Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_tpu_partition_ops.py: 14%

188 statements  

« prev     ^ index     » next       coverage.py v7.4.0, created at 2024-01-03 07:57 +0000

1"""Python wrappers around TensorFlow ops. 

2 

3This file is MACHINE GENERATED! Do not edit. 

4""" 

5 

6import collections 

7 

8from tensorflow.python import pywrap_tfe as pywrap_tfe 

9from tensorflow.python.eager import context as _context 

10from tensorflow.python.eager import core as _core 

11from tensorflow.python.eager import execute as _execute 

12from tensorflow.python.framework import dtypes as _dtypes 

13from tensorflow.security.fuzzing.py import annotation_types as _atypes 

14 

15from tensorflow.python.framework import op_def_registry as _op_def_registry 

16from tensorflow.python.framework import ops as _ops 

17from tensorflow.python.framework import op_def_library as _op_def_library 

18from tensorflow.python.util.deprecation import deprecated_endpoints 

19from tensorflow.python.util import dispatch as _dispatch 

20from tensorflow.python.util.tf_export import tf_export 

21 

22from typing import TypeVar 

23 

24def tpu_partitioned_input(inputs, partition_dim=0, name=None): 

25 r"""An op that groups a list of partitioned inputs together. This op 

26 

27 Args: 

28 inputs: A list of at least 1 `Tensor` objects with the same type. 

29 A list of partitioned inputs which must have the same shape. 

30 partition_dim: An optional `int`. Defaults to `0`. 

31 An integer describles which dimension is partitioned. -1 means 

32 those inputs are replicated. 

33 name: A name for the operation (optional). 

34 

35 Returns: 

36 A `Tensor`. Has the same type as `inputs`. 

37 """ 

38 _ctx = _context._context or _context.context() 

39 tld = _ctx._thread_local_data 

40 if tld.is_eager: 

41 try: 

42 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

43 _ctx, "TPUPartitionedInput", name, inputs, "partition_dim", 

44 partition_dim) 

45 return _result 

46 except _core._NotOkStatusException as e: 

47 _ops.raise_from_not_ok_status(e, name) 

48 except _core._FallbackException: 

49 pass 

50 try: 

51 return tpu_partitioned_input_eager_fallback( 

52 inputs, partition_dim=partition_dim, name=name, ctx=_ctx) 

53 except _core._SymbolicException: 

54 pass # Add nodes to the TensorFlow graph. 

55 # Add nodes to the TensorFlow graph. 

56 if not isinstance(inputs, (list, tuple)): 

57 raise TypeError( 

58 "Expected list for 'inputs' argument to " 

59 "'tpu_partitioned_input' Op, not %r." % inputs) 

60 _attr_N = len(inputs) 

61 if partition_dim is None: 

62 partition_dim = 0 

63 partition_dim = _execute.make_int(partition_dim, "partition_dim") 

64 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

65 "TPUPartitionedInput", inputs=inputs, partition_dim=partition_dim, 

66 name=name) 

67 _result = _outputs[:] 

68 if _execute.must_record_gradient(): 

69 _attrs = ("N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), 

70 "partition_dim", _op._get_attr_int("partition_dim")) 

71 _inputs_flat = _op.inputs 

72 _execute.record_gradient( 

73 "TPUPartitionedInput", _inputs_flat, _attrs, _result) 

74 _result, = _result 

75 return _result 

76 

77TPUPartitionedInput = tf_export("raw_ops.TPUPartitionedInput")(_ops.to_raw_op(tpu_partitioned_input)) 

78 

79 

80def tpu_partitioned_input_eager_fallback(inputs, partition_dim, name, ctx): 

81 if not isinstance(inputs, (list, tuple)): 

82 raise TypeError( 

83 "Expected list for 'inputs' argument to " 

84 "'tpu_partitioned_input' Op, not %r." % inputs) 

85 _attr_N = len(inputs) 

86 if partition_dim is None: 

87 partition_dim = 0 

88 partition_dim = _execute.make_int(partition_dim, "partition_dim") 

89 _attr_T, inputs = _execute.args_to_matching_eager(list(inputs), ctx, []) 

90 _inputs_flat = list(inputs) 

