Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_stateless_random_ops.py: 11%
401 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
24def stateless_multinomial(logits, num_samples, seed, output_dtype=_dtypes.int64, name=None):
25 r"""Draws samples from a multinomial distribution.
27 Args:
28 logits: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`.
29 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`
30 represents the unnormalized log probabilities for all classes.
31 num_samples: A `Tensor` of type `int32`.
32 0-D. Number of independent samples to draw for each row slice.
33 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
34 2 seeds (shape [2]).
35 output_dtype: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int64`.
36 name: A name for the operation (optional).
38 Returns:
39 A `Tensor` of type `output_dtype`.
40 """
41 _ctx = _context._context or _context.context()
42 tld = _ctx._thread_local_data
43 if tld.is_eager:
44 try:
45 _result = pywrap_tfe.TFE_Py_FastPathExecute(
46 _ctx, "StatelessMultinomial", name, logits, num_samples, seed,
47 "output_dtype", output_dtype)
48 return _result
49 except _core._NotOkStatusException as e:
50 _ops.raise_from_not_ok_status(e, name)
51 except _core._FallbackException:
52 pass
53 try:
54 return stateless_multinomial_eager_fallback(
55 logits, num_samples, seed, output_dtype=output_dtype, name=name,
56 ctx=_ctx)
57 except _core._SymbolicException:
58 pass # Add nodes to the TensorFlow graph.
59 # Add nodes to the TensorFlow graph.
60 if output_dtype is None:
61 output_dtype = _dtypes.int64
62 output_dtype = _execute.make_type(output_dtype, "output_dtype")
63 _, _, _op, _outputs = _op_def_library._apply_op_helper(
64 "StatelessMultinomial", logits=logits, num_samples=num_samples,
65 seed=seed, output_dtype=output_dtype,
66 name=name)
67 _result = _outputs[:]
68 if _execute.must_record_gradient():
69 _attrs = ("T", _op._get_attr_type("T"), "Tseed",
70 _op._get_attr_type("Tseed"), "output_dtype",
71 _op._get_attr_type("output_dtype"))
72 _inputs_flat = _op.inputs
73 _execute.record_gradient(
74 "StatelessMultinomial", _inputs_flat, _attrs, _result)
75 _result, = _result
76 return _result
78StatelessMultinomial = tf_export("raw_ops.StatelessMultinomial")(_ops.to_raw_op(stateless_multinomial))
81def stateless_multinomial_eager_fallback(logits, num_samples, seed, output_dtype, name, ctx):
82 if output_dtype is None:
83 output_dtype = _dtypes.int64
84 output_dtype = _execute.make_type(output_dtype, "output_dtype")
85 _attr_T, (logits,) = _execute.args_to_matching_eager([logits], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ])
86 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
87 num_samples = _ops.convert_to_tensor(num_samples, _dtypes.int32)
88 _inputs_flat = [logits, num_samples, seed]
89 _attrs = ("T", _attr_T, "Tseed", _attr_Tseed, "output_dtype", output_dtype)
90 _result = _execute.execute(b"StatelessMultinomial", 1, inputs=_inputs_flat,
91 attrs=_attrs, ctx=ctx, name=name)
92 if _execute.must_record_gradient():
93 _execute.record_gradient(
94 "StatelessMultinomial", _inputs_flat, _attrs, _result)
95 _result, = _result
96 return _result
99def stateless_parameterized_truncated_normal(shape, seed, means, stddevs, minvals, maxvals, name=None):
100 r"""TODO: add doc.
102 Args:
103 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
104 The shape of the output tensor.
105 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
106 2 seeds (shape [2]).
107 means: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
108 The mean parameter of each batch.
109 stddevs: A `Tensor`. Must have the same type as `means`.
110 The standard deviation parameter of each batch. Must be greater than 0.
111 minvals: A `Tensor`. Must have the same type as `means`.
112 The minimum cutoff. May be -infinity.
113 maxvals: A `Tensor`. Must have the same type as `means`.
114 The maximum cutoff. May be +infinity, and must be more than the minval
115 for each batch.
116 name: A name for the operation (optional).
