Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/partitioned_variables.py: 26%
65 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
16"""Helper functions for creating partitioned variables.
18This is a convenient abstraction to partition a large variable across
19multiple smaller variables that can be assigned to different devices.
21The full variable can be reconstructed by concatenating the smaller variables.
22Using partitioned variables instead of a single variable is mostly a
23performance choice. It however also has an impact on:
251. Random initialization, as the random number generator is called once per
26 slice
272. Updates, as they happen in parallel across slices
29A key design goal is to allow a different graph to repartition a variable
30with the same name but different slicings, including possibly no partitions.
32TODO(touts): If an initializer provides a seed, the seed must be changed
33deterministically for each slice, maybe by adding one to it, otherwise each
34slice will use the same values. Maybe this can be done by passing the
35slice offsets to the initializer functions.
37Typical usage:
39```python
40# Create a list of partitioned variables with:
41vs = create_partitioned_variables(
42 <shape>, <slicing>, <initializer>, name=<optional-name>)
44# Pass the list as inputs to embedding_lookup for sharded, parallel lookup:
45y = embedding_lookup(vs, ids, partition_strategy="div")
47# Or fetch the variables in parallel to speed up large matmuls:
48z = matmul(x, concat(slice_dim, vs))
49```
50"""
51import math
53from tensorflow.python.framework import dtypes
54from tensorflow.python.framework import tensor_shape
55from tensorflow.python.ops import variable_scope
56from tensorflow.python.util import deprecation
57from tensorflow.python.util.tf_export import tf_export
59__all__ = [
60 "create_partitioned_variables",
61 "variable_axis_size_partitioner",
62 "min_max_variable_partitioner",
63 "fixed_size_partitioner",
64]
67@tf_export(v1=["variable_axis_size_partitioner"])
68def variable_axis_size_partitioner(
69 max_shard_bytes, axis=0, bytes_per_string_element=16, max_shards=None):
70 """Get a partitioner for VariableScope to keep shards below `max_shard_bytes`.
72 This partitioner will shard a Variable along one axis, attempting to keep
73 the maximum shard size below `max_shard_bytes`. In practice, this is not
74 always possible when sharding along only one axis. When this happens,
75 this axis is sharded as much as possible (i.e., every dimension becomes
76 a separate shard).
78 If the partitioner hits the `max_shards` limit, then each shard may end up
79 larger than `max_shard_bytes`. By default `max_shards` equals `None` and no
80 limit on the number of shards is enforced.
82 One reasonable value for `max_shard_bytes` is `(64 << 20) - 1`, or almost
83 `64MB`, to keep below the protobuf byte limit.
85 Args:
86 max_shard_bytes: The maximum size any given shard is allowed to be.
87 axis: The axis to partition along. Default: outermost axis.
88 bytes_per_string_element: If the `Variable` is of type string, this provides
89 an estimate of how large each scalar in the `Variable` is.
90 max_shards: The maximum number of shards in int created taking precedence
91 over `max_shard_bytes`.
93 Returns:
94 A partition function usable as the `partitioner` argument to
95 `variable_scope` and `get_variable`.
97 Raises:
98 ValueError: If any of the byte counts are non-positive.
99 """
100 if max_shard_bytes < 1 or bytes_per_string_element < 1:
101 raise ValueError(
102 "Both max_shard_bytes and bytes_per_string_element must be positive. "
103 f"Currently, max_shard_bytes is {max_shard_bytes} and"
104 f"bytes_per_string_element is {bytes_per_string_element}")
105 if max_shards and max_shards < 1:
106 raise ValueError(
107 "max_shards must be positive.")
109 def _partitioner(shape, dtype):
110 """Partitioner that partitions shards to have max_shard_bytes total size.
112 Args:
113 shape: A `TensorShape`.
114 dtype: A `DType`.
116 Returns:
117 A tuple representing how much to slice each axis in shape.
119 Raises:
120 ValueError: If shape is not a fully defined `TensorShape` or dtype is not
121 a `DType`.