91 _attrs = ("N", _attr_N, "T", _attr_T, "partition_dim", partition_dim) 

92 _result = _execute.execute(b"TPUPartitionedInput", 1, inputs=_inputs_flat, 

93 attrs=_attrs, ctx=ctx, name=name) 

94 if _execute.must_record_gradient(): 

95 _execute.record_gradient( 

96 "TPUPartitionedInput", _inputs_flat, _attrs, _result) 

97 _result, = _result 

98 return _result 

99 

100 

101def tpu_partitioned_input_v2(inputs, partition_dims, is_packed=False, name=None): 

102 r"""An op that groups a list of partitioned inputs together. Supports ND sharding. 

103 

104 Args: 

105 inputs: A list of at least 1 `Tensor` objects with the same type. 

106 A list of partitioned inputs which must have the same shape. 

107 partition_dims: A list of `ints`. 

108 A list of integers describing how each dimension is partitioned. Emptiness 

109 indicates the inputs are replicated. 

110 is_packed: An optional `bool`. Defaults to `False`. 

111 Indicates whether the input is a packed resource. 

112 name: A name for the operation (optional). 

113 

114 Returns: 

115 A `Tensor`. Has the same type as `inputs`. 

116 """ 

117 _ctx = _context._context or _context.context() 

118 tld = _ctx._thread_local_data 

119 if tld.is_eager: 

120 try: 

121 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

122 _ctx, "TPUPartitionedInputV2", name, inputs, "partition_dims", 

123 partition_dims, "is_packed", is_packed) 

124 return _result 

125 except _core._NotOkStatusException as e: 

126 _ops.raise_from_not_ok_status(e, name) 

127 except _core._FallbackException: 

128 pass 

129 try: 

130 return tpu_partitioned_input_v2_eager_fallback( 

131 inputs, partition_dims=partition_dims, is_packed=is_packed, 

132 name=name, ctx=_ctx) 

133 except _core._SymbolicException: 

134 pass # Add nodes to the TensorFlow graph. 

135 # Add nodes to the TensorFlow graph. 

136 if not isinstance(inputs, (list, tuple)): 

137 raise TypeError( 

138 "Expected list for 'inputs' argument to " 

139 "'tpu_partitioned_input_v2' Op, not %r." % inputs) 

140 _attr_N = len(inputs) 

141 if not isinstance(partition_dims, (list, tuple)): 

142 raise TypeError( 

143 "Expected list for 'partition_dims' argument to " 

144 "'tpu_partitioned_input_v2' Op, not %r." % partition_dims) 

145 partition_dims = [_execute.make_int(_i, "partition_dims") for _i in partition_dims] 

146 if is_packed is None: 

147 is_packed = False 

148 is_packed = _execute.make_bool(is_packed, "is_packed") 

149 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

150 "TPUPartitionedInputV2", inputs=inputs, partition_dims=partition_dims, 

151 is_packed=is_packed, name=name) 

152 _result = _outputs[:] 

153 if _execute.must_record_gradient(): 

154 _attrs = ("N", _op._get_attr_int("N"), "T", _op._get_attr_type("T"), 

155 "partition_dims", _op.get_attr("partition_dims"), "is_packed", 

156 _op._get_attr_bool("is_packed")) 

157 _inputs_flat = _op.inputs 

158 _execute.record_gradient( 

159 "TPUPartitionedInputV2", _inputs_flat, _attrs, _result) 

160 _result, = _result 

161 return _result 

162 

163TPUPartitionedInputV2 = tf_export("raw_ops.TPUPartitionedInputV2")(_ops.to_raw_op(tpu_partitioned_input_v2)) 

164 

165 

166def tpu_partitioned_input_v2_eager_fallback(inputs, partition_dims, is_packed, name, ctx): 

167 if not isinstance(inputs, (list, tuple)): 

168 raise TypeError( 

169 "Expected list for 'inputs' argument to " 

170 "'tpu_partitioned_input_v2' Op, not %r." % inputs) 

171 _attr_N = len(inputs) 

172 if not isinstance(partition_dims, (list, tuple)): 

173 raise TypeError( 

174 "Expected list for 'partition_dims' argument to " 