118 Returns:
119 A `Tensor`. Has the same type as `means`.
120 """
121 _ctx = _context._context or _context.context()
122 tld = _ctx._thread_local_data
123 if tld.is_eager:
124 try:
125 _result = pywrap_tfe.TFE_Py_FastPathExecute(
126 _ctx, "StatelessParameterizedTruncatedNormal", name, shape, seed,
127 means, stddevs, minvals, maxvals)
128 return _result
129 except _core._NotOkStatusException as e:
130 _ops.raise_from_not_ok_status(e, name)
131 except _core._FallbackException:
132 pass
133 try:
134 return stateless_parameterized_truncated_normal_eager_fallback(
135 shape, seed, means, stddevs, minvals, maxvals, name=name, ctx=_ctx)
136 except _core._SymbolicException:
137 pass # Add nodes to the TensorFlow graph.
138 # Add nodes to the TensorFlow graph.
139 _, _, _op, _outputs = _op_def_library._apply_op_helper(
140 "StatelessParameterizedTruncatedNormal", shape=shape, seed=seed,
141 means=means, stddevs=stddevs,
142 minvals=minvals,
143 maxvals=maxvals, name=name)
144 _result = _outputs[:]
145 if _execute.must_record_gradient():
146 _attrs = ("S", _op._get_attr_type("S"), "Tseed",
147 _op._get_attr_type("Tseed"), "dtype",
148 _op._get_attr_type("dtype"))
149 _inputs_flat = _op.inputs
150 _execute.record_gradient(
151 "StatelessParameterizedTruncatedNormal", _inputs_flat, _attrs, _result)
152 _result, = _result
153 return _result
155StatelessParameterizedTruncatedNormal = tf_export("raw_ops.StatelessParameterizedTruncatedNormal")(_ops.to_raw_op(stateless_parameterized_truncated_normal))
158def stateless_parameterized_truncated_normal_eager_fallback(shape, seed, means, stddevs, minvals, maxvals, name, ctx):
159 _attr_S, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ])
160 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
161 _attr_dtype, _inputs_dtype = _execute.args_to_matching_eager([means, stddevs, minvals, maxvals], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, ])
162 (means, stddevs, minvals, maxvals) = _inputs_dtype
163 _inputs_flat = [shape, seed, means, stddevs, minvals, maxvals]
164 _attrs = ("S", _attr_S, "Tseed", _attr_Tseed, "dtype", _attr_dtype)
165 _result = _execute.execute(b"StatelessParameterizedTruncatedNormal", 1,
166 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
167 name=name)
168 if _execute.must_record_gradient():
169 _execute.record_gradient(
170 "StatelessParameterizedTruncatedNormal", _inputs_flat, _attrs, _result)
171 _result, = _result
172 return _result
175def stateless_random_binomial(shape, seed, counts, probs, dtype=_dtypes.int64, name=None):
176 r"""Outputs deterministic pseudorandom random numbers from a binomial distribution.
178 Outputs random values from a binomial distribution.
180 The outputs are a deterministic function of `shape`, `seed`, `counts`, and `probs`.
182 Args:
183 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
184 The shape of the output tensor.
185 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
186 2 seeds (shape [2]).
187 counts: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`.
188 The counts of the binomial distribution. Must be broadcastable with `probs`,
189 and broadcastable with the rightmost dimensions of `shape`.
190 probs: A `Tensor`. Must have the same type as `counts`.
191 The probability of success for the binomial distribution. Must be broadcastable
192 with `counts` and broadcastable with the rightmost dimensions of `shape`.
193 dtype: An optional `tf.DType` from: `tf.half, tf.float32, tf.float64, tf.int32, tf.int64`. Defaults to `tf.int64`.
194 The type of the output.
195 name: A name for the operation (optional).
