Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_special_math_ops.py: 11%
575 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
24def bessel_i0(x, name=None):
25 r"""TODO: add doc.
27 Args:
28 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
29 name: A name for the operation (optional).
31 Returns:
32 A `Tensor`. Has the same type as `x`.
33 """
34 _ctx = _context._context or _context.context()
35 tld = _ctx._thread_local_data
36 if tld.is_eager:
37 try:
38 _result = pywrap_tfe.TFE_Py_FastPathExecute(
39 _ctx, "BesselI0", name, x)
40 return _result
41 except _core._NotOkStatusException as e:
42 _ops.raise_from_not_ok_status(e, name)
43 except _core._FallbackException:
44 pass
45 try:
46 return bessel_i0_eager_fallback(
47 x, name=name, ctx=_ctx)
48 except _core._SymbolicException:
49 pass # Add nodes to the TensorFlow graph.
50 # Add nodes to the TensorFlow graph.
51 _, _, _op, _outputs = _op_def_library._apply_op_helper(
52 "BesselI0", x=x, name=name)
53 _result = _outputs[:]
54 if _execute.must_record_gradient():
55 _attrs = ("T", _op._get_attr_type("T"))
56 _inputs_flat = _op.inputs
57 _execute.record_gradient(
58 "BesselI0", _inputs_flat, _attrs, _result)
59 _result, = _result
60 return _result
62BesselI0 = tf_export("raw_ops.BesselI0")(_ops.to_raw_op(bessel_i0))
65def bessel_i0_eager_fallback(x, name, ctx):
66 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
67 _inputs_flat = [x]
68 _attrs = ("T", _attr_T)
69 _result = _execute.execute(b"BesselI0", 1, inputs=_inputs_flat,
70 attrs=_attrs, ctx=ctx, name=name)
71 if _execute.must_record_gradient():
72 _execute.record_gradient(
73 "BesselI0", _inputs_flat, _attrs, _result)
74 _result, = _result
75 return _result
78def bessel_i0e(x, name=None):
79 r"""TODO: add doc.
81 Args:
82 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
83 name: A name for the operation (optional).
85 Returns:
86 A `Tensor`. Has the same type as `x`.
87 """
88 _ctx = _context._context or _context.context()
89 tld = _ctx._thread_local_data
90 if tld.is_eager:
91 try:
92 _result = pywrap_tfe.TFE_Py_FastPathExecute(
93 _ctx, "BesselI0e", name, x)
94 return _result
95 except _core._NotOkStatusException as e:
96 _ops.raise_from_not_ok_status(e, name)
97 except _core._FallbackException:
98 pass
99 try:
100 return bessel_i0e_eager_fallback(
101 x, name=name, ctx=_ctx)
102 except _core._SymbolicException:
103 pass # Add nodes to the TensorFlow graph.
104 # Add nodes to the TensorFlow graph.
105 _, _, _op, _outputs = _op_def_library._apply_op_helper(
106 "BesselI0e", x=x, name=name)
107 _result = _outputs[:]
108 if _execute.must_record_gradient():
109 _attrs = ("T", _op._get_attr_type("T"))
110 _inputs_flat = _op.inputs
111 _execute.record_gradient(
112 "BesselI0e", _inputs_flat, _attrs, _result)
113 _result, = _result
114 return _result
116BesselI0e = tf_export("raw_ops.BesselI0e")(_ops.to_raw_op(bessel_i0e))
119def bessel_i0e_eager_fallback(x, name, ctx):
120 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
121 _inputs_flat = [x]
122 _attrs = ("T", _attr_T)
123 _result = _execute.execute(b"BesselI0e", 1, inputs=_inputs_flat,
124 attrs=_attrs, ctx=ctx, name=name)
125 if _execute.must_record_gradient():
126 _execute.record_gradient(
127 "BesselI0e", _inputs_flat, _attrs, _result)
128 _result, = _result
129 return _result
132def bessel_i1(x, name=None):
133 r"""TODO: add doc.
135 Args:
136 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
137 name: A name for the operation (optional).