175 "'tpu_partitioned_input_v2' Op, not %r." % partition_dims) 

176 partition_dims = [_execute.make_int(_i, "partition_dims") for _i in partition_dims] 

177 if is_packed is None: 

178 is_packed = False 

179 is_packed = _execute.make_bool(is_packed, "is_packed") 

180 _attr_T, inputs = _execute.args_to_matching_eager(list(inputs), ctx, []) 

181 _inputs_flat = list(inputs) 

182 _attrs = ("N", _attr_N, "T", _attr_T, "partition_dims", partition_dims, 

183 "is_packed", is_packed) 

184 _result = _execute.execute(b"TPUPartitionedInputV2", 1, inputs=_inputs_flat, 

185 attrs=_attrs, ctx=ctx, name=name) 

186 if _execute.must_record_gradient(): 

187 _execute.record_gradient( 

188 "TPUPartitionedInputV2", _inputs_flat, _attrs, _result) 

189 _result, = _result 

190 return _result 

191 

192 

193def tpu_partitioned_output(inputs, num_splits, partition_dim=0, name=None): 

194 r"""An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned 

195 

196 outputs outside the XLA computation. 

197 

198 Args: 

199 inputs: A `Tensor`. 

200 A tensor which represents the full shape of partitioned tensors. 

201 num_splits: An `int` that is `>= 1`. 

202 partition_dim: An optional `int`. Defaults to `0`. 

203 An integer describles which dimension is partitioned. 

204 name: A name for the operation (optional). 

205 

206 Returns: 

207 A list of `num_splits` `Tensor` objects with the same type as `inputs`. 

208 """ 

209 _ctx = _context._context or _context.context() 

210 tld = _ctx._thread_local_data 

211 if tld.is_eager: 

212 try: 

213 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

214 _ctx, "TPUPartitionedOutput", name, inputs, "num_splits", num_splits, 

215 "partition_dim", partition_dim) 

216 return _result 

217 except _core._NotOkStatusException as e: 

218 _ops.raise_from_not_ok_status(e, name) 

219 except _core._FallbackException: 

220 pass 

221 try: 

222 return tpu_partitioned_output_eager_fallback( 

223 inputs, num_splits=num_splits, partition_dim=partition_dim, 

224 name=name, ctx=_ctx) 

225 except _core._SymbolicException: 

226 pass # Add nodes to the TensorFlow graph. 

227 # Add nodes to the TensorFlow graph. 

228 num_splits = _execute.make_int(num_splits, "num_splits") 

229 if partition_dim is None: 

230 partition_dim = 0 

231 partition_dim = _execute.make_int(partition_dim, "partition_dim") 

232 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

233 "TPUPartitionedOutput", inputs=inputs, num_splits=num_splits, 

234 partition_dim=partition_dim, name=name) 

235 _result = _outputs[:] 

236 if _execute.must_record_gradient(): 

237 _attrs = ("T", _op._get_attr_type("T"), "num_splits", 

238 _op._get_attr_int("num_splits"), "partition_dim", 

239 _op._get_attr_int("partition_dim")) 

240 _inputs_flat = _op.inputs 

241 _execute.record_gradient( 

242 "TPUPartitionedOutput", _inputs_flat, _attrs, _result) 

243 return _result 

244 

245TPUPartitionedOutput = tf_export("raw_ops.TPUPartitionedOutput")(_ops.to_raw_op(tpu_partitioned_output)) 

246 

247 

248def tpu_partitioned_output_eager_fallback(inputs, num_splits, partition_dim, name, ctx): 

249 num_splits = _execute.make_int(num_splits, "num_splits") 

250 if partition_dim is None: 

251 partition_dim = 0 

252 partition_dim = _execute.make_int(partition_dim, "partition_dim") 

253 _attr_T, (inputs,) = _execute.args_to_matching_eager([inputs], ctx, []) 

254 _inputs_flat = [inputs] 

255 _attrs = ("T", _attr_T, "num_splits", num_splits, "partition_dim", 

256 partition_dim) 

257 _result = _execute.execute(b"TPUPartitionedOutput", num_splits, 

258 inputs=_inputs_flat, attrs=_attrs, ctx=ctx, 

259 name=name) 

260 if _execute.must_record_gradient(): 

261 _execute.record_gradient( 

262 "TPUPartitionedOutput", _inputs_flat, _attrs, _result) 

263 return _result 

264 

265 

266def tpu_partitioned_output_v2(inputs, num_splits, partition_dims, name=None): 

267 r"""An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned 

268 

269 outputs outside the XLA computation. Supports ND sharding. 