197 Returns:
198 A `Tensor` of type `dtype`.
199 """
200 _ctx = _context._context or _context.context()
201 tld = _ctx._thread_local_data
202 if tld.is_eager:
203 try:
204 _result = pywrap_tfe.TFE_Py_FastPathExecute(
205 _ctx, "StatelessRandomBinomial", name, shape, seed, counts, probs,
206 "dtype", dtype)
207 return _result
208 except _core._NotOkStatusException as e:
209 _ops.raise_from_not_ok_status(e, name)
210 except _core._FallbackException:
211 pass
212 try:
213 return stateless_random_binomial_eager_fallback(
214 shape, seed, counts, probs, dtype=dtype, name=name, ctx=_ctx)
215 except _core._SymbolicException:
216 pass # Add nodes to the TensorFlow graph.
217 # Add nodes to the TensorFlow graph.
218 if dtype is None:
219 dtype = _dtypes.int64
220 dtype = _execute.make_type(dtype, "dtype")
221 _, _, _op, _outputs = _op_def_library._apply_op_helper(
222 "StatelessRandomBinomial", shape=shape, seed=seed, counts=counts,
223 probs=probs, dtype=dtype, name=name)
224 _result = _outputs[:]
225 if _execute.must_record_gradient():
226 _attrs = ("S", _op._get_attr_type("S"), "Tseed",
227 _op._get_attr_type("Tseed"), "T", _op._get_attr_type("T"),
228 "dtype", _op._get_attr_type("dtype"))
229 _inputs_flat = _op.inputs
230 _execute.record_gradient(
231 "StatelessRandomBinomial", _inputs_flat, _attrs, _result)
232 _result, = _result
233 return _result
235StatelessRandomBinomial = tf_export("raw_ops.StatelessRandomBinomial")(_ops.to_raw_op(stateless_random_binomial))
238def stateless_random_binomial_eager_fallback(shape, seed, counts, probs, dtype, name, ctx):
239 if dtype is None:
240 dtype = _dtypes.int64
241 dtype = _execute.make_type(dtype, "dtype")
242 _attr_S, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ])
243 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
244 _attr_T, _inputs_T = _execute.args_to_matching_eager([counts, probs], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ], _dtypes.float64)
245 (counts, probs) = _inputs_T
246 _inputs_flat = [shape, seed, counts, probs]
247 _attrs = ("S", _attr_S, "Tseed", _attr_Tseed, "T", _attr_T, "dtype", dtype)
248 _result = _execute.execute(b"StatelessRandomBinomial", 1,
249 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
250 name=name)
251 if _execute.must_record_gradient():
252 _execute.record_gradient(
253 "StatelessRandomBinomial", _inputs_flat, _attrs, _result)
254 _result, = _result
255 return _result
258def stateless_random_gamma_v2(shape, seed, alpha, name=None):
259 r"""Outputs deterministic pseudorandom random numbers from a gamma distribution.
261 Outputs random values from a gamma distribution.
263 The outputs are a deterministic function of `shape`, `seed`, and `alpha`.
265 Args:
266 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
267 The shape of the output tensor.
268 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
269 2 seeds (shape [2]).
270 alpha: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
271 The concentration of the gamma distribution. Shape must match the rightmost
272 dimensions of `shape`.
273 name: A name for the operation (optional).
275 Returns:
276 A `Tensor`. Has the same type as `alpha`.
277 """
278 _ctx = _context._context or _context.context()
279 tld = _ctx._thread_local_data
280 if tld.is_eager:
281 try:
282 _result = pywrap_tfe.TFE_Py_FastPathExecute(
283 _ctx, "StatelessRandomGammaV2", name, shape, seed, alpha)
284 return _result
285 except _core._NotOkStatusException as e:
286 _ops.raise_from_not_ok_status(e, name)
287 except _core._FallbackException:
288 pass
289 try:
290 return stateless_random_gamma_v2_eager_fallback(
291 shape, seed, alpha, name=name, ctx=_ctx)
292 except _core._SymbolicException:
293 pass # Add nodes to the TensorFlow graph.
294 # Add nodes to the TensorFlow graph.
