Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/keras/regularizers.py: 44%
91 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Built-in regularizers."""
16# pylint: disable=invalid-name
18import math
20from tensorflow.python.keras import backend
21from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
22from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
23from tensorflow.python.ops import math_ops
24from tensorflow.python.util.tf_export import keras_export
27def _check_penalty_number(x):
28 """check penalty number availability, raise ValueError if failed."""
29 if not isinstance(x, (float, int)):
30 raise ValueError(('Value: {} is not a valid regularization penalty number, '
31 'expected an int or float value').format(x))
33 if math.isinf(x) or math.isnan(x):
34 raise ValueError(
35 ('Value: {} is not a valid regularization penalty number, '
36 'a positive/negative infinity or NaN is not a property value'
37 ).format(x))
40def _none_to_default(inputs, default):
41 return default if inputs is None else default
44@keras_export('keras.regularizers.Regularizer')
45class Regularizer(object):
46 """Regularizer base class.
48 Regularizers allow you to apply penalties on layer parameters or layer
49 activity during optimization. These penalties are summed into the loss
50 function that the network optimizes.
52 Regularization penalties are applied on a per-layer basis. The exact API will
53 depend on the layer, but many layers (e.g. `Dense`, `Conv1D`, `Conv2D` and
54 `Conv3D`) have a unified API.
56 These layers expose 3 keyword arguments:
58 - `kernel_regularizer`: Regularizer to apply a penalty on the layer's kernel
59 - `bias_regularizer`: Regularizer to apply a penalty on the layer's bias
60 - `activity_regularizer`: Regularizer to apply a penalty on the layer's output
62 All layers (including custom layers) expose `activity_regularizer` as a
63 settable property, whether or not it is in the constructor arguments.
65 The value returned by the `activity_regularizer` is divided by the input
66 batch size so that the relative weighting between the weight regularizers and
67 the activity regularizers does not change with the batch size.
69 You can access a layer's regularization penalties by calling `layer.losses`
70 after calling the layer on inputs.
72 ## Example
74 >>> layer = tf.keras.layers.Dense(
75 ... 5, input_dim=5,
76 ... kernel_initializer='ones',
77 ... kernel_regularizer=tf.keras.regularizers.L1(0.01),
78 ... activity_regularizer=tf.keras.regularizers.L2(0.01))
79 >>> tensor = tf.ones(shape=(5, 5)) * 2.0
80 >>> out = layer(tensor)
82 >>> # The kernel regularization term is 0.25
83 >>> # The activity regularization term (after dividing by the batch size) is 5
84 >>> tf.math.reduce_sum(layer.losses)
85 <tf.Tensor: shape=(), dtype=float32, numpy=5.25>
87 ## Available penalties
89 ```python
90 tf.keras.regularizers.L1(0.3) # L1 Regularization Penalty
91 tf.keras.regularizers.L2(0.1) # L2 Regularization Penalty
92 tf.keras.regularizers.L1L2(l1=0.01, l2=0.01) # L1 + L2 penalties
93 ```
95 ## Directly calling a regularizer
97 Compute a regularization loss on a tensor by directly calling a regularizer
98 as if it is a one-argument function.
100 E.g.
101 >>> regularizer = tf.keras.regularizers.L2(2.)
102 >>> tensor = tf.ones(shape=(5, 5))
103 >>> regularizer(tensor)
104 <tf.Tensor: shape=(), dtype=float32, numpy=50.0>
107 ## Developing new regularizers
109 Any function that takes in a weight matrix and returns a scalar
110 tensor can be used as a regularizer, e.g.:
112 >>> @tf.keras.utils.register_keras_serializable(package='Custom', name='l1')
113 ... def l1_reg(weight_matrix):
114 ... return 0.01 * tf.math.reduce_sum(tf.math.abs(weight_matrix))
115 ...
116 >>> layer = tf.keras.layers.Dense(5, input_dim=5,
117 ... kernel_initializer='ones', kernel_regularizer=l1_reg)
118 >>> tensor = tf.ones(shape=(5, 5))
119 >>> out = layer(tensor)
120 >>> layer.losses
121 [<tf.Tensor: shape=(), dtype=float32, numpy=0.25>]
123 Alternatively, you can write your custom regularizers in an
124 object-oriented way by extending this regularizer base class, e.g.:
126 >>> @tf.keras.utils.register_keras_serializable(package='Custom', name='l2')
127 ... class L2Regularizer(tf.keras.regularizers.Regularizer):
128 ... def __init__(self, l2=0.): # pylint: disable=redefined-outer-name
129 ... self.l2 = l2
130 ...
