Op, not %r." % output_types)
139 output_types = [_execute.make_type(_t, "output_types") for _t in output_types]
140 if not isinstance(output_shapes, (list, tuple)):
141 raise TypeError(
142 "Expected list for 'output_shapes' argument to "
143 "'optional_get_value' Op, not %r." % output_shapes)
144 output_shapes = [_execute.make_shape(_s, "output_shapes") for _s in output_shapes]
145 optional = _ops.convert_to_tensor(optional, _dtypes.variant)
146 _inputs_flat = [optional]
147 _attrs = ("output_types", output_types, "output_shapes", output_shapes)
148 _result = _execute.execute(b"OptionalGetValue", len(output_types),
149 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
150 name=name)
151 if _execute.must_record_gradient():
152 _execute.record_gradient(
153 "OptionalGetValue", _inputs_flat, _attrs, _result)
154 return _result
157def optional_has_value(optional, name=None):
158 r"""Returns true if and only if the given Optional variant has a value.
160 Args:
161 optional: A `Tensor` of type `variant`.
162 name: A name for the operation (optional).
164 Returns:
165 A `Tensor` of type `bool`.
166 """
167 _ctx = _context._context or _context.context()
168 tld = _ctx._thread_local_data
169 if tld.is_eager:
170 try:
171 _result = pywrap_tfe.TFE_Py_FastPathExecute(
172 _ctx, "OptionalHasValue", name, optional)
173 return _result
174 except _core._NotOkStatusException as e:
175 _ops.raise_from_not_ok_status(e, name)
176 except _core._FallbackException:
177 pass
178 try:
179 return optional_has_value_eager_fallback(
180 optional, name=name, ctx=_ctx)
181 except _core._SymbolicException:
182 pass # Add nodes to the TensorFlow graph.
183 # Add nodes to the TensorFlow graph.
184 _, _, _op, _outputs = _op_def_library._apply_op_helper(
185 "OptionalHasValue", optional=optional, name=name)
186 _result = _outputs[:]
187 if _execute.must_record_gradient():
188 _attrs = ()
189 _inputs_flat = _op.inputs
190 _execute.record_gradient(
191 "OptionalHasValue", _inputs_flat, _attrs, _result)
192 _result, = _result
193 return _result
195OptionalHasValue = tf_export("raw_ops.OptionalHasValue")(_ops.to_raw_op(optional_has_value))
198def optional_has_value_eager_fallback(optional, name, ctx):
199 optional = _ops.convert_to_tensor(optional, _dtypes.variant)
200 _inputs_flat = [optional]
201 _attrs = None
202 _result = _execute.execute(b"OptionalHasValue", 1, inputs=_inputs_flat,
203 attrs=_attrs, ctx=ctx, name=name)
204 if _execute.must_record_gradient():
205 _execute.record_gradient(
206 "OptionalHasValue", _inputs_flat, _attrs, _result)
207 _result, = _result
208 return _result
211def optional_none(name=None):
212 r"""Creates an Optional variant with no value.
214 Args:
215 name: A name for the operation (optional).
217 Returns:
218 A `Tensor` of type `variant`.
219 """
220 _ctx = _context._context or _context.context()
221 tld = _ctx._thread_local_data
222 if tld.is_eager:
223 try:
224 _result = pywrap_tfe.TFE_Py_FastPathExecute(
225 _ctx, "OptionalNone", name)
226 return _result
227 except _core._NotOkStatusException as e:
228 _ops.raise_from_not_ok_status(e, name)
229 except _core._FallbackException:
230 pass
231 try:
232 return optional_none_eager_fallback(
233 name=name, ctx=_ctx)
234 except _core._SymbolicException:
235 pass # Add nodes to the TensorFlow graph.
236 # Add nodes to the TensorFlow graph.
237 _, _, _op, _outputs = _op_def_library._apply_op_helper(
238 "OptionalNone", name=name)
239 _result = _outputs[:]
240 if _execute.must_record_gradient():
241 _attrs = ()
242 _inputs_flat = _op.inputs
243 _execute.record_gradient(
244 "OptionalNone", _inputs_flat, _attrs, _result)
245 _result, = _result
246 return _result
248OptionalNone = tf_export("raw_ops.OptionalNone")(_ops.to_raw_op(optional_none))
251def optional_none_eager_fallback(name, ctx):
252 _inputs_flat = []
253 _attrs = None
254 _result = _execute.execute(b"OptionalNone", 1, inputs=_inputs_flat,
255 attrs=_attrs, ctx=ctx, name=name)
256 if _execute.must_record_gradient():
257 _execute.record_gradient(
258 "OptionalNone", _inputs_flat, _attrs, _result)
259 _result, = _result
260 return _result