295 _, _, _op, _outputs = _op_def_library._apply_op_helper(
296 "StatelessRandomGammaV2", shape=shape, seed=seed, alpha=alpha,
297 name=name)
298 _result = _outputs[:]
299 if _execute.must_record_gradient():
300 _attrs = ("dtype", _op._get_attr_type("dtype"), "T",
301 _op._get_attr_type("T"), "Tseed", _op._get_attr_type("Tseed"))
302 _inputs_flat = _op.inputs
303 _execute.record_gradient(
304 "StatelessRandomGammaV2", _inputs_flat, _attrs, _result)
305 _result, = _result
306 return _result
308StatelessRandomGammaV2 = tf_export("raw_ops.StatelessRandomGammaV2")(_ops.to_raw_op(stateless_random_gamma_v2))
311def stateless_random_gamma_v2_eager_fallback(shape, seed, alpha, name, ctx):
312 _attr_dtype, (alpha,) = _execute.args_to_matching_eager([alpha], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, ])
313 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ])
314 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
315 _inputs_flat = [shape, seed, alpha]
316 _attrs = ("dtype", _attr_dtype, "T", _attr_T, "Tseed", _attr_Tseed)
317 _result = _execute.execute(b"StatelessRandomGammaV2", 1,
318 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
319 name=name)
320 if _execute.must_record_gradient():
321 _execute.record_gradient(
322 "StatelessRandomGammaV2", _inputs_flat, _attrs, _result)
323 _result, = _result
324 return _result
327def stateless_random_normal(shape, seed, dtype=_dtypes.float32, name=None):
328 r"""Outputs deterministic pseudorandom values from a normal distribution.
330 The generated values will have mean 0 and standard deviation 1.
332 The outputs are a deterministic function of `shape` and `seed`.
334 Args:
335 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
336 The shape of the output tensor.
337 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
338 2 seeds (shape [2]).
339 dtype: An optional `tf.DType` from: `tf.half, tf.bfloat16, tf.float32, tf.float64`. Defaults to `tf.float32`.
340 The type of the output.
341 name: A name for the operation (optional).
343 Returns:
344 A `Tensor` of type `dtype`.
345 """
346 _ctx = _context._context or _context.context()
347 tld = _ctx._thread_local_data
348 if tld.is_eager:
349 try:
350 _result = pywrap_tfe.TFE_Py_FastPathExecute(
351 _ctx, "StatelessRandomNormal", name, shape, seed, "dtype", dtype)
352 return _result
353 except _core._NotOkStatusException as e:
354 _ops.raise_from_not_ok_status(e, name)
355 except _core._FallbackException:
356 pass
357 try:
358 return stateless_random_normal_eager_fallback(
359 shape, seed, dtype=dtype, name=name, ctx=_ctx)
360 except _core._SymbolicException:
361 pass # Add nodes to the TensorFlow graph.
362 # Add nodes to the TensorFlow graph.
363 if dtype is None:
364 dtype = _dtypes.float32
365 dtype = _execute.make_type(dtype, "dtype")
366 _, _, _op, _outputs = _op_def_library._apply_op_helper(
367 "StatelessRandomNormal", shape=shape, seed=seed, dtype=dtype,
368 name=name)
369 _result = _outputs[:]
370 if _execute.must_record_gradient():
371 _attrs = ("dtype", _op._get_attr_type("dtype"), "T",
372 _op._get_attr_type("T"), "Tseed", _op._get_attr_type("Tseed"))
373 _inputs_flat = _op.inputs
374 _execute.record_gradient(
375 "StatelessRandomNormal", _inputs_flat, _attrs, _result)
376 _result, = _result
377 return _result
379StatelessRandomNormal = tf_export("raw_ops.StatelessRandomNormal")(_ops.to_raw_op(stateless_random_normal))
382def stateless_random_normal_eager_fallback(shape, seed, dtype, name, ctx):
383 if dtype is None:
384 dtype = _dtypes.float32
385 dtype = _execute.make_type(dtype, "dtype")
386 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32)
387 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
388 _inputs_flat = [shape, seed]
389 _attrs = ("dtype", dtype, "T", _attr_T, "Tseed", _attr_Tseed)
390 _result = _execute.execute(b"StatelessRandomNormal", 1, inputs=_inputs_flat,
391 attrs=_attrs, ctx=ctx, name=name)
392 if _execute.must_record_gradient():
393 _execute.record_gradient(
394 "StatelessRandomNormal", _inputs_flat, _attrs, _result)
395 _result, = _result
396 return _result
399def stateless_random_poisson(shape, seed, lam, dtype, name=None):
400 r"""Outputs deterministic pseudorandom random numbers from a Poisson distribution.
