Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/keras/engine/partial_batch_padding_handler.py: 21%
58 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Utility object to handler partial batches for TPUStrategy."""
16# pylint: disable=protected-access
18import numpy as np
20from tensorflow.python.framework import tensor_util
21from tensorflow.python.keras import backend
22from tensorflow.python.ops import array_ops
23from tensorflow.python.util import nest
26class PartialBatchPaddingHandler(object):
27 """A container that holds info about partial batches for `predict()`."""
29 def __init__(self, output_shape):
30 self.padded_batch_size = 0
31 self.padding_mask = array_ops.zeros(0)
32 self.output_shape = output_shape
34 def get_real_batch_size(self, dataset_batch):
35 """Returns the number of elements in a potentially partial batch."""
36 if isinstance(dataset_batch, (tuple, list)):
37 dataset_batch = dataset_batch[0]
39 assert nest.flatten(dataset_batch)
41 def _find_any_tensor(batch_features):
42 tensors = [
43 x for x in nest.flatten(batch_features) if tensor_util.is_tf_type(x)
44 ]
45 if not tensors:
46 raise ValueError('Cannot find any Tensor in features dict.')
47 return tensors[0]
49 return backend.cast(backend.shape(_find_any_tensor(dataset_batch))[0],
50 dtype='int64')
52 def update_mask(self, padding_mask, dataset_batch):
53 """Calculate and cache the amount of padding required for a batch."""
54 original_batch_size = self.get_real_batch_size(dataset_batch)
55 missing_count = self.padded_batch_size - original_batch_size
56 mask = backend.concatenate([array_ops.ones(original_batch_size),
57 array_ops.zeros(missing_count)], axis=0)
58 return backend.concatenate([padding_mask, mask], axis=0)
60 def pad_batch(self, *dataset_batch_elements):
61 """Pads out the batch dimension of a tensor to the complete batch size."""
62 def _pad(batch):
63 """Helper function to pad nested data within each batch elements."""
64 padded_dict_batch = {}
65 if isinstance(batch, dict):
66 for key, value in batch.items():
67 padded_dict_batch[key] = _pad(value)
68 return padded_dict_batch
70 rank = len(batch.shape)
71 assert rank > 0
72 missing_count = (self.padded_batch_size -
73 self.get_real_batch_size(batch))
74 padding = backend.stack([[0, missing_count]] + [[0, 0]] * (rank - 1))
75 return array_ops.pad(batch, padding, 'constant')
77 if len(dataset_batch_elements) == 1:
78 return _pad(dataset_batch_elements[0])
80 batch_elements = []
81 for batch_element in dataset_batch_elements:
82 batch_elements.append(_pad(batch_element))
83 return tuple(batch_elements)
85 def apply_mask(self, prediction_result):
86 """Removes prediction output that corresponds to padded input."""
87 padding_mask = backend.get_value(self.padding_mask)
88 assert len(padding_mask.shape) == 1
90 if len(self.output_shape) == 1:
91 prediction = np.take(prediction_result,
92 np.nonzero(
93 padding_mask[:len(prediction_result)]),
94 axis=0)
95 if prediction.shape[0] == 1:
96 prediction = np.squeeze(prediction, axis=0)
97 return prediction
99 else:
100 predictions = []
101 for i in range(len(self.output_shape)):
102 prediction = prediction_result[i]
103 prediction = np.take(prediction, np.nonzero(
104 padding_mask[:len(prediction)]), axis=0)
105 predictions.append(np.squeeze(prediction))
107 return predictions