139 Returns:
140 A `Tensor`. Has the same type as `x`.
141 """
142 _ctx = _context._context or _context.context()
143 tld = _ctx._thread_local_data
144 if tld.is_eager:
145 try:
146 _result = pywrap_tfe.TFE_Py_FastPathExecute(
147 _ctx, "BesselI1", name, x)
148 return _result
149 except _core._NotOkStatusException as e:
150 _ops.raise_from_not_ok_status(e, name)
151 except _core._FallbackException:
152 pass
153 try:
154 return bessel_i1_eager_fallback(
155 x, name=name, ctx=_ctx)
156 except _core._SymbolicException:
157 pass # Add nodes to the TensorFlow graph.
158 # Add nodes to the TensorFlow graph.
159 _, _, _op, _outputs = _op_def_library._apply_op_helper(
160 "BesselI1", x=x, name=name)
161 _result = _outputs[:]
162 if _execute.must_record_gradient():
163 _attrs = ("T", _op._get_attr_type("T"))
164 _inputs_flat = _op.inputs
165 _execute.record_gradient(
166 "BesselI1", _inputs_flat, _attrs, _result)
167 _result, = _result
168 return _result
170BesselI1 = tf_export("raw_ops.BesselI1")(_ops.to_raw_op(bessel_i1))
173def bessel_i1_eager_fallback(x, name, ctx):
174 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
175 _inputs_flat = [x]
176 _attrs = ("T", _attr_T)
177 _result = _execute.execute(b"BesselI1", 1, inputs=_inputs_flat,
178 attrs=_attrs, ctx=ctx, name=name)
179 if _execute.must_record_gradient():
180 _execute.record_gradient(
181 "BesselI1", _inputs_flat, _attrs, _result)
182 _result, = _result
183 return _result
186def bessel_i1e(x, name=None):
187 r"""TODO: add doc.
189 Args:
190 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
191 name: A name for the operation (optional).
193 Returns:
194 A `Tensor`. Has the same type as `x`.
195 """
196 _ctx = _context._context or _context.context()
197 tld = _ctx._thread_local_data
198 if tld.is_eager:
199 try:
200 _result = pywrap_tfe.TFE_Py_FastPathExecute(
201 _ctx, "BesselI1e", name, x)
202 return _result
203 except _core._NotOkStatusException as e:
204 _ops.raise_from_not_ok_status(e, name)
205 except _core._FallbackException:
206 pass
207 try:
208 return bessel_i1e_eager_fallback(
209 x, name=name, ctx=_ctx)
210 except _core._SymbolicException:
211 pass # Add nodes to the TensorFlow graph.
212 # Add nodes to the TensorFlow graph.
213 _, _, _op, _outputs = _op_def_library._apply_op_helper(
214 "BesselI1e", x=x, name=name)
215 _result = _outputs[:]
216 if _execute.must_record_gradient():
217 _attrs = ("T", _op._get_attr_type("T"))
218 _inputs_flat = _op.inputs
219 _execute.record_gradient(
220 "BesselI1e", _inputs_flat, _attrs, _result)
221 _result, = _result
222 return _result
224BesselI1e = tf_export("raw_ops.BesselI1e")(_ops.to_raw_op(bessel_i1e))
227def bessel_i1e_eager_fallback(x, name, ctx):
228 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
229 _inputs_flat = [x]
230 _attrs = ("T", _attr_T)
231 _result = _execute.execute(b"BesselI1e", 1, inputs=_inputs_flat,
232 attrs=_attrs, ctx=ctx, name=name)
233 if _execute.must_record_gradient():
234 _execute.record_gradient(
235 "BesselI1e", _inputs_flat, _attrs, _result)
236 _result, = _result
237 return _result
240def bessel_j0(x, name=None):
241 r"""TODO: add doc.
243 Args:
244 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
245 name: A name for the operation (optional).
