Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/compiler/xla/jit.py: 36%
33 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Library for controlling the Tensorflow/XLA JIT compiler."""
17import contextlib
19from tensorflow.core.framework import attr_value_pb2
20from tensorflow.python.eager import context
21from tensorflow.python.framework import ops
22from tensorflow.python.util.tf_export import tf_export
25_XLA_SCOPE_KEY = ("__xla_scope",)
28class _XlaScope(object):
29 """Keeps track of previous XLA scope calls, and depth of current call."""
31 def __init__(self, count, depth):
32 self.count = count
33 self.depth = depth
36@contextlib.contextmanager
37@tf_export("xla.experimental.jit_scope")
38def experimental_jit_scope(compile_ops=True, separate_compiled_gradients=False):
39 """Enable or disable JIT compilation of operators within the scope.
41 NOTE: This is an experimental feature.
43 The compilation is a hint and only supported on a best-effort basis.
45 Example usage:
47 ```python
48 with tf.xla.experimental.jit_scope():
49 c = tf.matmul(a, b) # compiled
50 with tf.xla.experimental.jit_scope(compile_ops=False):
51 d = tf.matmul(a, c) # not compiled
52 with tf.xla.experimental.jit_scope(
53 compile_ops=lambda node_def: 'matmul' in node_def.op.lower()):
54 e = tf.matmul(a, b) + d # matmul is compiled, the addition is not.
55 ```
57 Example of `separate_compiled_gradients`:
59 ```python
60 # In the example below, the computations for f, g and h will all be compiled
61 # in separate scopes.
62 with tf.xla.experimental.jit_scope(
63 separate_compiled_gradients=True):
64 f = tf.matmul(a, b)
65 g = tf.gradients([f], [a, b], name='mygrads1')
66 h = tf.gradients([f], [a, b], name='mygrads2')
67 ```
69 Ops that are not in the scope may be clustered and compiled with ops in
70 the scope with `compile_ops=True`, while the ops in the scope with
71 `compile_ops=False` will never be compiled.
73 For example:
75 ```python
76 # In the example below, x and loss may be clustered and compiled together,
77 # while y will not be compiled.
78 with tf.xla.experimental.jit_scope():
79 x = tf.matmul(a, b)
80 with tf.xla.experimental.jit_scope(compile_ops=False):
81 y = tf.matmul(c, d)
82 loss = x + y
83 ```
85 If you want to only compile the ops in the scope with `compile_ops=True`,
86 consider adding an outer `jit_scope(compile_ops=False)`:
88 ```python
89 # In the example below, only x will be compiled.
90 with tf.xla.experimental.jit_scope(compile_ops=False):
91 with tf.xla.experimental.jit_scope():
92 x = tf.matmul(a, b)
93 y = tf.matmul(c, d)
94 loss = x + y
95 ```
97 Args:
98 compile_ops: Whether to enable or disable compilation in the scope.
99 Either a Python bool, or a callable that accepts the parameter
100 `node_def` and returns a python bool.
101 separate_compiled_gradients: If true put each gradient subgraph into a
102 separate compilation scope. This gives fine-grained control over which
103 portions of the graph will be compiled as a single unit. Compiling
104 gradients separately may yield better performance for some graphs.
105 The scope is named based on the scope of the forward computation as well
106 as the name of the gradients. As a result, the gradients will be compiled
107 in a scope that is separate from both the forward computation, and from
108 other gradients.
109 Raises:
110 RuntimeError: if called when eager execution is enabled.
111 Yields:
112 The current scope, enabling or disabling compilation.
113 """
114 if context.executing_eagerly():
115 raise RuntimeError("xla.experimental.jit_scope is not supported when eager "
116 "execution is enabled. Try use it inside tf.function.")
118 if callable(compile_ops):
119 def xla_compile(node_def):
120 return attr_value_pb2.AttrValue(b=compile_ops(node_def))
121 else:
122 xla_compile = attr_value_pb2.AttrValue(b=compile_ops)
124 attrs = {
125 "_XlaCompile":
126 xla_compile,
127 "_XlaSeparateCompiledGradients":
128 attr_value_pb2.AttrValue(b=bool(separate_compiled_gradients))
129 }
131 # Find the singleton counter for the current scoped graph. If it
132 # doesn't exist, create one.
133 xla_scope_counter = ops.get_collection(_XLA_SCOPE_KEY)
134 if not xla_scope_counter:
135 xla_scope_counter = _XlaScope(0, 0)
136 ops.add_to_collection(_XLA_SCOPE_KEY, xla_scope_counter)
137 else:
138 xla_scope_counter = xla_scope_counter[0]
140 if xla_scope_counter.depth == 0:
141 # If we're at the root xla scope, we can increase the counter so
142 # future calls to jit_scope use a different scope value.
143 # If we're already within a scope, we'll be fusing using the scope
144 # controlled by the parent.
145 attrs["_XlaScope"] = attr_value_pb2.AttrValue(
146 s=("jit_scope_%d" % xla_scope_counter.count).encode())
147 xla_scope_counter.count += 1
149 xla_scope_counter.depth += 1
151 # pylint: disable=protected-access
152 with ops.get_default_graph()._attr_scope(attrs):
153 yield
154 # pylint: enable=protected-access
156 xla_scope_counter.depth -= 1