402 Outputs random values from a Poisson distribution.
404 The outputs are a deterministic function of `shape`, `seed`, and `lam`.
406 Args:
407 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
408 The shape of the output tensor.
409 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
410 2 seeds (shape [2]).
411 lam: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`.
412 The rate of the Poisson distribution. Shape must match the rightmost dimensions
413 of `shape`.
414 dtype: A `tf.DType` from: `tf.half, tf.float32, tf.float64, tf.int32, tf.int64`.
415 The type of the output.
416 name: A name for the operation (optional).
418 Returns:
419 A `Tensor` of type `dtype`.
420 """
421 _ctx = _context._context or _context.context()
422 tld = _ctx._thread_local_data
423 if tld.is_eager:
424 try:
425 _result = pywrap_tfe.TFE_Py_FastPathExecute(
426 _ctx, "StatelessRandomPoisson", name, shape, seed, lam, "dtype",
427 dtype)
428 return _result
429 except _core._NotOkStatusException as e:
430 _ops.raise_from_not_ok_status(e, name)
431 except _core._FallbackException:
432 pass
433 try:
434 return stateless_random_poisson_eager_fallback(
435 shape, seed, lam, dtype=dtype, name=name, ctx=_ctx)
436 except _core._SymbolicException:
437 pass # Add nodes to the TensorFlow graph.
438 # Add nodes to the TensorFlow graph.
439 dtype = _execute.make_type(dtype, "dtype")
440 _, _, _op, _outputs = _op_def_library._apply_op_helper(
441 "StatelessRandomPoisson", shape=shape, seed=seed, lam=lam,
442 dtype=dtype, name=name)
443 _result = _outputs[:]
444 if _execute.must_record_gradient():
445 _attrs = ("Rtype", _op._get_attr_type("Rtype"), "dtype",
446 _op._get_attr_type("dtype"), "T", _op._get_attr_type("T"),
447 "Tseed", _op._get_attr_type("Tseed"))
448 _inputs_flat = _op.inputs
449 _execute.record_gradient(
450 "StatelessRandomPoisson", _inputs_flat, _attrs, _result)
451 _result, = _result
452 return _result
454StatelessRandomPoisson = tf_export("raw_ops.StatelessRandomPoisson")(_ops.to_raw_op(stateless_random_poisson))
457def stateless_random_poisson_eager_fallback(shape, seed, lam, dtype, name, ctx):
458 dtype = _execute.make_type(dtype, "dtype")
459 _attr_Rtype, (lam,) = _execute.args_to_matching_eager([lam], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ])
460 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ])
461 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
462 _inputs_flat = [shape, seed, lam]
463 _attrs = ("Rtype", _attr_Rtype, "dtype", dtype, "T", _attr_T, "Tseed",
464 _attr_Tseed)
465 _result = _execute.execute(b"StatelessRandomPoisson", 1,
466 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
467 name=name)
468 if _execute.must_record_gradient():
469 _execute.record_gradient(
470 "StatelessRandomPoisson", _inputs_flat, _attrs, _result)
471 _result, = _result
472 return _result
475def stateless_random_uniform(shape, seed, dtype=_dtypes.float32, name=None):
476 r"""Outputs deterministic pseudorandom random values from a uniform distribution.
478 The generated values follow a uniform distribution in the range `[0, 1)`. The
479 lower bound 0 is included in the range, while the upper bound 1 is excluded.
481 The outputs are a deterministic function of `shape` and `seed`.
483 Args:
484 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
485 The shape of the output tensor.
486 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
487 2 seeds (shape [2]).
488 dtype: An optional `tf.DType` from: `tf.half, tf.bfloat16, tf.float32, tf.float64`. Defaults to `tf.float32`.
489 The type of the output.
490 name: A name for the operation (optional).