247 Returns:
248 A `Tensor`. Has the same type as `x`.
249 """
250 _ctx = _context._context or _context.context()
251 tld = _ctx._thread_local_data
252 if tld.is_eager:
253 try:
254 _result = pywrap_tfe.TFE_Py_FastPathExecute(
255 _ctx, "BesselJ0", name, x)
256 return _result
257 except _core._NotOkStatusException as e:
258 _ops.raise_from_not_ok_status(e, name)
259 except _core._FallbackException:
260 pass
261 try:
262 return bessel_j0_eager_fallback(
263 x, name=name, ctx=_ctx)
264 except _core._SymbolicException:
265 pass # Add nodes to the TensorFlow graph.
266 # Add nodes to the TensorFlow graph.
267 _, _, _op, _outputs = _op_def_library._apply_op_helper(
268 "BesselJ0", x=x, name=name)
269 _result = _outputs[:]
270 if _execute.must_record_gradient():
271 _attrs = ("T", _op._get_attr_type("T"))
272 _inputs_flat = _op.inputs
273 _execute.record_gradient(
274 "BesselJ0", _inputs_flat, _attrs, _result)
275 _result, = _result
276 return _result
278BesselJ0 = tf_export("raw_ops.BesselJ0")(_ops.to_raw_op(bessel_j0))
281def bessel_j0_eager_fallback(x, name, ctx):
282 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
283 _inputs_flat = [x]
284 _attrs = ("T", _attr_T)
285 _result = _execute.execute(b"BesselJ0", 1, inputs=_inputs_flat,
286 attrs=_attrs, ctx=ctx, name=name)
287 if _execute.must_record_gradient():
288 _execute.record_gradient(
289 "BesselJ0", _inputs_flat, _attrs, _result)
290 _result, = _result
291 return _result
294def bessel_j1(x, name=None):
295 r"""TODO: add doc.
297 Args:
298 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
299 name: A name for the operation (optional).
301 Returns:
302 A `Tensor`. Has the same type as `x`.
303 """
304 _ctx = _context._context or _context.context()
305 tld = _ctx._thread_local_data
306 if tld.is_eager:
307 try:
308 _result = pywrap_tfe.TFE_Py_FastPathExecute(
309 _ctx, "BesselJ1", name, x)
310 return _result
311 except _core._NotOkStatusException as e:
312 _ops.raise_from_not_ok_status(e, name)
313 except _core._FallbackException:
314 pass
315 try:
316 return bessel_j1_eager_fallback(
317 x, name=name, ctx=_ctx)
318 except _core._SymbolicException:
319 pass # Add nodes to the TensorFlow graph.
320 # Add nodes to the TensorFlow graph.
321 _, _, _op, _outputs = _op_def_library._apply_op_helper(
322 "BesselJ1", x=x, name=name)
323 _result = _outputs[:]
324 if _execute.must_record_gradient():
325 _attrs = ("T", _op._get_attr_type("T"))
326 _inputs_flat = _op.inputs
327 _execute.record_gradient(
328 "BesselJ1", _inputs_flat, _attrs, _result)
329 _result, = _result
330 return _result
332BesselJ1 = tf_export("raw_ops.BesselJ1")(_ops.to_raw_op(bessel_j1))
335def bessel_j1_eager_fallback(x, name, ctx):
336 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
337 _inputs_flat = [x]
338 _attrs = ("T", _attr_T)
339 _result = _execute.execute(b"BesselJ1", 1, inputs=_inputs_flat,
340 attrs=_attrs, ctx=ctx, name=name)
341 if _execute.must_record_gradient():
342 _execute.record_gradient(
343 "BesselJ1", _inputs_flat, _attrs, _result)
344 _result, = _result
345 return _result
348def bessel_k0(x, name=None):
349 r"""TODO: add doc.
351 Args:
352 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
353 name: A name for the operation (optional).
355 Returns:
356 A `Tensor`. Has the same type as `x`.
357 """
358 _ctx = _context._context or _context.context()
359 tld = _ctx._thread_local_data
360 if tld.is_eager:
361 try:
362 _result = pywrap_tfe.TFE_Py_FastPathExecute(
363 _ctx, "BesselK0", name, x)
364 return _result
365 except _core._NotOkStatusException as e:
366 _ops.raise_from_not_ok_status(e, name)
367 except _core._FallbackException:
368 pass
369 try:
370 return bessel_k0_eager_fallback(
371 x, name=name, ctx=_ctx)
372 except _core._SymbolicException:
373 pass # Add nodes to the TensorFlow graph.
