Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/autograph/utils/misc.py: 37%
19 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Miscellaneous utilities that don't fit anywhere else."""
17from tensorflow.python.framework import ops
18from tensorflow.python.ops import array_ops
19from tensorflow.python.ops import gen_math_ops
20from tensorflow.python.ops import math_ops
23def alias_tensors(*args):
24 """Wraps any Tensor arguments with an identity op.
26 Any other argument, including Variables, is returned unchanged.
28 Args:
29 *args: Any arguments. Must contain at least one element.
31 Returns:
32 Same as *args, with Tensor instances replaced as described.
34 Raises:
35 ValueError: If args doesn't meet the requirements.
36 """
38 def alias_if_tensor(a):
39 return array_ops.identity(a) if isinstance(a, ops.Tensor) else a
41 # TODO(mdan): Recurse into containers?
42 # TODO(mdan): Anything we can do about variables? Fake a scope reuse?
43 if len(args) > 1:
44 return (alias_if_tensor(a) for a in args)
45 elif len(args) == 1:
46 return alias_if_tensor(args[0])
48 raise ValueError('at least one argument required')
51def get_range_len(start, limit, delta):
52 dist = ops.convert_to_tensor(limit - start)
53 unadjusted_len = dist // delta
54 adjustment = math_ops.cast(
55 gen_math_ops.not_equal(dist % delta,
56 array_ops.zeros_like(unadjusted_len)), dist.dtype)
57 final_len = unadjusted_len + adjustment
58 return gen_math_ops.maximum(final_len, array_ops.zeros_like(final_len))