/src/tesseract/src/ccstruct/params_training_featdef.h
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | ///////////////////////////////////////////////////////////////////////  | 
2  |  | // File:        params_training_featdef.h  | 
3  |  | // Description: Feature definitions for params training.  | 
4  |  | // Author:      Rika Antonova  | 
5  |  | //  | 
6  |  | // (C) Copyright 2011, Google Inc.  | 
7  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
8  |  | // you may not use this file except in compliance with the License.  | 
9  |  | // You may obtain a copy of the License at  | 
10  |  | // http://www.apache.org/licenses/LICENSE-2.0  | 
11  |  | // Unless required by applicable law or agreed to in writing, software  | 
12  |  | // distributed under the License is distributed on an "AS IS" BASIS,  | 
13  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
14  |  | // See the License for the specific language governing permissions and  | 
15  |  | // limitations under the License.  | 
16  |  | //  | 
17  |  | ///////////////////////////////////////////////////////////////////////  | 
18  |  |  | 
19  |  | #ifndef TESSERACT_WORDREC_PARAMS_TRAINING_FEATDEF_H_  | 
20  |  | #define TESSERACT_WORDREC_PARAMS_TRAINING_FEATDEF_H_  | 
21  |  |  | 
22  |  | #include <cstring> // for memset  | 
23  |  | #include <string>  | 
24  |  | #include <vector>  | 
25  |  |  | 
26  |  | namespace tesseract { | 
27  |  |  | 
28  |  | // Maximum number of unichars in the small and medium sized words  | 
29  |  | static const int kMaxSmallWordUnichars = 3;  | 
30  |  | static const int kMaxMediumWordUnichars = 6;  | 
31  |  |  | 
32  |  | // Raw features extracted from a single OCR hypothesis.  | 
33  |  | // The features are normalized (by outline length or number of unichars as  | 
34  |  | // appropriate) real-valued quantities with unbounded range and  | 
35  |  | // unknown distribution.  | 
36  |  | // Normalization / binarization of these features is done at a later stage.  | 
37  |  | // Note: when adding new fields to this enum make sure to modify  | 
38  |  | // kParamsTrainingFeatureTypeName  | 
39  |  | enum kParamsTrainingFeatureType { | 
40  |  |   // Digits  | 
41  |  |   PTRAIN_DIGITS_SHORT, // 0  | 
42  |  |   PTRAIN_DIGITS_MED,   // 1  | 
43  |  |   PTRAIN_DIGITS_LONG,  // 2  | 
44  |  |   // Number or pattern (NUMBER_PERM, USER_PATTERN_PERM)  | 
45  |  |   PTRAIN_NUM_SHORT, // 3  | 
46  |  |   PTRAIN_NUM_MED,   // 4  | 
47  |  |   PTRAIN_NUM_LONG,  // 5  | 
48  |  |   // Document word (DOC_DAWG_PERM)  | 
49  |  |   PTRAIN_DOC_SHORT, // 6  | 
50  |  |   PTRAIN_DOC_MED,   // 7  | 
51  |  |   PTRAIN_DOC_LONG,  // 8  | 
52  |  |   // Word (SYSTEM_DAWG_PERM, USER_DAWG_PERM, COMPOUND_PERM)  | 
53  |  |   PTRAIN_DICT_SHORT, // 9  | 
54  |  |   PTRAIN_DICT_MED,   // 10  | 
55  |  |   PTRAIN_DICT_LONG,  // 11  | 
56  |  |   // Frequent word (FREQ_DAWG_PERM)  | 
57  |  |   PTRAIN_FREQ_SHORT,          // 12  | 
58  |  |   PTRAIN_FREQ_MED,            // 13  | 
59  |  |   PTRAIN_FREQ_LONG,           // 14  | 
60  |  |   PTRAIN_SHAPE_COST_PER_CHAR, // 15  | 
61  |  |   PTRAIN_NGRAM_COST_PER_CHAR, // 16  | 
62  |  |   PTRAIN_NUM_BAD_PUNC,        // 17  | 
63  |  |   PTRAIN_NUM_BAD_CASE,        // 18  | 
64  |  |   PTRAIN_XHEIGHT_CONSISTENCY, // 19  | 
65  |  |   PTRAIN_NUM_BAD_CHAR_TYPE,   // 20  | 
66  |  |   PTRAIN_NUM_BAD_SPACING,     // 21  | 
67  |  |   PTRAIN_NUM_BAD_FONT,        // 22  | 
68  |  |   PTRAIN_RATING_PER_CHAR,     // 23  | 
69  |  |  | 
70  |  |   PTRAIN_NUM_FEATURE_TYPES  | 
71  |  | };  | 
72  |  |  | 
73  |  | static const char *const kParamsTrainingFeatureTypeName[] = { | 
74  |  |     "PTRAIN_DIGITS_SHORT",        // 0  | 
75  |  |     "PTRAIN_DIGITS_MED",          // 1  | 
76  |  |     "PTRAIN_DIGITS_LONG",         // 2  | 
77  |  |     "PTRAIN_NUM_SHORT",           // 3  | 
78  |  |     "PTRAIN_NUM_MED",             // 4  | 