374 # Add nodes to the TensorFlow graph.
375 _, _, _op, _outputs = _op_def_library._apply_op_helper(
376 "BesselK0", x=x, name=name)
377 _result = _outputs[:]
378 if _execute.must_record_gradient():
379 _attrs = ("T", _op._get_attr_type("T"))
380 _inputs_flat = _op.inputs
381 _execute.record_gradient(
382 "BesselK0", _inputs_flat, _attrs, _result)
383 _result, = _result
384 return _result
386BesselK0 = tf_export("raw_ops.BesselK0")(_ops.to_raw_op(bessel_k0))
389def bessel_k0_eager_fallback(x, name, ctx):
390 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
391 _inputs_flat = [x]
392 _attrs = ("T", _attr_T)
393 _result = _execute.execute(b"BesselK0", 1, inputs=_inputs_flat,
394 attrs=_attrs, ctx=ctx, name=name)
395 if _execute.must_record_gradient():
396 _execute.record_gradient(
397 "BesselK0", _inputs_flat, _attrs, _result)
398 _result, = _result
399 return _result
402def bessel_k0e(x, name=None):
403 r"""TODO: add doc.
405 Args:
406 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
407 name: A name for the operation (optional).
409 Returns:
410 A `Tensor`. Has the same type as `x`.
411 """
412 _ctx = _context._context or _context.context()
413 tld = _ctx._thread_local_data
414 if tld.is_eager:
415 try:
416 _result = pywrap_tfe.TFE_Py_FastPathExecute(
417 _ctx, "BesselK0e", name, x)
418 return _result
419 except _core._NotOkStatusException as e:
420 _ops.raise_from_not_ok_status(e, name)
421 except _core._FallbackException:
422 pass
423 try:
424 return bessel_k0e_eager_fallback(
425 x, name=name, ctx=_ctx)
426 except _core._SymbolicException:
427 pass # Add nodes to the TensorFlow graph.
428 # Add nodes to the TensorFlow graph.
429 _, _, _op, _outputs = _op_def_library._apply_op_helper(
430 "BesselK0e", x=x, name=name)
431 _result = _outputs[:]
432 if _execute.must_record_gradient():
433 _attrs = ("T", _op._get_attr_type("T"))
434 _inputs_flat = _op.inputs
435 _execute.record_gradient(
436 "BesselK0e", _inputs_flat, _attrs, _result)
437 _result, = _result
438 return _result
440BesselK0e = tf_export("raw_ops.BesselK0e")(_ops.to_raw_op(bessel_k0e))
443def bessel_k0e_eager_fallback(x, name, ctx):
444 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
445 _inputs_flat = [x]
446 _attrs = ("T", _attr_T)
447 _result = _execute.execute(b"BesselK0e", 1, inputs=_inputs_flat,
448 attrs=_attrs, ctx=ctx, name=name)
449 if _execute.must_record_gradient():
450 _execute.record_gradient(
451 "BesselK0e", _inputs_flat, _attrs, _result)
452 _result, = _result
453 return _result
456def bessel_k1(x, name=None):
457 r"""TODO: add doc.
459 Args:
460 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
461 name: A name for the operation (optional).
463 Returns:
464 A `Tensor`. Has the same type as `x`.
465 """
466 _ctx = _context._context or _context.context()
467 tld = _ctx._thread_local_data
468 if tld.is_eager:
469 try:
470 _result = pywrap_tfe.TFE_Py_FastPathExecute(
471 _ctx, "BesselK1", name, x)
472 return _result
473 except _core._NotOkStatusException as e:
474 _ops.raise_from_not_ok_status(e, name)
475 except _core._FallbackException:
476 pass
477 try:
478 return bessel_k1_eager_fallback(
479 x, name=name, ctx=_ctx)
480 except _core._SymbolicException:
481 pass # Add nodes to the TensorFlow graph.
482 # Add nodes to the TensorFlow graph.