492 Returns:
493 A `Tensor` of type `dtype`.
494 """
495 _ctx = _context._context or _context.context()
496 tld = _ctx._thread_local_data
497 if tld.is_eager:
498 try:
499 _result = pywrap_tfe.TFE_Py_FastPathExecute(
500 _ctx, "StatelessRandomUniform", name, shape, seed, "dtype", dtype)
501 return _result
502 except _core._NotOkStatusException as e:
503 _ops.raise_from_not_ok_status(e, name)
504 except _core._FallbackException:
505 pass
506 try:
507 return stateless_random_uniform_eager_fallback(
508 shape, seed, dtype=dtype, name=name, ctx=_ctx)
509 except _core._SymbolicException:
510 pass # Add nodes to the TensorFlow graph.
511 # Add nodes to the TensorFlow graph.
512 if dtype is None:
513 dtype = _dtypes.float32
514 dtype = _execute.make_type(dtype, "dtype")
515 _, _, _op, _outputs = _op_def_library._apply_op_helper(
516 "StatelessRandomUniform", shape=shape, seed=seed, dtype=dtype,
517 name=name)
518 _result = _outputs[:]
519 if _execute.must_record_gradient():
520 _attrs = ("dtype", _op._get_attr_type("dtype"), "T",
521 _op._get_attr_type("T"), "Tseed", _op._get_attr_type("Tseed"))
522 _inputs_flat = _op.inputs
523 _execute.record_gradient(
524 "StatelessRandomUniform", _inputs_flat, _attrs, _result)
525 _result, = _result
526 return _result
528StatelessRandomUniform = tf_export("raw_ops.StatelessRandomUniform")(_ops.to_raw_op(stateless_random_uniform))
531def stateless_random_uniform_eager_fallback(shape, seed, dtype, name, ctx):
532 if dtype is None:
533 dtype = _dtypes.float32
534 dtype = _execute.make_type(dtype, "dtype")
535 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32)
536 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
537 _inputs_flat = [shape, seed]
538 _attrs = ("dtype", dtype, "T", _attr_T, "Tseed", _attr_Tseed)
539 _result = _execute.execute(b"StatelessRandomUniform", 1,
540 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
541 name=name)
542 if _execute.must_record_gradient():
543 _execute.record_gradient(
544 "StatelessRandomUniform", _inputs_flat, _attrs, _result)
545 _result, = _result
546 return _result
549def stateless_random_uniform_full_int(shape, seed, dtype=_dtypes.uint64, name=None):
550 r"""Outputs deterministic pseudorandom random integers from a uniform distribution.
552 The generated values are uniform integers covering the whole range of `dtype`.
554 The outputs are a deterministic function of `shape` and `seed`.
556 Args:
557 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
558 The shape of the output tensor.
559 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`, `uint32`, `uint64`.
560 2 seeds (shape [2]).
561 dtype: An optional `tf.DType` from: `tf.int32, tf.int64, tf.uint32, tf.uint64`. Defaults to `tf.uint64`.
562 The type of the output.
563 name: A name for the operation (optional).
565 Returns:
566 A `Tensor` of type `dtype`.
567 """
568 _ctx = _context._context or _context.context()
569 tld = _ctx._thread_local_data
570 if tld.is_eager:
571 try:
572 _result = pywrap_tfe.TFE_Py_FastPathExecute(
573 _ctx, "StatelessRandomUniformFullInt", name, shape, seed, "dtype",
574 dtype)
575 return _result
576 except _core._NotOkStatusException as e:
577 _ops.raise_from_not_ok_status(e, name)
578 except _core._FallbackException:
579 pass
580 try:
581 return stateless_random_uniform_full_int_eager_fallback(
582 shape, seed, dtype=dtype, name=name, ctx=_ctx)
583 except _core._SymbolicException:
584 pass # Add nodes to the TensorFlow graph.
585 # Add nodes to the TensorFlow graph.
