Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/optimizers/adadelta.py: 29%

45 statements  

« prev     ^ index     » next       coverage.py v7.4.0, created at 2024-01-03 07:57 +0000

1# Copyright 2021 The TensorFlow Authors. All Rights Reserved. 

2# 

3# Licensed under the Apache License, Version 2.0 (the "License"); 

4# you may not use this file except in compliance with the License. 

5# You may obtain a copy of the License at 

6# 

7# http://www.apache.org/licenses/LICENSE-2.0 

8# 

9# Unless required by applicable law or agreed to in writing, software 

10# distributed under the License is distributed on an "AS IS" BASIS, 

11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

12# See the License for the specific language governing permissions and 

13# limitations under the License. 

14# ============================================================================== 

15"""Adadelta optimizer implementation.""" 

16 

17import tensorflow.compat.v2 as tf 

18 

19from keras.src.optimizers import optimizer 

20from keras.src.saving.object_registration import register_keras_serializable 

21 

22# isort: off 

23from tensorflow.python.util.tf_export import keras_export 

24 

25 

26@register_keras_serializable() 

27@keras_export( 

28 "keras.optimizers.experimental.Adadelta", 

29 "keras.optimizers.Adadelta", 

30 "keras.dtensor.experimental.optimizers.Adadelta", 

31 v1=[], 

32) 

33class Adadelta(optimizer.Optimizer): 

34 r"""Optimizer that implements the Adadelta algorithm. 

35 

36 Adadelta optimization is a stochastic gradient descent method that is based 

37 on adaptive learning rate per dimension to address two drawbacks: 

38 

39 - The continual decay of learning rates throughout training. 

40 - The need for a manually selected global learning rate. 

41 

42 Adadelta is a more robust extension of Adagrad that adapts learning rates 

43 based on a moving window of gradient updates, instead of accumulating all 

44 past gradients. This way, Adadelta continues learning even when many updates 

45 have been done. Compared to Adagrad, in the original version of Adadelta you 

46 don't have to set an initial learning rate. In this version, the initial 

47 learning rate can be set, as in most other Keras optimizers. 

48 

49 Args: 

50 learning_rate: Initial value for the learning rate: either a floating 

51 point value, or a `tf.keras.optimizers.schedules.LearningRateSchedule` 

52 instance. Defaults to 0.001. Note that `Adadelta` tends to benefit from 

53 higher initial learning rate values compared to other optimizers. To 

54 match the exact form in the original paper, use 1.0. 

55 rho: A `Tensor` or a floating point value. The decay rate. Defaults to 

56 0.95. 

57 epsilon: Small floating point value used to maintain numerical stability. 

58 Defaults to 1e-7. 

59 {{base_optimizer_keyword_args}} 

60 

61 Reference: 

62 - [Zeiler, 2012](http://arxiv.org/abs/1212.5701) 

63 """ 

64 

65 def __init__( 

66 self, 

67 learning_rate=0.001, 

68 rho=0.95, 

69 epsilon=1e-7, 

70 weight_decay=None, 

71 clipnorm=None, 

72 clipvalue=None, 

73 global_clipnorm=None, 

74 use_ema=False, 

75 ema_momentum=0.99, 

76 ema_overwrite_frequency=None, 

77 jit_compile=True, 

78 name="Adadelta", 

79 **kwargs 

80 ): 

81 super().__init__( 

82 weight_decay=weight_decay, 

83 clipnorm=clipnorm, 

84 clipvalue=clipvalue, 

85 global_clipnorm=global_clipnorm, 

86 use_ema=use_ema, 

87 ema_momentum=ema_momentum, 

88 ema_overwrite_frequency=ema_overwrite_frequency, 

89 jit_compile=jit_compile, 

90 name=name, 

91 **kwargs 

92 ) 

93 self._learning_rate = self._build_learning_rate(learning_rate) 

94 self.rho = rho 

95 self.epsilon = epsilon 

96 

97 def build(self, var_list): 

98 super().build(var_list) 

99 if hasattr(self, "_built") and self._built: 

100 return 

101 self._built = True 

102 self._accumulated_grads = [] 

103 self._accumulated_delta_vars = [] 

104 for var in var_list: 

105 self._accumulated_grads.append( 

106 self.add_variable_from_reference(var, "accumulated_grad") 

107 ) 

108 self._accumulated_delta_vars.append( 

109 self.add_variable_from_reference(var, "accumulated_delta_var") 

110 ) 

111 

112 def update_step(self, grad, variable): 

113 """Update step given gradient and the associated model variable.""" 

114 lr = tf.cast(self.learning_rate, variable.dtype) 

115 

116 var_key = self._var_key(variable) 

117 rho = self.rho 

118 accumulated_grad = self._accumulated_grads[self._index_dict[var_key]] 

119 accumulated_delta_var = self._accumulated_delta_vars[ 

120 self._index_dict[var_key] 

121 ] 

122 

123 def rms(x): 

124 return tf.sqrt(x + self.epsilon) 

125 

126 if isinstance(grad, tf.IndexedSlices): 

127 # Sparse gradients. 

128 accumulated_grad.assign_add((rho - 1) * accumulated_grad) 

129 accumulated_grad.scatter_add( 

130 tf.IndexedSlices( 

131 (1 - rho) * tf.square(grad.values), grad.indices 

132 ) 

133 ) 

134 delta_var = ( 

135 -rms(accumulated_delta_var) * grad / rms(accumulated_grad) 

136 ) 

137 accumulated_delta_var.assign( 

138 rho * accumulated_delta_var + (1 - rho) * delta_var * delta_var 

139 ) 

140 else: 

141 # Dense gradients. 

142 accumulated_grad.assign( 

143 rho * accumulated_grad + (1 - rho) * grad * grad 

144 ) 

145 delta_var = ( 

146 -rms(accumulated_delta_var) * grad / rms(accumulated_grad) 

147 ) 

148 accumulated_delta_var.assign( 

149 rho * accumulated_delta_var + (1 - rho) * delta_var * delta_var 

150 ) 

151 variable.assign_add(lr * delta_var) 

152 

153 def get_config(self): 

154 config = super().get_config() 

155 

156 config.update( 

157 { 

158 "learning_rate": self._serialize_hyperparameter( 

159 self._learning_rate 

160 ), 

161 "rho": self.rho, 

162 "epsilon": self.epsilon, 

163 } 

164 ) 

165 return config 

166 

167 

168Adadelta.__doc__ = Adadelta.__doc__.replace( 

169 "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args 

170) 

171