483 _, _, _op, _outputs = _op_def_library._apply_op_helper(
484 "BesselK1", x=x, name=name)
485 _result = _outputs[:]
486 if _execute.must_record_gradient():
487 _attrs = ("T", _op._get_attr_type("T"))
488 _inputs_flat = _op.inputs
489 _execute.record_gradient(
490 "BesselK1", _inputs_flat, _attrs, _result)
491 _result, = _result
492 return _result
494BesselK1 = tf_export("raw_ops.BesselK1")(_ops.to_raw_op(bessel_k1))
497def bessel_k1_eager_fallback(x, name, ctx):
498 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
499 _inputs_flat = [x]
500 _attrs = ("T", _attr_T)
501 _result = _execute.execute(b"BesselK1", 1, inputs=_inputs_flat,
502 attrs=_attrs, ctx=ctx, name=name)
503 if _execute.must_record_gradient():
504 _execute.record_gradient(
505 "BesselK1", _inputs_flat, _attrs, _result)
506 _result, = _result
507 return _result
510def bessel_k1e(x, name=None):
511 r"""TODO: add doc.
513 Args:
514 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
515 name: A name for the operation (optional).
517 Returns:
518 A `Tensor`. Has the same type as `x`.
519 """
520 _ctx = _context._context or _context.context()
521 tld = _ctx._thread_local_data
522 if tld.is_eager:
523 try:
524 _result = pywrap_tfe.TFE_Py_FastPathExecute(
525 _ctx, "BesselK1e", name, x)
526 return _result
527 except _core._NotOkStatusException as e:
528 _ops.raise_from_not_ok_status(e, name)
529 except _core._FallbackException:
530 pass
531 try:
532 return bessel_k1e_eager_fallback(
533 x, name=name, ctx=_ctx)
534 except _core._SymbolicException:
535 pass # Add nodes to the TensorFlow graph.
536 # Add nodes to the TensorFlow graph.
537 _, _, _op, _outputs = _op_def_library._apply_op_helper(
538 "BesselK1e", x=x, name=name)
539 _result = _outputs[:]
540 if _execute.must_record_gradient():
541 _attrs = ("T", _op._get_attr_type("T"))
542 _inputs_flat = _op.inputs
543 _execute.record_gradient(
544 "BesselK1e", _inputs_flat, _attrs, _result)
545 _result, = _result
546 return _result
548BesselK1e = tf_export("raw_ops.BesselK1e")(_ops.to_raw_op(bessel_k1e))
551def bessel_k1e_eager_fallback(x, name, ctx):
552 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
553 _inputs_flat = [x]
554 _attrs = ("T", _attr_T)
555 _result = _execute.execute(b"BesselK1e", 1, inputs=_inputs_flat,
556 attrs=_attrs, ctx=ctx, name=name)
557 if _execute.must_record_gradient():
558 _execute.record_gradient(
559 "BesselK1e", _inputs_flat, _attrs, _result)
560 _result, = _result
561 return _result
564def bessel_y0(x, name=None):
565 r"""TODO: add doc.
567 Args:
568 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
569 name: A name for the operation (optional).
571 Returns:
572 A `Tensor`. Has the same type as `x`.
573 """
574 _ctx = _context._context or _context.context()
575 tld = _ctx._thread_local_data
576 if tld.is_eager:
577 try:
578 _result = pywrap_tfe.TFE_Py_FastPathExecute(
579 _ctx, "BesselY0", name, x)
580 return _result
581 except _core._NotOkStatusException as e:
582 _ops.raise_from_not_ok_status(e, name)
583 except _core._FallbackException:
584 pass
585 try:
586 return bessel_y0_eager_fallback(
587 x, name=name, ctx=_ctx)
588 except _core._SymbolicException:
589 pass # Add nodes to the TensorFlow graph.
590 # Add nodes to the TensorFlow graph.