586 if dtype is None:
587 dtype = _dtypes.uint64
588 dtype = _execute.make_type(dtype, "dtype")
589 _, _, _op, _outputs = _op_def_library._apply_op_helper(
590 "StatelessRandomUniformFullInt", shape=shape, seed=seed, dtype=dtype,
591 name=name)
592 _result = _outputs[:]
593 if _execute.must_record_gradient():
594 _attrs = ("dtype", _op._get_attr_type("dtype"), "T",
595 _op._get_attr_type("T"), "Tseed", _op._get_attr_type("Tseed"))
596 _inputs_flat = _op.inputs
597 _execute.record_gradient(
598 "StatelessRandomUniformFullInt", _inputs_flat, _attrs, _result)
599 _result, = _result
600 return _result
602StatelessRandomUniformFullInt = tf_export("raw_ops.StatelessRandomUniformFullInt")(_ops.to_raw_op(stateless_random_uniform_full_int))
605def stateless_random_uniform_full_int_eager_fallback(shape, seed, dtype, name, ctx):
606 if dtype is None:
607 dtype = _dtypes.uint64
608 dtype = _execute.make_type(dtype, "dtype")
609 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32)
610 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.uint32, _dtypes.uint64, ], _dtypes.int64)
611 _inputs_flat = [shape, seed]
612 _attrs = ("dtype", dtype, "T", _attr_T, "Tseed", _attr_Tseed)
613 _result = _execute.execute(b"StatelessRandomUniformFullInt", 1,
614 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
615 name=name)
616 if _execute.must_record_gradient():
617 _execute.record_gradient(
618 "StatelessRandomUniformFullInt", _inputs_flat, _attrs, _result)
619 _result, = _result
620 return _result
623def stateless_random_uniform_int(shape, seed, minval, maxval, name=None):
624 r"""Outputs deterministic pseudorandom random integers from a uniform distribution.
626 The generated values follow a uniform distribution in the range `[minval, maxval)`.
628 The outputs are a deterministic function of `shape`, `seed`, `minval`, and `maxval`.
630 Args:
631 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
632 The shape of the output tensor.
633 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
634 2 seeds (shape [2]).
635 minval: A `Tensor`. Must be one of the following types: `int32`, `int64`.
636 Minimum value (inclusive, scalar).
637 maxval: A `Tensor`. Must have the same type as `minval`.
638 Maximum value (exclusive, scalar).
639 name: A name for the operation (optional).
641 Returns:
642 A `Tensor`. Has the same type as `minval`.
643 """
644 _ctx = _context._context or _context.context()
645 tld = _ctx._thread_local_data
646 if tld.is_eager:
647 try:
648 _result = pywrap_tfe.TFE_Py_FastPathExecute(
649 _ctx, "StatelessRandomUniformInt", name, shape, seed, minval, maxval)
650 return _result
651 except _core._NotOkStatusException as e:
652 _ops.raise_from_not_ok_status(e, name)
653 except _core._FallbackException:
654 pass
655 try:
656 return stateless_random_uniform_int_eager_fallback(
657 shape, seed, minval, maxval, name=name, ctx=_ctx)
658 except _core._SymbolicException:
659 pass # Add nodes to the TensorFlow graph.
660 # Add nodes to the TensorFlow graph.
661 _, _, _op, _outputs = _op_def_library._apply_op_helper(
662 "StatelessRandomUniformInt", shape=shape, seed=seed, minval=minval,
663 maxval=maxval, name=name)
664 _result = _outputs[:]
665 if _execute.must_record_gradient():
666 _attrs = ("dtype", _op._get_attr_type("dtype"), "T",
667 _op._get_attr_type("T"), "Tseed", _op._get_attr_type("Tseed"))
668 _inputs_flat = _op.inputs
669 _execute.record_gradient(
670 "StatelessRandomUniformInt", _inputs_flat, _attrs, _result)
671 _result, = _result
672 return _result
674StatelessRandomUniformInt = tf_export("raw_ops.StatelessRandomUniformInt")(_ops.to_raw_op(stateless_random_uniform_int))
677def stateless_random_uniform_int_eager_fallback(shape, seed, minval, maxval, name, ctx):
678 _attr_dtype, _inputs_dtype = _execute.args_to_matching_eager([minval, maxval], ctx, [_dtypes.int32, _dtypes.int64, ])
679 (minval, maxval) = _inputs_dtype
680 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ])
681 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
682 _inputs_flat = [shape, seed, minval, maxval]
683 _attrs = ("dtype", _attr_dtype, "T", _attr_T, "Tseed", _attr_Tseed)
684 _result = _execute.execute(b"StatelessRandomUniformInt", 1,
685 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
686 name=name)
687 if _execute.must_record_gradient():
688 _execute.record_gradient(
689 "StatelessRandomUniformInt", _inputs_flat, _attrs, _result)
690 _result, = _result
691 return _result
694def stateless_truncated_normal(shape, seed, dtype=_dtypes.float32, name=None):
695 r"""Outputs deterministic pseudorandom values from a truncated normal distribution.
