Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/training/gradient_descent.py: 62%
26 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
16"""GradientDescent for TensorFlow."""
17from tensorflow.python.framework import indexed_slices
18from tensorflow.python.framework import ops
19from tensorflow.python.ops import math_ops
20from tensorflow.python.ops import resource_variable_ops
21from tensorflow.python.training import optimizer
22from tensorflow.python.training import training_ops
23from tensorflow.python.util.tf_export import tf_export
26@tf_export(v1=["train.GradientDescentOptimizer"])
27class GradientDescentOptimizer(optimizer.Optimizer):
28 """Optimizer that implements the gradient descent algorithm.
29 """
31 def __init__(self, learning_rate, use_locking=False, name="GradientDescent"):
32 """Construct a new gradient descent optimizer.
34 Args:
35 learning_rate: A Tensor or a floating point value. The learning
36 rate to use.
37 use_locking: If True use locks for update operations.
38 name: Optional name prefix for the operations created when applying
39 gradients. Defaults to "GradientDescent".
41 @compatibility(eager)
42 When eager execution is enabled, `learning_rate` can be a callable that
43 takes no arguments and returns the actual value to use. This can be useful
44 for changing these values across different invocations of optimizer
45 functions.
46 @end_compatibility
47 """
48 super(GradientDescentOptimizer, self).__init__(use_locking, name)
49 self._learning_rate = learning_rate
50 self._learning_rate_tensor = None
52 def _apply_dense(self, grad, var):
53 return training_ops.apply_gradient_descent(
54 var,
55 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
56 grad,
57 use_locking=self._use_locking).op
59 def _resource_apply_dense(self, grad, handle):
60 return training_ops.resource_apply_gradient_descent(
61 handle.handle, math_ops.cast(self._learning_rate_tensor,
62 grad.dtype.base_dtype),
63 grad, use_locking=self._use_locking)
65 def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices):
66 return resource_variable_ops.resource_scatter_add(
67 handle.handle,
68 indices,
69 -grad * math_ops.cast(self._learning_rate_tensor,
70 grad.dtype.base_dtype))
72 def _apply_sparse_duplicate_indices(self, grad, var):
73 delta = indexed_slices.IndexedSlices(
74 grad.values *
75 math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
76 grad.indices, grad.dense_shape)
77 return var.scatter_sub(delta, use_locking=self._use_locking)
79 def _prepare(self):
80 learning_rate = self._call_if_callable(self._learning_rate)
81 self._learning_rate_tensor = ops.convert_to_tensor(
82 learning_rate, name="learning_rate")