Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/training/proximal_adagrad.py: 39%
41 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
16"""ProximalAdagrad for TensorFlow."""
17from tensorflow.python.framework import constant_op
18from tensorflow.python.framework import ops
19from tensorflow.python.ops import math_ops
20from tensorflow.python.training import optimizer
21from tensorflow.python.training import training_ops
22from tensorflow.python.util.tf_export import tf_export
25@tf_export(v1=["train.ProximalAdagradOptimizer"])
26class ProximalAdagradOptimizer(optimizer.Optimizer):
27 # pylint: disable=line-too-long
28 """Optimizer that implements the Proximal Adagrad algorithm.
30 References:
31 Adaptive Subgradient Methods for Online Learning and Stochastic Optimization:
32 [Duchi et al., 2011](http://jmlr.org/papers/v12/duchi11a.html)
33 ([pdf](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf))
34 Efficient Learning using Forward-Backward Splitting:
35 [Duchi et al., 2009](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting)
36 ([pdf](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf))
37 """
39 def __init__(self, learning_rate, initial_accumulator_value=0.1,
40 l1_regularization_strength=0.0, l2_regularization_strength=0.0,
41 use_locking=False, name="ProximalAdagrad"):
42 """Construct a new ProximalAdagrad optimizer.
44 Args:
45 learning_rate: A `Tensor` or a floating point value. The learning rate.
46 initial_accumulator_value: A floating point value.
47 Starting value for the accumulators, must be positive.
48 l1_regularization_strength: A float value, must be greater than or
49 equal to zero.
50 l2_regularization_strength: A float value, must be greater than or
51 equal to zero.
52 use_locking: If `True` use locks for update operations.
53 name: Optional name prefix for the operations created when applying
54 gradients. Defaults to "Adagrad".
56 Raises:
57 ValueError: If the `initial_accumulator_value` is invalid.
58 """
59 if initial_accumulator_value <= 0.0:
60 raise ValueError("initial_accumulator_value must be positive: %s" %
61 initial_accumulator_value)
62 super(ProximalAdagradOptimizer, self).__init__(use_locking, name)
63 self._learning_rate = learning_rate
64 self._initial_accumulator_value = initial_accumulator_value
65 self._l1_regularization_strength = l1_regularization_strength
66 self._l2_regularization_strength = l2_regularization_strength
67 # Created in Initialize.
68 self._l1_regularization_strength_tensor = None
69 self._l2_regularization_strength_tensor = None
70 self._learning_rate_tensor = None
72 def _create_slots(self, var_list):
73 for v in var_list:
74 with ops.colocate_with(v):
75 val = constant_op.constant(self._initial_accumulator_value,
76 shape=v.get_shape(),
77 dtype=v.dtype.base_dtype)
78 self._get_or_make_slot(v, val, "accumulator", self._name)
80 def _prepare(self):
81 self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate,
82 name="learning_rate")
83 self._l1_regularization_strength_tensor = ops.convert_to_tensor(
84 self._l1_regularization_strength,
85 name="l1_regularization_strength")
86 self._l2_regularization_strength_tensor = ops.convert_to_tensor(
87 self._l2_regularization_strength,
88 name="l2_regularization_strength")
90 def _apply_dense(self, grad, var):
91 acc = self.get_slot(var, "accumulator")
92 return training_ops.apply_proximal_adagrad(
93 var, acc, self._learning_rate_tensor,
94 self._l1_regularization_strength_tensor,
95 self._l2_regularization_strength_tensor,
96 grad, use_locking=self._use_locking)
98 def _resource_apply_dense(self, grad, var):
99 acc = self.get_slot(var, "accumulator")
100 return training_ops.resource_apply_proximal_adagrad(
101 var.handle, acc.handle, self._learning_rate_tensor,
102 self._l1_regularization_strength_tensor,
103 self._l2_regularization_strength_tensor,
104 grad, use_locking=self._use_locking)
106 def _apply_sparse(self, grad, var):
107 acc = self.get_slot(var, "accumulator")
108 return training_ops.sparse_apply_proximal_adagrad(
109 var, acc, self._learning_rate_tensor,
110 self._l1_regularization_strength_tensor,
111 self._l2_regularization_strength_tensor,
112 grad.values, grad.indices,
113 use_locking=self._use_locking)
115 def _resource_apply_sparse(self, grad, var, indices):
116 acc = self.get_slot(var, "accumulator")
117 return training_ops.resource_sparse_apply_proximal_adagrad(
118 var.handle, acc.handle,
119 math_ops.cast(self._learning_rate_tensor, grad.dtype),
120 math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
121 math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype),
122 grad, indices,
123 use_locking=self._use_locking)