79  |  |     "PTRAIN_NUM_LONG",            // 5  | 
80  |  |     "PTRAIN_DOC_SHORT",           // 6  | 
81  |  |     "PTRAIN_DOC_MED",             // 7  | 
82  |  |     "PTRAIN_DOC_LONG",            // 8  | 
83  |  |     "PTRAIN_DICT_SHORT",          // 9  | 
84  |  |     "PTRAIN_DICT_MED",            // 10  | 
85  |  |     "PTRAIN_DICT_LONG",           // 11  | 
86  |  |     "PTRAIN_FREQ_SHORT",          // 12  | 
87  |  |     "PTRAIN_FREQ_MED",            // 13  | 
88  |  |     "PTRAIN_FREQ_LONG",           // 14  | 
89  |  |     "PTRAIN_SHAPE_COST_PER_CHAR", // 15  | 
90  |  |     "PTRAIN_NGRAM_COST_PER_CHAR", // 16  | 
91  |  |     "PTRAIN_NUM_BAD_PUNC",        // 17  | 
92  |  |     "PTRAIN_NUM_BAD_CASE",        // 18  | 
93  |  |     "PTRAIN_XHEIGHT_CONSISTENCY", // 19  | 
94  |  |     "PTRAIN_NUM_BAD_CHAR_TYPE",   // 20  | 
95  |  |     "PTRAIN_NUM_BAD_SPACING",     // 21  | 
96  |  |     "PTRAIN_NUM_BAD_FONT",        // 22  | 
97  |  |     "PTRAIN_RATING_PER_CHAR",     // 23  | 
98  |  | };  | 
99  |  |  | 
100  |  | // Returns the index of the given feature (by name),  | 
101  |  | // or -1 meaning the feature is unknown.  | 
102  |  | int ParamsTrainingFeatureByName(const char *name);  | 
103  |  |  | 
104  |  | // Entry with features extracted from a single OCR hypothesis for a word.  | 
105  |  | struct ParamsTrainingHypothesis { | 
106  | 399k  |   ParamsTrainingHypothesis() : cost(0.0) { | 
107  | 399k  |     memset(features, 0, sizeof(features));  | 
108  | 399k  |   }  | 
109  | 0  |   ParamsTrainingHypothesis(const ParamsTrainingHypothesis &other) { | 
110  | 0  |     memcpy(features, other.features, sizeof(features));  | 
111  | 0  |     str = other.str;  | 
112  | 0  |     cost = other.cost;  | 
113  | 0  |   }  | 
114  | 0  |   ParamsTrainingHypothesis &operator=(const ParamsTrainingHypothesis &other) { | 
115  | 0  |     memcpy(features, other.features, sizeof(features));  | 
116  | 0  |     str = other.str;  | 
117  | 0  |     cost = other.cost;  | 
118  | 0  |     return *this;  | 
119  | 0  |   }  | 
120  |  |   std::string str; // string corresponding to word hypothesis (for debugging)  | 
121  |  |   float features[PTRAIN_NUM_FEATURE_TYPES];  | 
122  |  |   float cost; // path cost computed by segsearch  | 
123  |  | };  | 
124  |  |  | 
125  |  | // A list of hypotheses explored during one run of segmentation search.  | 
126  |  | using ParamsTrainingHypothesisList = std::vector<ParamsTrainingHypothesis>;  | 
127  |  |  | 
128  |  | // A bundle that accumulates all of the hypothesis lists explored during all  | 
129  |  | // of the runs of segmentation search on a word (e.g. a list of hypotheses  | 
130  |  | // explored on PASS1, PASS2, fix xheight pass, etc).  | 
131  |  | class ParamsTrainingBundle { | 
132  |  | public:  | 
133  | 0  |   ParamsTrainingBundle() = default;  | 
134  |  |   // Starts a new hypothesis list.  | 
135  |  |   // Should be called at the beginning of a new run of the segmentation search.  | 
136  | 0  |   void StartHypothesisList() { | 
137  | 0  |     hyp_list_vec.emplace_back();  | 
138  | 0  |   }  | 
139  |  |   // Adds a new ParamsTrainingHypothesis to the current hypothesis list  | 
140  |  |   // and returns the reference to the newly added entry.  | 
141  | 0  |   ParamsTrainingHypothesis &AddHypothesis(const ParamsTrainingHypothesis &other) { | 
142  | 0  |     if (hyp_list_vec.empty()) { | 
143  | 0  |       StartHypothesisList();  | 
144  | 0  |     }  | 
145  | 0  |     hyp_list_vec.back().push_back(ParamsTrainingHypothesis(other));  | 
146  | 0  |     return hyp_list_vec.back().back();  | 
147  | 0  |   }  | 
148  |  |  | 
149  |  |   std::vector<ParamsTrainingHypothesisList> hyp_list_vec;  | 
150  |  | };  | 
151  |  |  | 
152  |  | } // namespace tesseract  | 
153  |  |  | 
154  |  | #endif // TESSERACT_WORDREC_PARAMS_TRAINING_FEATDEF_H_  |