697 The generated values follow a normal distribution with mean 0 and standard
698 deviation 1, except that values whose magnitude is more than 2 standard
699 deviations from the mean are dropped and re-picked.
701 The outputs are a deterministic function of `shape` and `seed`.
703 Args:
704 shape: A `Tensor`. Must be one of the following types: `int32`, `int64`.
705 The shape of the output tensor.
706 seed: A `Tensor`. Must be one of the following types: `int32`, `int64`.
707 2 seeds (shape [2]).
708 dtype: An optional `tf.DType` from: `tf.half, tf.bfloat16, tf.float32, tf.float64`. Defaults to `tf.float32`.
709 The type of the output.
710 name: A name for the operation (optional).
712 Returns:
713 A `Tensor` of type `dtype`.
714 """
715 _ctx = _context._context or _context.context()
716 tld = _ctx._thread_local_data
717 if tld.is_eager:
718 try:
719 _result = pywrap_tfe.TFE_Py_FastPathExecute(
720 _ctx, "StatelessTruncatedNormal", name, shape, seed, "dtype", dtype)
721 return _result
722 except _core._NotOkStatusException as e:
723 _ops.raise_from_not_ok_status(e, name)
724 except _core._FallbackException:
725 pass
726 try:
727 return stateless_truncated_normal_eager_fallback(
728 shape, seed, dtype=dtype, name=name, ctx=_ctx)
729 except _core._SymbolicException:
730 pass # Add nodes to the TensorFlow graph.
731 # Add nodes to the TensorFlow graph.
732 if dtype is None:
733 dtype = _dtypes.float32
734 dtype = _execute.make_type(dtype, "dtype")
735 _, _, _op, _outputs = _op_def_library._apply_op_helper(
736 "StatelessTruncatedNormal", shape=shape, seed=seed, dtype=dtype,
737 name=name)
738 _result = _outputs[:]
739 if _execute.must_record_gradient():
740 _attrs = ("dtype", _op._get_attr_type("dtype"), "T",
741 _op._get_attr_type("T"), "Tseed", _op._get_attr_type("Tseed"))
742 _inputs_flat = _op.inputs
743 _execute.record_gradient(
744 "StatelessTruncatedNormal", _inputs_flat, _attrs, _result)
745 _result, = _result
746 return _result
748StatelessTruncatedNormal = tf_export("raw_ops.StatelessTruncatedNormal")(_ops.to_raw_op(stateless_truncated_normal))
751def stateless_truncated_normal_eager_fallback(shape, seed, dtype, name, ctx):
752 if dtype is None:
753 dtype = _dtypes.float32
754 dtype = _execute.make_type(dtype, "dtype")
755 _attr_T, (shape,) = _execute.args_to_matching_eager([shape], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int32)
756 _attr_Tseed, (seed,) = _execute.args_to_matching_eager([seed], ctx, [_dtypes.int32, _dtypes.int64, ], _dtypes.int64)
757 _inputs_flat = [shape, seed]
758 _attrs = ("dtype", dtype, "T", _attr_T, "Tseed", _attr_Tseed)
759 _result = _execute.execute(b"StatelessTruncatedNormal", 1,
760 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
761 name=name)
762 if _execute.must_record_gradient():
763 _execute.record_gradient(
764 "StatelessTruncatedNormal", _inputs_flat, _attrs, _result)
765 _result, = _result
766 return _result