Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/datasets/cifar10.py: 32%
28 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""CIFAR10 small images classification dataset."""
17import os
19import numpy as np
21from keras.src import backend
22from keras.src.datasets.cifar import load_batch
23from keras.src.utils.data_utils import get_file
25# isort: off
26from tensorflow.python.util.tf_export import keras_export
29@keras_export("keras.datasets.cifar10.load_data")
30def load_data():
31 """Loads the CIFAR10 dataset.
33 This is a dataset of 50,000 32x32 color training images and 10,000 test
34 images, labeled over 10 categories. See more info at the
35 [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html).
37 The classes are:
39 | Label | Description |
40 |:-----:|-------------|
41 | 0 | airplane |
42 | 1 | automobile |
43 | 2 | bird |
44 | 3 | cat |
45 | 4 | deer |
46 | 5 | dog |
47 | 6 | frog |
48 | 7 | horse |
49 | 8 | ship |
50 | 9 | truck |
52 Returns:
53 Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.
55 **x_train**: uint8 NumPy array of grayscale image data with shapes
56 `(50000, 32, 32, 3)`, containing the training data. Pixel values range
57 from 0 to 255.
59 **y_train**: uint8 NumPy array of labels (integers in range 0-9)
60 with shape `(50000, 1)` for the training data.
62 **x_test**: uint8 NumPy array of grayscale image data with shapes
63 `(10000, 32, 32, 3)`, containing the test data. Pixel values range
64 from 0 to 255.
66 **y_test**: uint8 NumPy array of labels (integers in range 0-9)
67 with shape `(10000, 1)` for the test data.
69 Example:
71 ```python
72 (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
73 assert x_train.shape == (50000, 32, 32, 3)
74 assert x_test.shape == (10000, 32, 32, 3)
75 assert y_train.shape == (50000, 1)
76 assert y_test.shape == (10000, 1)
77 ```
78 """
79 dirname = "cifar-10-batches-py"
80 origin = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
81 path = get_file(
82 dirname,
83 origin=origin,
84 untar=True,
85 file_hash=( # noqa: E501
86 "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce"
87 ),
88 )
90 num_train_samples = 50000
92 x_train = np.empty((num_train_samples, 3, 32, 32), dtype="uint8")
93 y_train = np.empty((num_train_samples,), dtype="uint8")
95 for i in range(1, 6):
96 fpath = os.path.join(path, "data_batch_" + str(i))
97 (
98 x_train[(i - 1) * 10000 : i * 10000, :, :, :],
99 y_train[(i - 1) * 10000 : i * 10000],
100 ) = load_batch(fpath)
102 fpath = os.path.join(path, "test_batch")
103 x_test, y_test = load_batch(fpath)
105 y_train = np.reshape(y_train, (len(y_train), 1))
106 y_test = np.reshape(y_test, (len(y_test), 1))
108 if backend.image_data_format() == "channels_last":
109 x_train = x_train.transpose(0, 2, 3, 1)
110 x_test = x_test.transpose(0, 2, 3, 1)
112 x_test = x_test.astype(x_train.dtype)
113 y_test = y_test.astype(y_train.dtype)
115 return (x_train, y_train), (x_test, y_test)