122 """
123 if not isinstance(shape, tensor_shape.TensorShape):
124 raise ValueError(f"shape is not a TensorShape: {shape}")
125 if not shape.is_fully_defined():
126 raise ValueError(f"shape is not fully defined: {shape}")
127 if not isinstance(dtype, dtypes.DType):
128 raise ValueError(f"dtype is not a DType: {dtype}")
130 if dtype.base_dtype == dtypes.string:
131 element_size = bytes_per_string_element
132 else:
133 element_size = dtype.size
135 partitions = [1] * shape.ndims
136 bytes_per_slice = 1.0 * (
137 shape.num_elements() / shape.dims[axis].value) * element_size
138 # How many slices can we fit on one shard of size at most max_shard_bytes?
139 # At least one slice is required.
140 slices_per_shard = max(1, math.floor(max_shard_bytes / bytes_per_slice))
141 # How many shards do we need for axis given that each shard fits
142 # slices_per_shard slices from a total of shape[axis] slices?
143 axis_shards = int(math.ceil(
144 1.0 * shape.dims[axis].value / slices_per_shard))
145 if max_shards:
146 axis_shards = min(max_shards, axis_shards)
148 partitions[axis] = axis_shards
150 return partitions
152 return _partitioner
155@tf_export(v1=["min_max_variable_partitioner"])
156def min_max_variable_partitioner(max_partitions=1, axis=0,
157 min_slice_size=256 << 10,
158 bytes_per_string_element=16):
159 """Partitioner to allocate minimum size per slice.
161 Returns a partitioner that partitions the variable of given shape and dtype
162 such that each partition has a minimum of `min_slice_size` slice of the
163 variable. The maximum number of such partitions (upper bound) is given by
164 `max_partitions`.
166 Args:
167 max_partitions: Upper bound on the number of partitions. Defaults to 1.
168 axis: Axis along which to partition the variable. Defaults to 0.
169 min_slice_size: Minimum size of the variable slice per partition. Defaults
170 to 256K.
171 bytes_per_string_element: If the `Variable` is of type string, this provides
172 an estimate of how large each scalar in the `Variable` is.
174 Returns:
175 A partition function usable as the `partitioner` argument to
176 `variable_scope` and `get_variable`.
178 """
179 def _partitioner(shape, dtype):
180 """Partitioner that partitions list for a variable of given shape and type.
182 Ex: Consider partitioning a variable of type float32 with
183 shape=[1024, 1024].
184 If `max_partitions` >= 16, this function would return
185 [(1024 * 1024 * 4) / (256 * 1024), 1] = [16, 1].
186 If `max_partitions` < 16, this function would return
187 [`max_partitions`, 1].
189 Args:
190 shape: Shape of the variable.
191 dtype: Type of the variable.
193 Returns:
194 List of partitions for each axis (currently only one axis can be
195 partitioned).
197 Raises:
198 ValueError: If axis to partition along does not exist for the variable.
199 """
200 if axis >= len(shape):
201 raise ValueError(
202 f"Cannot partition variable along axis {axis} when shape is "
203 f"only {shape}")
204 if dtype.base_dtype == dtypes.string:
205 bytes_per_element = bytes_per_string_element
206 else:
207 bytes_per_element = dtype.size
208 total_size_bytes = shape.num_elements() * bytes_per_element
209 partitions = total_size_bytes / min_slice_size
210 partitions_list = [1] * len(shape)
211 # We can not partition the variable beyond what its shape or
212 # `max_partitions` allows.
213 partitions_list[axis] = max(1, min(shape.dims[axis].value,
214 max_partitions,
215 int(math.ceil(partitions))))
216 return partitions_list
217 return _partitioner
220@tf_export(v1=["fixed_size_partitioner"])
221def fixed_size_partitioner(num_shards, axis=0):
222 """Partitioner to specify a fixed number of shards along given axis.
224 @compatibility(TF2)
225 This API is deprecated in TF2. In TF2, partitioner is no longer part of
226 the variable declaration via `tf.Variable`.
227 [ParameterServer Training]
228 (https://www.tensorflow.org/tutorials/distribute/parameter_server_training)
229 handles partitioning of variables. The corresponding TF2 partitioner class of
230 `fixed_size_partitioner` is
231 `tf.distribute.experimental.partitioners.FixedShardsPartitioner`.
233 Check the [migration guide]
234 (https://www.tensorflow.org/guide/migrate#2_use_python_objects_to_track_variables_and_losses)
235 on the differences in treatment of variables and losses between TF1 and TF2.