131 ... def __call__(self, x):
132 ... return self.l2 * tf.math.reduce_sum(tf.math.square(x))
133 ...
134 ... def get_config(self):
135 ... return {'l2': float(self.l2)}
136 ...
137 >>> layer = tf.keras.layers.Dense(
138 ... 5, input_dim=5, kernel_initializer='ones',
139 ... kernel_regularizer=L2Regularizer(l2=0.5))
141 >>> tensor = tf.ones(shape=(5, 5))
142 >>> out = layer(tensor)
143 >>> layer.losses
144 [<tf.Tensor: shape=(), dtype=float32, numpy=12.5>]
146 ### A note on serialization and deserialization:
148 Registering the regularizers as serializable is optional if you are just
149 training and executing models, exporting to and from SavedModels, or saving
150 and loading weight checkpoints.
152 Registration is required for Keras `model_to_estimator`, saving and
153 loading models to HDF5 formats, Keras model cloning, some visualization
154 utilities, and exporting models to and from JSON. If using this functionality,
155 you must make sure any python process running your model has also defined
156 and registered your custom regularizer.
158 `tf.keras.utils.register_keras_serializable` is only available in TF 2.1 and
159 beyond. In earlier versions of TensorFlow you must pass your custom
160 regularizer to the `custom_objects` argument of methods that expect custom
161 regularizers to be registered as serializable.
162 """
164 def __call__(self, x):
165 """Compute a regularization penalty from an input tensor."""
166 return 0.
168 @classmethod
169 def from_config(cls, config):
170 """Creates a regularizer from its config.
172 This method is the reverse of `get_config`,
173 capable of instantiating the same regularizer from the config
174 dictionary.
176 This method is used by Keras `model_to_estimator`, saving and
177 loading models to HDF5 formats, Keras model cloning, some visualization
178 utilities, and exporting models to and from JSON.
180 Args:
181 config: A Python dictionary, typically the output of get_config.
183 Returns:
184 A regularizer instance.
185 """
186 return cls(**config)
188 def get_config(self):
189 """Returns the config of the regularizer.
191 An regularizer config is a Python dictionary (serializable)
192 containing all configuration parameters of the regularizer.
193 The same regularizer can be reinstantiated later
194 (without any saved state) from this configuration.
196 This method is optional if you are just training and executing models,
197 exporting to and from SavedModels, or using weight checkpoints.
199 This method is required for Keras `model_to_estimator`, saving and
200 loading models to HDF5 formats, Keras model cloning, some visualization
201 utilities, and exporting models to and from JSON.
203 Returns:
204 Python dictionary.
205 """
206 raise NotImplementedError(str(self) + ' does not implement get_config()')
209@keras_export('keras.regularizers.L1L2')
210class L1L2(Regularizer):
211 """A regularizer that applies both L1 and L2 regularization penalties.
213 The L1 regularization penalty is computed as:
214 `loss = l1 * reduce_sum(abs(x))`
216 The L2 regularization penalty is computed as
217 `loss = l2 * reduce_sum(square(x))`
219 L1L2 may be passed to a layer as a string identifier:
221 >>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l1_l2')
223 In this case, the default values used are `l1=0.01` and `l2=0.01`.
225 Attributes:
226 l1: Float; L1 regularization factor.
227 l2: Float; L2 regularization factor.
228 """
230 def __init__(self, l1=0., l2=0.): # pylint: disable=redefined-outer-name
231 # The default value for l1 and l2 are different from the value in l1_l2
232 # for backward compatibility reason. Eg, L1L2(l2=0.1) will only have l2
233 # and no l1 penalty.