591 _, _, _op, _outputs = _op_def_library._apply_op_helper(
592 "BesselY0", x=x, name=name)
593 _result = _outputs[:]
594 if _execute.must_record_gradient():
595 _attrs = ("T", _op._get_attr_type("T"))
596 _inputs_flat = _op.inputs
597 _execute.record_gradient(
598 "BesselY0", _inputs_flat, _attrs, _result)
599 _result, = _result
600 return _result
602BesselY0 = tf_export("raw_ops.BesselY0")(_ops.to_raw_op(bessel_y0))
605def bessel_y0_eager_fallback(x, name, ctx):
606 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
607 _inputs_flat = [x]
608 _attrs = ("T", _attr_T)
609 _result = _execute.execute(b"BesselY0", 1, inputs=_inputs_flat,
610 attrs=_attrs, ctx=ctx, name=name)
611 if _execute.must_record_gradient():
612 _execute.record_gradient(
613 "BesselY0", _inputs_flat, _attrs, _result)
614 _result, = _result
615 return _result
618def bessel_y1(x, name=None):
619 r"""TODO: add doc.
621 Args:
622 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
623 name: A name for the operation (optional).
625 Returns:
626 A `Tensor`. Has the same type as `x`.
627 """
628 _ctx = _context._context or _context.context()
629 tld = _ctx._thread_local_data
630 if tld.is_eager:
631 try:
632 _result = pywrap_tfe.TFE_Py_FastPathExecute(
633 _ctx, "BesselY1", name, x)
634 return _result
635 except _core._NotOkStatusException as e:
636 _ops.raise_from_not_ok_status(e, name)
637 except _core._FallbackException:
638 pass
639 try:
640 return bessel_y1_eager_fallback(
641 x, name=name, ctx=_ctx)
642 except _core._SymbolicException:
643 pass # Add nodes to the TensorFlow graph.
644 # Add nodes to the TensorFlow graph.
645 _, _, _op, _outputs = _op_def_library._apply_op_helper(
646 "BesselY1", x=x, name=name)
647 _result = _outputs[:]
648 if _execute.must_record_gradient():
649 _attrs = ("T", _op._get_attr_type("T"))
650 _inputs_flat = _op.inputs
651 _execute.record_gradient(
652 "BesselY1", _inputs_flat, _attrs, _result)
653 _result, = _result
654 return _result
656BesselY1 = tf_export("raw_ops.BesselY1")(_ops.to_raw_op(bessel_y1))
659def bessel_y1_eager_fallback(x, name, ctx):
660 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
661 _inputs_flat = [x]
662 _attrs = ("T", _attr_T)
663 _result = _execute.execute(b"BesselY1", 1, inputs=_inputs_flat,
664 attrs=_attrs, ctx=ctx, name=name)
665 if _execute.must_record_gradient():
666 _execute.record_gradient(
667 "BesselY1", _inputs_flat, _attrs, _result)
668 _result, = _result
669 return _result
672def dawsn(x, name=None):
673 r"""TODO: add doc.
675 Args:
676 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
677 name: A name for the operation (optional).
679 Returns:
680 A `Tensor`. Has the same type as `x`.
681 """
682 _ctx = _context._context or _context.context()
683 tld = _ctx._thread_local_data
684 if tld.is_eager:
685 try:
686 _result = pywrap_tfe.TFE_Py_FastPathExecute(
687 _ctx, "Dawsn", name, x)
688 return _result
689 except _core._NotOkStatusException as e:
690 _ops.raise_from_not_ok_status(e, name)
691 except _core._FallbackException:
692 pass
693 try:
694 return dawsn_eager_fallback(
695 x, name=name, ctx=_ctx)
696 except _core._SymbolicException:
697 pass # Add nodes to the TensorFlow graph.
698 # Add nodes to the TensorFlow graph.
699 _, _, _op, _outputs = _op_def_library._apply_op_helper(
700 "Dawsn", x=x, name=name)
701 _result = _outputs[:]
702 if _execute.must_record_gradient():
703 _attrs = ("T", _op._get_attr_type("T"))
704 _inputs_flat = _op.inputs
705 _execute.record_gradient(
706 "Dawsn", _inputs_flat, _attrs, _result)
707 _result, = _result
708 return _result
710Dawsn = tf_export("raw_ops.Dawsn")(_ops.to_raw_op(dawsn))
713def dawsn_eager_fallback(x, name, ctx):
714 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
715 _inputs_flat = [x]
716 _attrs = ("T", _attr_T)
717 _result = _execute.execute(b"Dawsn", 1, inputs=_inputs_flat, attrs=_attrs,
718 ctx=ctx, name=name)
719 if _execute.must_record_gradient():
720 _execute.record_gradient(
721 "Dawsn", _inputs_flat, _attrs, _result)
722 _result, = _result
723 return _result
726def expint(x, name=None):
727 r"""TODO: add doc.
