Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/user_ops/ops/gen_user_ops.py: 37%
46 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
24def fact(name=None):
25 r"""Output a fact about factorials.
27 Args:
28 name: A name for the operation (optional).
30 Returns:
31 A `Tensor` of type `string`.
32 """
33 _ctx = _context._context or _context.context()
34 tld = _ctx._thread_local_data
35 if tld.is_eager:
36 try:
37 _result = pywrap_tfe.TFE_Py_FastPathExecute(
38 _ctx, "Fact", name)
39 return _result
40 except _core._NotOkStatusException as e:
41 _ops.raise_from_not_ok_status(e, name)
42 except _core._FallbackException:
43 pass
44 try:
45 return fact_eager_fallback(
46 name=name, ctx=_ctx)
47 except _core._SymbolicException:
48 pass # Add nodes to the TensorFlow graph.
49 # Add nodes to the TensorFlow graph.
50 _, _, _op, _outputs = _op_def_library._apply_op_helper(
51 "Fact", name=name)
52 _result = _outputs[:]
53 if _execute.must_record_gradient():
54 _attrs = ()
55 _inputs_flat = _op.inputs
56 _execute.record_gradient(
57 "Fact", _inputs_flat, _attrs, _result)
58 _result, = _result
59 return _result
61Fact = tf_export("raw_ops.Fact")(_ops.to_raw_op(fact))
64def fact_eager_fallback(name, ctx):
65 _inputs_flat = []
66 _attrs = None
67 _result = _execute.execute(b"Fact", 1, inputs=_inputs_flat, attrs=_attrs,
68 ctx=ctx, name=name)
69 if _execute.must_record_gradient():
70 _execute.record_gradient(
71 "Fact", _inputs_flat, _attrs, _result)
72 _result, = _result
73 return _result