Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/training/proximal_adagrad.py: 39%

41 statements  

« prev     ^ index     » next       coverage.py v7.4.0, created at 2024-01-03 07:57 +0000

1# Copyright 2015 The TensorFlow Authors. All Rights Reserved. 

2# 

3# Licensed under the Apache License, Version 2.0 (the "License"); 

4# you may not use this file except in compliance with the License. 

5# You may obtain a copy of the License at 

6# 

7# http://www.apache.org/licenses/LICENSE-2.0 

8# 

9# Unless required by applicable law or agreed to in writing, software 

10# distributed under the License is distributed on an "AS IS" BASIS, 

11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

12# See the License for the specific language governing permissions and 

13# limitations under the License. 

14# ============================================================================== 

15 

16"""ProximalAdagrad for TensorFlow.""" 

17from tensorflow.python.framework import constant_op 

18from tensorflow.python.framework import ops 

19from tensorflow.python.ops import math_ops 

20from tensorflow.python.training import optimizer 

21from tensorflow.python.training import training_ops 

22from tensorflow.python.util.tf_export import tf_export 

23 

24 

25@tf_export(v1=["train.ProximalAdagradOptimizer"]) 

26class ProximalAdagradOptimizer(optimizer.Optimizer): 

27 # pylint: disable=line-too-long 

28 """Optimizer that implements the Proximal Adagrad algorithm. 

29 

30 References: 

31 Adaptive Subgradient Methods for Online Learning and Stochastic Optimization: 

32 [Duchi et al., 2011](http://jmlr.org/papers/v12/duchi11a.html) 

33 ([pdf](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)) 

34 Efficient Learning using Forward-Backward Splitting: 

35 [Duchi et al., 2009](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting) 

36 ([pdf](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)) 

37 """ 

38 

39 def __init__(self, learning_rate, initial_accumulator_value=0.1, 

40 l1_regularization_strength=0.0, l2_regularization_strength=0.0, 

41 use_locking=False, name="ProximalAdagrad"): 

42 """Construct a new ProximalAdagrad optimizer. 

43 

44 Args: 

45 learning_rate: A `Tensor` or a floating point value. The learning rate. 

46 initial_accumulator_value: A floating point value. 

47 Starting value for the accumulators, must be positive. 

48 l1_regularization_strength: A float value, must be greater than or 

49 equal to zero. 

50 l2_regularization_strength: A float value, must be greater than or 

51 equal to zero. 

52 use_locking: If `True` use locks for update operations. 

53 name: Optional name prefix for the operations created when applying 

54 gradients. Defaults to "Adagrad". 

55 

56 Raises: 

57 ValueError: If the `initial_accumulator_value` is invalid. 

58 """ 

59 if initial_accumulator_value <= 0.0: 

60 raise ValueError("initial_accumulator_value must be positive: %s" % 

61 initial_accumulator_value) 

62 super(ProximalAdagradOptimizer, self).__init__(use_locking, name) 

63 self._learning_rate = learning_rate 

64 self._initial_accumulator_value = initial_accumulator_value 

65 self._l1_regularization_strength = l1_regularization_strength 

66 self._l2_regularization_strength = l2_regularization_strength 

67 # Created in Initialize. 

68 self._l1_regularization_strength_tensor = None 

69 self._l2_regularization_strength_tensor = None 

70 self._learning_rate_tensor = None 

71 

72 def _create_slots(self, var_list): 

73 for v in var_list: 

74 with ops.colocate_with(v): 

75 val = constant_op.constant(self._initial_accumulator_value, 

76 shape=v.get_shape(), 

77 dtype=v.dtype.base_dtype) 

78 self._get_or_make_slot(v, val, "accumulator", self._name) 

79 

80 def _prepare(self): 

81 self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate, 

82 name="learning_rate") 

83 self._l1_regularization_strength_tensor = ops.convert_to_tensor( 

84 self._l1_regularization_strength, 

85 name="l1_regularization_strength") 

86 self._l2_regularization_strength_tensor = ops.convert_to_tensor( 

87 self._l2_regularization_strength, 

88 name="l2_regularization_strength") 

89 

90 def _apply_dense(self, grad, var): 

91 acc = self.get_slot(var, "accumulator") 

92 return training_ops.apply_proximal_adagrad( 

93 var, acc, self._learning_rate_tensor, 

94 self._l1_regularization_strength_tensor, 

95 self._l2_regularization_strength_tensor, 

96 grad, use_locking=self._use_locking) 

97 

98 def _resource_apply_dense(self, grad, var): 

99 acc = self.get_slot(var, "accumulator") 

100 return training_ops.resource_apply_proximal_adagrad( 

101 var.handle, acc.handle, self._learning_rate_tensor, 

102 self._l1_regularization_strength_tensor, 

103 self._l2_regularization_strength_tensor, 

104 grad, use_locking=self._use_locking) 

105 

106 def _apply_sparse(self, grad, var): 

107 acc = self.get_slot(var, "accumulator") 

108 return training_ops.sparse_apply_proximal_adagrad( 

109 var, acc, self._learning_rate_tensor, 

110 self._l1_regularization_strength_tensor, 

111 self._l2_regularization_strength_tensor, 

112 grad.values, grad.indices, 

113 use_locking=self._use_locking) 

114 

115 def _resource_apply_sparse(self, grad, var, indices): 

116 acc = self.get_slot(var, "accumulator") 

117 return training_ops.resource_sparse_apply_proximal_adagrad( 

118 var.handle, acc.handle, 

119 math_ops.cast(self._learning_rate_tensor, grad.dtype), 

120 math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype), 

121 math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype), 

122 grad, indices, 

123 use_locking=self._use_locking)