237 Before:
239 ```
240 x = tf.compat.v1.get_variable(
241 "x", shape=(2,), partitioner=tf.compat.v1.fixed_size_partitioner(2)
242 )
243 ```
244 After:
246 ```
247 partitioner = (
248 tf.distribute.experimental.partitioners.FixedShardsPartitioner(
249 num_shards=2)
250 )
251 strategy = tf.distribute.experimental.ParameterServerStrategy(
252 cluster_resolver=cluster_resolver,
253 variable_partitioner=partitioner)
255 with strategy.scope():
256 x = tf.Variable([1.0, 2.0])
257 ```
258 @end_compatibility
260 Args:
261 num_shards: `int`, number of shards to partition variable.
262 axis: `int`, axis to partition on.
264 Returns:
265 A partition function usable as the `partitioner` argument to
266 `variable_scope` and `get_variable`.
267 """
268 def _partitioner(shape, **unused_args):
269 partitions_list = [1] * len(shape)
270 partitions_list[axis] = min(num_shards, shape.dims[axis].value)
271 return partitions_list
272 return _partitioner
275@tf_export(v1=["create_partitioned_variables"])
276@deprecation.deprecated(
277 date=None,
278 instructions="Use `tf.get_variable` with a partitioner set.")
279def create_partitioned_variables(
280 shape, slicing, initializer, dtype=dtypes.float32,
281 trainable=True, collections=None, name=None, reuse=None):
282 """Create a list of partitioned variables according to the given `slicing`.
284 Currently only one dimension of the full variable can be sliced, and the
285 full variable can be reconstructed by the concatenation of the returned
286 list along that dimension.
288 Args:
289 shape: List of integers. The shape of the full variable.
290 slicing: List of integers. How to partition the variable.
291 Must be of the same length as `shape`. Each value
292 indicate how many slices to create in the corresponding
293 dimension. Presently only one of the values can be more than 1;
294 that is, the variable can only be sliced along one dimension.
296 For convenience, The requested number of partitions does not have to
297 divide the corresponding dimension evenly. If it does not, the
298 shapes of the partitions are incremented by 1 starting from partition
299 0 until all slack is absorbed. The adjustment rules may change in the
300 future, but as you can save/restore these variables with different
301 slicing specifications this should not be a problem.
302 initializer: A `Tensor` of shape `shape` or a variable initializer
303 function. If a function, it will be called once for each slice,
304 passing the shape and data type of the slice as parameters. The
305 function must return a tensor with the same shape as the slice.
306 dtype: Type of the variables. Ignored if `initializer` is a `Tensor`.
307 trainable: If True also add all the variables to the graph collection
308 `GraphKeys.TRAINABLE_VARIABLES`.
309 collections: List of graph collections keys to add the variables to.
310 Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
311 name: Optional name for the full variable. Defaults to
312 `"PartitionedVariable"` and gets uniquified automatically.
313 reuse: Boolean or `None`; if `True` and name is set, it would reuse
314 previously created variables. if `False` it will create new variables.
315 if `None`, it would inherit the parent scope reuse.
317 Returns:
318 A list of Variables corresponding to the slicing.
320 Raises:
321 ValueError: If any of the arguments is malformed.
322 """
323 if len(shape) != len(slicing):
324 raise ValueError(
325 "The 'shape' and 'slicing' of a partitioned Variable "
326 f"must have the length: shape: {shape}, slicing: {slicing}")
327 if len(shape) < 1:
328 raise ValueError("A partitioned Variable must have rank at least 1: "
329 f"shape: {shape}")
331 # Legacy: we are provided the slicing directly, so just pass it to
332 # the partitioner.
333 partitioner = lambda **unused_kwargs: slicing
335 with variable_scope.variable_scope(
336 name, "PartitionedVariable", reuse=reuse):
337 # pylint: disable=protected-access
338 partitioned_var = variable_scope._get_partitioned_variable(
339 name=None,
340 shape=shape,
341 dtype=dtype,
342 initializer=initializer,
343 trainable=trainable,
344 partitioner=partitioner,
345 collections=collections)
346 return list(partitioned_var)
347 # pylint: enable=protected-access