729 Args:
730 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
731 name: A name for the operation (optional).
733 Returns:
734 A `Tensor`. Has the same type as `x`.
735 """
736 _ctx = _context._context or _context.context()
737 tld = _ctx._thread_local_data
738 if tld.is_eager:
739 try:
740 _result = pywrap_tfe.TFE_Py_FastPathExecute(
741 _ctx, "Expint", name, x)
742 return _result
743 except _core._NotOkStatusException as e:
744 _ops.raise_from_not_ok_status(e, name)
745 except _core._FallbackException:
746 pass
747 try:
748 return expint_eager_fallback(
749 x, name=name, ctx=_ctx)
750 except _core._SymbolicException:
751 pass # Add nodes to the TensorFlow graph.
752 # Add nodes to the TensorFlow graph.
753 _, _, _op, _outputs = _op_def_library._apply_op_helper(
754 "Expint", x=x, name=name)
755 _result = _outputs[:]
756 if _execute.must_record_gradient():
757 _attrs = ("T", _op._get_attr_type("T"))
758 _inputs_flat = _op.inputs
759 _execute.record_gradient(
760 "Expint", _inputs_flat, _attrs, _result)
761 _result, = _result
762 return _result
764Expint = tf_export("raw_ops.Expint")(_ops.to_raw_op(expint))
767def expint_eager_fallback(x, name, ctx):
768 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
769 _inputs_flat = [x]
770 _attrs = ("T", _attr_T)
771 _result = _execute.execute(b"Expint", 1, inputs=_inputs_flat, attrs=_attrs,
772 ctx=ctx, name=name)
773 if _execute.must_record_gradient():
774 _execute.record_gradient(
775 "Expint", _inputs_flat, _attrs, _result)
776 _result, = _result
777 return _result
780def fresnel_cos(x, name=None):
781 r"""TODO: add doc.
783 Args:
784 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
785 name: A name for the operation (optional).
787 Returns:
788 A `Tensor`. Has the same type as `x`.
789 """
790 _ctx = _context._context or _context.context()
791 tld = _ctx._thread_local_data
792 if tld.is_eager:
793 try:
794 _result = pywrap_tfe.TFE_Py_FastPathExecute(
795 _ctx, "FresnelCos", name, x)
796 return _result
797 except _core._NotOkStatusException as e:
798 _ops.raise_from_not_ok_status(e, name)
799 except _core._FallbackException:
800 pass
801 try:
802 return fresnel_cos_eager_fallback(
803 x, name=name, ctx=_ctx)
804 except _core._SymbolicException:
805 pass # Add nodes to the TensorFlow graph.
806 # Add nodes to the TensorFlow graph.
807 _, _, _op, _outputs = _op_def_library._apply_op_helper(
808 "FresnelCos", x=x, name=name)
809 _result = _outputs[:]
810 if _execute.must_record_gradient():
811 _attrs = ("T", _op._get_attr_type("T"))
812 _inputs_flat = _op.inputs
813 _execute.record_gradient(
814 "FresnelCos", _inputs_flat, _attrs, _result)
815 _result, = _result
816 return _result
818FresnelCos = tf_export("raw_ops.FresnelCos")(_ops.to_raw_op(fresnel_cos))
821def fresnel_cos_eager_fallback(x, name, ctx):
822 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
823 _inputs_flat = [x]
824 _attrs = ("T", _attr_T)
825 _result = _execute.execute(b"FresnelCos", 1, inputs=_inputs_flat,
826 attrs=_attrs, ctx=ctx, name=name)
827 if _execute.must_record_gradient():
828 _execute.record_gradient(
829 "FresnelCos", _inputs_flat, _attrs, _result)
830 _result, = _result
831 return _result
834def fresnel_sin(x, name=None):
835 r"""TODO: add doc.
