Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/data/experimental/ops/unique.py: 67%
9 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Unique element dataset transformations."""
16from tensorflow.python.util import deprecation
17from tensorflow.python.util.tf_export import tf_export
20@deprecation.deprecated(None, "Use `tf.data.Dataset.unique(...)")
21@tf_export("data.experimental.unique")
22def unique():
23 """Creates a `Dataset` from another `Dataset`, discarding duplicates.
25 Use this transformation to produce a dataset that contains one instance of
26 each unique element in the input. For example:
28 ```python
29 dataset = tf.data.Dataset.from_tensor_slices([1, 37, 2, 37, 2, 1])
31 # Using `unique()` will drop the duplicate elements.
32 dataset = dataset.apply(tf.data.experimental.unique()) # ==> { 1, 37, 2 }
33 ```
35 Returns:
36 A `Dataset` transformation function, which can be passed to
37 `tf.data.Dataset.apply`.
38 """
40 def _apply_fn(dataset):
41 return dataset.unique()
43 return _apply_fn