270 

271 Args: 

272 inputs: A `Tensor`. 

273 A tensor which represents the full shape of partitioned tensors. 

274 num_splits: An `int` that is `>= 1`. 

275 partition_dims: A list of `ints`. 

276 A list of integers describing how each dimension is partitioned. Emptiness 

277 indicates the inputs are replicated. 

278 name: A name for the operation (optional). 

279 

280 Returns: 

281 A list of `num_splits` `Tensor` objects with the same type as `inputs`. 

282 """ 

283 _ctx = _context._context or _context.context() 

284 tld = _ctx._thread_local_data 

285 if tld.is_eager: 

286 try: 

287 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

288 _ctx, "TPUPartitionedOutputV2", name, inputs, "num_splits", 

289 num_splits, "partition_dims", partition_dims) 

290 return _result 

291 except _core._NotOkStatusException as e: 

292 _ops.raise_from_not_ok_status(e, name) 

293 except _core._FallbackException: 

294 pass 

295 try: 

296 return tpu_partitioned_output_v2_eager_fallback( 

297 inputs, num_splits=num_splits, partition_dims=partition_dims, 

298 name=name, ctx=_ctx) 

299 except _core._SymbolicException: 

300 pass # Add nodes to the TensorFlow graph. 

301 # Add nodes to the TensorFlow graph. 

302 num_splits = _execute.make_int(num_splits, "num_splits") 

303 if not isinstance(partition_dims, (list, tuple)): 

304 raise TypeError( 

305 "Expected list for 'partition_dims' argument to " 

306 "'tpu_partitioned_output_v2' Op, not %r." % partition_dims) 

307 partition_dims = [_execute.make_int(_i, "partition_dims") for _i in partition_dims] 

308 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

309 "TPUPartitionedOutputV2", inputs=inputs, num_splits=num_splits, 

310 partition_dims=partition_dims, name=name) 

311 _result = _outputs[:] 

312 if _execute.must_record_gradient(): 

313 _attrs = ("T", _op._get_attr_type("T"), "num_splits", 

314 _op._get_attr_int("num_splits"), "partition_dims", 

315 _op.get_attr("partition_dims")) 

316 _inputs_flat = _op.inputs 

317 _execute.record_gradient( 

318 "TPUPartitionedOutputV2", _inputs_flat, _attrs, _result) 

319 return _result 

320 

321TPUPartitionedOutputV2 = tf_export("raw_ops.TPUPartitionedOutputV2")(_ops.to_raw_op(tpu_partitioned_output_v2)) 

322 

323 

324def tpu_partitioned_output_v2_eager_fallback(inputs, num_splits, partition_dims, name, ctx): 

325 num_splits = _execute.make_int(num_splits, "num_splits") 

326 if not isinstance(partition_dims, (list, tuple)): 

327 raise TypeError( 

328 "Expected list for 'partition_dims' argument to " 

329 "'tpu_partitioned_output_v2' Op, not %r." % partition_dims) 

330 partition_dims = [_execute.make_int(_i, "partition_dims") for _i in partition_dims] 

331 _attr_T, (inputs,) = _execute.args_to_matching_eager([inputs], ctx, []) 

332 _inputs_flat = [inputs] 

333 _attrs = ("T", _attr_T, "num_splits", num_splits, "partition_dims", 

334 partition_dims) 

335 _result = _execute.execute(b"TPUPartitionedOutputV2", num_splits, 

336 inputs=_inputs_flat, attrs=_attrs, ctx=ctx, 

337 name=name) 

338 if _execute.must_record_gradient(): 

339 _execute.record_gradient( 

340 "TPUPartitionedOutputV2", _inputs_flat, _attrs, _result) 

341 return _result 

342