234 l1 = 0. if l1 is None else l1
235 l2 = 0. if l2 is None else l2
236 _check_penalty_number(l1)
237 _check_penalty_number(l2)
239 self.l1 = backend.cast_to_floatx(l1)
240 self.l2 = backend.cast_to_floatx(l2)
242 def __call__(self, x):
243 regularization = backend.constant(0., dtype=x.dtype)
244 if self.l1:
245 regularization += self.l1 * math_ops.reduce_sum(math_ops.abs(x))
246 if self.l2:
247 regularization += self.l2 * math_ops.reduce_sum(math_ops.square(x))
248 return regularization
250 def get_config(self):
251 return {'l1': float(self.l1), 'l2': float(self.l2)}
254@keras_export('keras.regularizers.L1', 'keras.regularizers.l1')
255class L1(Regularizer):
256 """A regularizer that applies a L1 regularization penalty.
258 The L1 regularization penalty is computed as:
259 `loss = l1 * reduce_sum(abs(x))`
261 L1 may be passed to a layer as a string identifier:
263 >>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l1')
265 In this case, the default value used is `l1=0.01`.
267 Attributes:
268 l1: Float; L1 regularization factor.
269 """
271 def __init__(self, l1=0.01, **kwargs): # pylint: disable=redefined-outer-name
272 l1 = kwargs.pop('l', l1) # Backwards compatibility
273 if kwargs:
274 raise TypeError('Argument(s) not recognized: %s' % (kwargs,))
276 l1 = 0.01 if l1 is None else l1
277 _check_penalty_number(l1)
279 self.l1 = backend.cast_to_floatx(l1)
281 def __call__(self, x):
282 return self.l1 * math_ops.reduce_sum(math_ops.abs(x))
284 def get_config(self):
285 return {'l1': float(self.l1)}
288@keras_export('keras.regularizers.L2', 'keras.regularizers.l2')
289class L2(Regularizer):
290 """A regularizer that applies a L2 regularization penalty.
292 The L2 regularization penalty is computed as:
293 `loss = l2 * reduce_sum(square(x))`
295 L2 may be passed to a layer as a string identifier:
297 >>> dense = tf.keras.layers.Dense(3, kernel_regularizer='l2')
299 In this case, the default value used is `l2=0.01`.
301 Attributes:
302 l2: Float; L2 regularization factor.
303 """
305 def __init__(self, l2=0.01, **kwargs): # pylint: disable=redefined-outer-name
306 l2 = kwargs.pop('l', l2) # Backwards compatibility
307 if kwargs:
308 raise TypeError('Argument(s) not recognized: %s' % (kwargs,))
310 l2 = 0.01 if l2 is None else l2
311 _check_penalty_number(l2)
313 self.l2 = backend.cast_to_floatx(l2)
315 def __call__(self, x):
316 return self.l2 * math_ops.reduce_sum(math_ops.square(x))
318 def get_config(self):
319 return {'l2': float(self.l2)}
322@keras_export('keras.regularizers.l1_l2')
323def l1_l2(l1=0.01, l2=0.01): # pylint: disable=redefined-outer-name
324 r"""Create a regularizer that applies both L1 and L2 penalties.
326 The L1 regularization penalty is computed as:
327 `loss = l1 * reduce_sum(abs(x))`
329 The L2 regularization penalty is computed as:
330 `loss = l2 * reduce_sum(square(x))`
332 Args:
333 l1: Float; L1 regularization factor.
334 l2: Float; L2 regularization factor.
336 Returns:
337 An L1L2 Regularizer with the given regularization factors.
338 """
339 return L1L2(l1=l1, l2=l2)
342# Deserialization aliases.
343l1 = L1
344l2 = L2
347@keras_export('keras.regularizers.serialize')
348def serialize(regularizer):
349 return serialize_keras_object(regularizer)
352@keras_export('keras.regularizers.deserialize')
353def deserialize(config, custom_objects=None):
354 if config == 'l1_l2':
355 # Special case necessary since the defaults used for "l1_l2" (string)
356 # differ from those of the L1L2 class.
357 return L1L2(l1=0.01, l2=0.01)
358 return deserialize_keras_object(
359 config,
360 module_objects=globals(),
361 custom_objects=custom_objects,
362 printable_module_name='regularizer')
365@keras_export('keras.regularizers.get')
366def get(identifier):
367 """Retrieve a regularizer instance from a config or identifier."""
368 if identifier is None:
369 return None
370 if isinstance(identifier, dict):
371 return deserialize(identifier)
372 elif isinstance(identifier, str):
373 return deserialize(str(identifier))
374 elif callable(identifier):
375 return identifier
376 else:
377 raise ValueError(
378 'Could not interpret regularizer identifier: {}'.format(identifier))