Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorboard/plugins/histogram/summary_v2.py: 13%
82 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Histogram summaries and TensorFlow operations to create them, V2 versions.
17A histogram summary stores a list of buckets. Each bucket is encoded as a triple
18`[left_edge, right_edge, count]`. Thus, a full histogram is encoded as a tensor
19of dimension `[k, 3]`, where the first `k - 1` buckets are closed-open and the
20last bucket is closed-closed.
22In general, the shape of the output histogram is always constant (`[k, 3]`).
23In the case of empty data, the output will be an all-zero histogram of shape
24`[k, 3]`, where all edges and counts are zeros. If there is data but all points
25have the same value, then all buckets' left and right edges are the same and only
26the last bucket has nonzero count.
27"""
29import numpy as np
31from tensorboard.compat import tf2 as tf
32from tensorboard.compat.proto import summary_pb2
33from tensorboard.plugins.histogram import metadata
34from tensorboard.util import lazy_tensor_creator
35from tensorboard.util import tensor_util
38DEFAULT_BUCKET_COUNT = 30
41def histogram_pb(tag, data, buckets=None, description=None):
42 """Create a histogram summary protobuf.
44 Arguments:
45 tag: String tag for the summary.
46 data: A `np.array` or array-like form of any shape. Must have type
47 castable to `float`.
48 buckets: Optional positive `int`. The output shape will always be
49 [buckets, 3]. If there is no data, then an all-zero array of shape
50 [buckets, 3] will be returned. If there is data but all points have
51 the same value, then all buckets' left and right endpoints are the
52 same and only the last bucket has nonzero count. Defaults to 30 if
53 not specified.
54 description: Optional long-form description for this summary, as a
55 `str`. Markdown is supported. Defaults to empty.
57 Returns:
58 A `summary_pb2.Summary` protobuf object.
59 """
60 bucket_count = DEFAULT_BUCKET_COUNT if buckets is None else buckets
61 data = np.array(data).flatten().astype(float)
62 if bucket_count == 0 or data.size == 0:
63 histogram_buckets = np.zeros((bucket_count, 3))
64 else:
65 min_ = np.min(data)
66 max_ = np.max(data)
67 range_ = max_ - min_
68 if range_ == 0:
69 left_edges = right_edges = np.array([min_] * bucket_count)
70 bucket_counts = np.array([0] * (bucket_count - 1) + [data.size])
71 histogram_buckets = np.array(
72 [left_edges, right_edges, bucket_counts]
73 ).transpose()
74 else:
75 bucket_width = range_ / bucket_count
76 offsets = data - min_
77 bucket_indices = np.floor(offsets / bucket_width).astype(int)
78 clamped_indices = np.minimum(bucket_indices, bucket_count - 1)
79 one_hots = np.array([clamped_indices]).transpose() == np.arange(
80 0, bucket_count
81 ) # broadcast
82 assert one_hots.shape == (data.size, bucket_count), (
83 one_hots.shape,
84 (data.size, bucket_count),
85 )
86 bucket_counts = np.sum(one_hots, axis=0)
87 edges = np.linspace(min_, max_, bucket_count + 1)
88 left_edges = edges[:-1]
89 right_edges = edges[1:]
90 histogram_buckets = np.array(
91 [left_edges, right_edges, bucket_counts]
92 ).transpose()
93 tensor = tensor_util.make_tensor_proto(histogram_buckets, dtype=np.float64)
95 summary_metadata = metadata.create_summary_metadata(
96 display_name=None, description=description
97 )
98 summary = summary_pb2.Summary()
99 summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor)
100 return summary
103# This is the TPU compatible V3 histogram implementation as of 2021-12-01.
104def histogram(name, data, step=None, buckets=None, description=None):
105 """Write a histogram summary.
107 See also `tf.summary.scalar`, `tf.summary.SummaryWriter`.
109 Writes a histogram to the current default summary writer, for later analysis
110 in TensorBoard's 'Histograms' and 'Distributions' dashboards (data written
111 using this API will appear in both places). Like `tf.summary.scalar` points,
112 each histogram is associated with a `step` and a `name`. All the histograms
113 with the same `name` constitute a time series of histograms.
115 The histogram is calculated over all the elements of the given `Tensor`
116 without regard to its shape or rank.
118 This example writes 2 histograms:
120 ```python
121 w = tf.summary.create_file_writer('test/logs')
122 with w.as_default():
123 tf.summary.histogram("activations", tf.random.uniform([100, 50]), step=0)
124 tf.summary.histogram("initial_weights", tf.random.normal([1000]), step=0)
125 ```
127 A common use case is to examine the changing activation patterns (or lack
128 thereof) at specific layers in a neural network, over time.
130 ```python
131 w = tf.summary.create_file_writer('test/logs')
132 with w.as_default():
133 for step in range(100):
134 # Generate fake "activations".
135 activations = [
136 tf.random.normal([1000], mean=step, stddev=1),
137 tf.random.normal([1000], mean=step, stddev=10),
138 tf.random.normal([1000], mean=step, stddev=100),
139 ]
141 tf.summary.histogram("layer1/activate", activations[0], step=step)
142 tf.summary.histogram("layer2/activate", activations[1], step=step)
143 tf.summary.histogram("layer3/activate", activations[2], step=step)
144 ```
146 Arguments:
147 name: A name for this summary. The summary tag used for TensorBoard will
148 be this name prefixed by any active name scopes.
149 data: A `Tensor` of any shape. The histogram is computed over its elements,
150 which must be castable to `float64`.
151 step: Explicit `int64`-castable monotonic step value for this summary. If
152 omitted, this defaults to `tf.summary.experimental.get_step()`, which must
153 not be None.