837 Args:
838 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
839 name: A name for the operation (optional).
841 Returns:
842 A `Tensor`. Has the same type as `x`.
843 """
844 _ctx = _context._context or _context.context()
845 tld = _ctx._thread_local_data
846 if tld.is_eager:
847 try:
848 _result = pywrap_tfe.TFE_Py_FastPathExecute(
849 _ctx, "FresnelSin", name, x)
850 return _result
851 except _core._NotOkStatusException as e:
852 _ops.raise_from_not_ok_status(e, name)
853 except _core._FallbackException:
854 pass
855 try:
856 return fresnel_sin_eager_fallback(
857 x, name=name, ctx=_ctx)
858 except _core._SymbolicException:
859 pass # Add nodes to the TensorFlow graph.
860 # Add nodes to the TensorFlow graph.
861 _, _, _op, _outputs = _op_def_library._apply_op_helper(
862 "FresnelSin", x=x, name=name)
863 _result = _outputs[:]
864 if _execute.must_record_gradient():
865 _attrs = ("T", _op._get_attr_type("T"))
866 _inputs_flat = _op.inputs
867 _execute.record_gradient(
868 "FresnelSin", _inputs_flat, _attrs, _result)
869 _result, = _result
870 return _result
872FresnelSin = tf_export("raw_ops.FresnelSin")(_ops.to_raw_op(fresnel_sin))
875def fresnel_sin_eager_fallback(x, name, ctx):
876 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
877 _inputs_flat = [x]
878 _attrs = ("T", _attr_T)
879 _result = _execute.execute(b"FresnelSin", 1, inputs=_inputs_flat,
880 attrs=_attrs, ctx=ctx, name=name)
881 if _execute.must_record_gradient():
882 _execute.record_gradient(
883 "FresnelSin", _inputs_flat, _attrs, _result)
884 _result, = _result
885 return _result
888def spence(x, name=None):
889 r"""TODO: add doc.
891 Args:
892 x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.
893 name: A name for the operation (optional).
895 Returns:
896 A `Tensor`. Has the same type as `x`.
897 """
898 _ctx = _context._context or _context.context()
899 tld = _ctx._thread_local_data
900 if tld.is_eager:
901 try:
902 _result = pywrap_tfe.TFE_Py_FastPathExecute(
903 _ctx, "Spence", name, x)
904 return _result
905 except _core._NotOkStatusException as e:
906 _ops.raise_from_not_ok_status(e, name)
907 except _core._FallbackException:
908 pass
909 try:
910 return spence_eager_fallback(
911 x, name=name, ctx=_ctx)
912 except _core._SymbolicException:
913 pass # Add nodes to the TensorFlow graph.
914 # Add nodes to the TensorFlow graph.
915 _, _, _op, _outputs = _op_def_library._apply_op_helper(
916 "Spence", x=x, name=name)
917 _result = _outputs[:]
918 if _execute.must_record_gradient():
919 _attrs = ("T", _op._get_attr_type("T"))
920 _inputs_flat = _op.inputs
921 _execute.record_gradient(
922 "Spence", _inputs_flat, _attrs, _result)
923 _result, = _result
924 return _result
926Spence = tf_export("raw_ops.Spence")(_ops.to_raw_op(spence))
929def spence_eager_fallback(x, name, ctx):
930 _attr_T, (x,) = _execute.args_to_matching_eager([x], ctx, [_dtypes.bfloat16, _dtypes.half, _dtypes.float32, _dtypes.float64, ])
931 _inputs_flat = [x]
932 _attrs = ("T", _attr_T)
933 _result = _execute.execute(b"Spence", 1, inputs=_inputs_flat, attrs=_attrs,
934 ctx=ctx, name=name)
935 if _execute.must_record_gradient():
936 _execute.record_gradient(
937 "Spence", _inputs_flat, _attrs, _result)
938 _result, = _result
939 return _result