Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/training/ftrl.py: 23%
75 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Ftrl-proximal for TensorFlow."""
16from tensorflow.python.framework import dtypes
17from tensorflow.python.framework import ops
18from tensorflow.python.ops import array_ops
19from tensorflow.python.ops import math_ops
20from tensorflow.python.training import optimizer
21from tensorflow.python.training import training_ops
22from tensorflow.python.util.tf_export import tf_export
25@tf_export(v1=["train.FtrlOptimizer"])
26class FtrlOptimizer(optimizer.Optimizer):
27 """Optimizer that implements the FTRL algorithm.
29 This version has support for both online L2 (McMahan et al., 2013) and
30 shrinkage-type L2, which is the addition of an L2 penalty
31 to the loss function.
33 References:
34 Ad-click prediction:
35 [McMahan et al., 2013](https://dl.acm.org/citation.cfm?id=2488200)
36 ([pdf](https://dl.acm.org/ft_gateway.cfm?id=2488200&ftid=1388399&dwn=1&CFID=32233078&CFTOKEN=d60fe57a294c056a-CB75C374-F915-E7A6-1573FBBC7BF7D526))
37 """
39 def __init__(self,
40 learning_rate,
41 learning_rate_power=-0.5,
42 initial_accumulator_value=0.1,
43 l1_regularization_strength=0.0,
44 l2_regularization_strength=0.0,
45 use_locking=False,
46 name="Ftrl",
47 accum_name=None,
48 linear_name=None,
49 l2_shrinkage_regularization_strength=0.0,
50 beta=None):
51 r"""Construct a new FTRL optimizer.
53 Args:
54 learning_rate: A float value or a constant float `Tensor`.
55 learning_rate_power: A float value, must be less or equal to zero.
56 Controls how the learning rate decreases during training. Use zero for
57 a fixed learning rate. See section 3.1 in (McMahan et al., 2013).
58 initial_accumulator_value: The starting value for accumulators.
59 Only zero or positive values are allowed.
60 l1_regularization_strength: A float value, must be greater than or
61 equal to zero.
62 l2_regularization_strength: A float value, must be greater than or
63 equal to zero.
64 use_locking: If `True` use locks for update operations.
65 name: Optional name prefix for the operations created when applying
66 gradients. Defaults to "Ftrl".
67 accum_name: The suffix for the variable that keeps the gradient squared
68 accumulator. If not present, defaults to name.
69 linear_name: The suffix for the variable that keeps the linear gradient
70 accumulator. If not present, defaults to name + "_1".
71 l2_shrinkage_regularization_strength: A float value, must be greater than
72 or equal to zero. This differs from L2 above in that the L2 above is a
73 stabilization penalty, whereas this L2 shrinkage is a magnitude penalty.
74 The FTRL formulation can be written as:
75 w_{t+1} = argmin_w(\hat{g}_{1:t}w + L1*||w||_1 + L2*||w||_2^2), where
76 \hat{g} = g + (2*L2_shrinkage*w), and g is the gradient of the loss
77 function w.r.t. the weights w.
78 Specifically, in the absence of L1 regularization, it is equivalent to
79 the following update rule:
80 w_{t+1} = w_t - lr_t / (beta + 2*L2*lr_t) * g_t -
81 2*L2_shrinkage*lr_t / (beta + 2*L2*lr_t) * w_t
82 where lr_t is the learning rate at t.
83 When input is sparse shrinkage will only happen on the active weights.
84 beta: A float value; corresponds to the beta parameter in the paper.
86 Raises:
87 ValueError: If one of the arguments is invalid.
89 References:
90 Ad-click prediction:
91 [McMahan et al., 2013](https://dl.acm.org/citation.cfm?id=2488200)
92 ([pdf](https://dl.acm.org/ft_gateway.cfm?id=2488200&ftid=1388399&dwn=1&CFID=32233078&CFTOKEN=d60fe57a294c056a-CB75C374-F915-E7A6-1573FBBC7BF7D526))
93 """
94 super(FtrlOptimizer, self).__init__(use_locking, name)
96 if initial_accumulator_value < 0.0:
97 raise ValueError(
98 "initial_accumulator_value %f needs to be positive or zero" %
99 initial_accumulator_value)
100 if learning_rate_power > 0.0:
101 raise ValueError("learning_rate_power %f needs to be negative or zero" %
102 learning_rate_power)
103 if l1_regularization_strength < 0.0:
104 raise ValueError(
105 "l1_regularization_strength %f needs to be positive or zero" %
106 l1_regularization_strength)
107 if l2_regularization_strength < 0.0:
108 raise ValueError(
109 "l2_regularization_strength %f needs to be positive or zero" %
110 l2_regularization_strength)
111 if l2_shrinkage_regularization_strength < 0.0:
112 raise ValueError(
113 "l2_shrinkage_regularization_strength %f needs to be positive"
114 " or zero" % l2_shrinkage_regularization_strength)
116 self._learning_rate = learning_rate
117 self._learning_rate_power = learning_rate_power
118 self._initial_accumulator_value = initial_accumulator_value
119 self._l1_regularization_strength = l1_regularization_strength
120 self._l2_regularization_strength = l2_regularization_strength
121 self._beta = (0.0 if beta is None else beta)
122 self._l2_shrinkage_regularization_strength = (
123 l2_shrinkage_regularization_strength)
124 self._learning_rate_tensor = None
125 self._learning_rate_power_tensor = None
126 self._l1_regularization_strength_tensor = None
127 self._adjusted_l2_regularization_strength_tensor = None
128 self._l2_shrinkage_regularization_strength_tensor = None
129 self._accum_name = accum_name
130 self._linear_name = linear_name
132 def _create_slots(self, var_list):
133 # Create the "accum" and "linear" slots.