154 buckets: Optional positive `int`. The output will have this
155 many buckets, except in two edge cases. If there is no data, then
156 there are no buckets. If there is data but all points have the
157 same value, then all buckets' left and right endpoints are the same
158 and only the last bucket has nonzero count. Defaults to 30 if not
159 specified.
160 description: Optional long-form description for this summary, as a
161 constant `str`. Markdown is supported. Defaults to empty.
163 Returns:
164 True on success, or false if no summary was emitted because no default
165 summary writer was available.
167 Raises:
168 ValueError: if a default writer exists, but no step was provided and
169 `tf.summary.experimental.get_step()` is None.
170 """
171 # Avoid building unused gradient graphs for conds below. This works around
172 # an error building second-order gradient graphs when XlaDynamicUpdateSlice
173 # is used, and will generally speed up graph building slightly.
174 data = tf.stop_gradient(data)
175 summary_metadata = metadata.create_summary_metadata(
176 display_name=None, description=description
177 )
178 # TODO(https://github.com/tensorflow/tensorboard/issues/2109): remove fallback
179 summary_scope = (
180 getattr(tf.summary.experimental, "summary_scope", None)
181 or tf.summary.summary_scope
182 )
184 # TODO(ytjing): add special case handling.
185 with summary_scope(
186 name, "histogram_summary", values=[data, buckets, step]
187 ) as (tag, _):
188 # Defer histogram bucketing logic by passing it as a callable to
189 # write(), wrapped in a LazyTensorCreator for backwards
190 # compatibility, so that we only do this work when summaries are
191 # actually written.
192 @lazy_tensor_creator.LazyTensorCreator
193 def lazy_tensor():
194 return _buckets(data, buckets)
196 return tf.summary.write(
197 tag=tag,
198 tensor=lazy_tensor,
199 step=step,
200 metadata=summary_metadata,
201 )
204def _buckets(data, bucket_count=None):
205 """Create a TensorFlow op to group data into histogram buckets.
207 Arguments:
208 data: A `Tensor` of any shape. Must be castable to `float64`.
209 bucket_count: Optional non-negative `int` or scalar `int32` `Tensor`,
210 defaults to 30.
211 Returns:
212 A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
213 a triple `[left_edge, right_edge, count]` for a single bucket.
214 The value of `k` is either `bucket_count` or `0` (when input data
215 is empty).
216 """
217 if bucket_count is None:
218 bucket_count = DEFAULT_BUCKET_COUNT
219 with tf.name_scope("buckets"):
220 tf.debugging.assert_scalar(bucket_count)
221 tf.debugging.assert_type(bucket_count, tf.int32)
222 # Treat a negative bucket count as zero.
223 bucket_count = tf.math.maximum(0, bucket_count)
224 data = tf.reshape(data, shape=[-1]) # flatten
225 data = tf.cast(data, tf.float64)
226 data_size = tf.size(input=data)
227 is_empty = tf.logical_or(
228 tf.equal(data_size, 0), tf.less_equal(bucket_count, 0)
229 )
231 def when_empty():
232 """When input data is empty or bucket_count is zero.
234 1. If bucket_count is specified as zero, an empty tensor of shape
235 (0, 3) will be returned.
236 2. If the input data is empty, a tensor of shape (bucket_count, 3)
237 of all zero values will be returned.
238 """
239 return tf.zeros((bucket_count, 3), dtype=tf.float64)
241 def when_nonempty():
242 min_ = tf.reduce_min(input_tensor=data)
243 max_ = tf.reduce_max(input_tensor=data)
244 range_ = max_ - min_
245 has_single_value = tf.equal(range_, 0)
247 def when_multiple_values():
248 """When input data contains multiple values."""
249 bucket_width = range_ / tf.cast(bucket_count, tf.float64)
250 offsets = data - min_
251 bucket_indices = tf.cast(
252 tf.floor(offsets / bucket_width), dtype=tf.int32
253 )
254 clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
255 # Use float64 instead of float32 to avoid accumulating floating point error
256 # later in tf.reduce_sum when summing more than 2^24 individual `1.0` values.
257 # See https://github.com/tensorflow/tensorflow/issues/51419 for details.
258 one_hots = tf.one_hot(
259 clamped_indices, depth=bucket_count, dtype=tf.float64
260 )
261 bucket_counts = tf.cast(
262 tf.reduce_sum(input_tensor=one_hots, axis=0),
263 dtype=tf.float64,
264 )
265 edges = tf.linspace(min_, max_, bucket_count + 1)
266 # Ensure edges[-1] == max_, which TF's linspace implementation does not
267 # do, leaving it subject to the whim of floating point rounding error.
268 edges = tf.concat([edges[:-1], [max_]], 0)
269 left_edges = edges[:-1]
270 right_edges = edges[1:]
271 return tf.transpose(
272 a=tf.stack([left_edges, right_edges, bucket_counts])
273 )
275 def when_single_value():
276 """When input data contains a single unique value."""
277 # Left and right edges are the same for single value input.
278 edges = tf.fill([bucket_count], max_)
279 # Bucket counts are 0 except the last bucket (if bucket_count > 0),
280 # which is `data_size`. Ensure that the resulting counts vector has
281 # length `bucket_count` always, including the bucket_count==0 case.
282 zeroes = tf.fill([bucket_count], 0)
283 bucket_counts = tf.cast(
284 tf.concat([zeroes[:-1], [data_size]], 0)[:bucket_count],
285 dtype=tf.float64,
286 )
287 return tf.transpose(a=tf.stack([edges, edges, bucket_counts]))
289 return tf.cond(
290 has_single_value, when_single_value, when_multiple_values
291 )
293 return tf.cond(is_empty, when_empty, when_nonempty)