Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/layers/pooling/base_global_pooling3d.py: 34%
35 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Private base class for global pooling 3D layers."""
18import tensorflow.compat.v2 as tf
20from keras.src.engine.base_layer import Layer
21from keras.src.engine.input_spec import InputSpec
22from keras.src.utils import conv_utils
25class GlobalPooling3D(Layer):
26 """Abstract class for different global pooling 3D layers."""
28 def __init__(self, data_format=None, keepdims=False, **kwargs):
29 super().__init__(**kwargs)
30 self.data_format = conv_utils.normalize_data_format(data_format)
31 self.input_spec = InputSpec(ndim=5)
32 self.keepdims = keepdims
34 def _validate_reduction_axis(self, input_shape, axes):
35 for axis in axes:
36 if input_shape[axis] == 0:
37 raise ValueError(
38 f"Incorrect input shape {input_shape} "
39 f"with dimension 0 at reduction axis {axis}."
40 )
42 def build(self, input_shape):
43 input_shape = tf.TensorShape(input_shape).as_list()
44 if self.data_format == "channels_last":
45 self._validate_reduction_axis(input_shape, [1, 2, 3])
46 else:
47 self._validate_reduction_axis(input_shape, [2, 3, 4])
49 def compute_output_shape(self, input_shape):
50 input_shape = tf.TensorShape(input_shape).as_list()
51 if self.data_format == "channels_last":
52 if self.keepdims:
53 return tf.TensorShape([input_shape[0], 1, 1, 1, input_shape[4]])
54 else:
55 return tf.TensorShape([input_shape[0], input_shape[4]])
56 else:
57 if self.keepdims:
58 return tf.TensorShape([input_shape[0], input_shape[1], 1, 1, 1])
59 else:
60 return tf.TensorShape([input_shape[0], input_shape[1]])
62 def call(self, inputs):
63 raise NotImplementedError
65 def get_config(self):
66 config = {"data_format": self.data_format, "keepdims": self.keepdims}
67 base_config = super().get_config()
68 return dict(list(base_config.items()) + list(config.items()))