134 def _accum_initializer(shape, dtype=dtypes.float32, partition_info=None):
135 del partition_info
136 return array_ops.ones(
137 shape=shape, dtype=dtype) * self._initial_accumulator_value
138 for v in var_list:
139 self._get_or_make_slot_with_initializer(
140 v, _accum_initializer, v.shape, v.dtype, "accum",
141 self._accum_name or self._name)
142 self._zeros_slot(v, "linear", self._linear_name or self._name)
144 def _prepare(self):
145 self._learning_rate_tensor = ops.convert_to_tensor(
146 self._learning_rate, name="learning_rate")
147 self._l1_regularization_strength_tensor = ops.convert_to_tensor(
148 self._l1_regularization_strength, name="l1_regularization_strength")
149 # L2 regularization strength with beta added in so that the underlying
150 # TensorFlow ops do not need to include that parameter.
151 self._adjusted_l2_regularization_strength_tensor = ops.convert_to_tensor(
152 self._l2_regularization_strength + self._beta /
153 (2. * math_ops.maximum(self._learning_rate, 1e-36)),
154 name="adjusted_l2_regularization_strength")
155 assert self._adjusted_l2_regularization_strength_tensor is not None
156 self._beta_tensor = ops.convert_to_tensor(self._beta, name="beta")
157 self._l2_shrinkage_regularization_strength_tensor = ops.convert_to_tensor(
158 self._l2_shrinkage_regularization_strength,
159 name="l2_shrinkage_regularization_strength")
160 self._learning_rate_power_tensor = ops.convert_to_tensor(
161 self._learning_rate_power, name="learning_rate_power")
163 def _apply_dense(self, grad, var):
164 accum = self.get_slot(var, "accum")
165 linear = self.get_slot(var, "linear")
166 if self._l2_shrinkage_regularization_strength <= 0.0:
167 return training_ops.apply_ftrl(
168 var,
169 accum,
170 linear,
171 grad,
172 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
173 math_ops.cast(self._l1_regularization_strength_tensor,
174 var.dtype.base_dtype),
175 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
176 var.dtype.base_dtype),
177 math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
178 use_locking=self._use_locking)
179 else:
180 return training_ops.apply_ftrl_v2(
181 var,
182 accum,
183 linear,
184 grad,
185 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
186 math_ops.cast(self._l1_regularization_strength_tensor,
187 var.dtype.base_dtype),
188 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
189 var.dtype.base_dtype),
190 math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
191 var.dtype.base_dtype),
192 math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
193 use_locking=self._use_locking)
195 def _resource_apply_dense(self, grad, var):
196 accum = self.get_slot(var, "accum")
197 linear = self.get_slot(var, "linear")
198 if self._l2_shrinkage_regularization_strength <= 0.0:
199 return training_ops.resource_apply_ftrl(
200 var.handle,
201 accum.handle,
202 linear.handle,
203 grad,
204 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
205 math_ops.cast(self._l1_regularization_strength_tensor,
206 var.dtype.base_dtype),
207 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
208 var.dtype.base_dtype),
209 math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
210 use_locking=self._use_locking)
211 else:
212 return training_ops.resource_apply_ftrl_v2(
213 var.handle,
214 accum.handle,
215 linear.handle,
216 grad,
217 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
218 math_ops.cast(self._l1_regularization_strength_tensor,
219 var.dtype.base_dtype),
220 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
221 var.dtype.base_dtype),
222 math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
223 var.dtype.base_dtype),
224 math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
225 use_locking=self._use_locking)
227 def _apply_sparse(self, grad, var):
228 accum = self.get_slot(var, "accum")
229 linear = self.get_slot(var, "linear")
230 if self._l2_shrinkage_regularization_strength <= 0.0:
231 return training_ops.sparse_apply_ftrl(
232 var,
233 accum,
234 linear,
235 grad.values,
236 grad.indices,
237 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
238 math_ops.cast(self._l1_regularization_strength_tensor,
239 var.dtype.base_dtype),
240 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
241 var.dtype.base_dtype),
242 math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
243 use_locking=self._use_locking)
244 else:
245 return training_ops.sparse_apply_ftrl_v2(
246 var,
247 accum,
248 linear,
249 grad.values,
250 grad.indices,
251 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
252 math_ops.cast(self._l1_regularization_strength_tensor,
253 var.dtype.base_dtype),
254 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
255 var.dtype.base_dtype),
256 math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
257 grad.dtype.base_dtype),
258 math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
259 use_locking=self._use_locking)
261 def _resource_apply_sparse(self, grad, var, indices):
262 accum = self.get_slot(var, "accum")
263 linear = self.get_slot(var, "linear")
264 if self._l2_shrinkage_regularization_strength <= 0.0:
265 return training_ops.resource_sparse_apply_ftrl(
266 var.handle,
267 accum.handle,
268 linear.handle,
269 grad,
270 indices,
271 math_ops.cast(self._learning_rate_tensor, grad.dtype),
272 math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
273 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
274 grad.dtype),
275 math_ops.cast(self._learning_rate_power_tensor, grad.dtype),
276 use_locking=self._use_locking)
277 else:
278 return training_ops.resource_sparse_apply_ftrl_v2(
279 var.handle,
280 accum.handle,
281 linear.handle,
282 grad,
283 indices,
284 math_ops.cast(self._learning_rate_tensor, grad.dtype),
285 math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
286 math_ops.cast(self._adjusted_l2_regularization_strength_tensor,
287 grad.dtype),
288 math_ops.cast(self._l2_shrinkage_regularization_strength_tensor,
289 grad.dtype),
290 math_ops.cast(self._learning_rate_power_tensor, grad.dtype),
291 use_locking=self._use_locking)