/src/leptonica/src/compare.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | /*! |
28 | | * \file compare.c |
29 | | * <pre> |
30 | | * |
31 | | * Test for pix equality |
32 | | * l_int32 pixEqual() |
33 | | * l_int32 pixEqualWithAlpha() |
34 | | * l_int32 pixEqualWithCmap() |
35 | | * l_int32 cmapEqual() |
36 | | * l_int32 pixUsesCmapColor() |
37 | | * |
38 | | * Binary correlation |
39 | | * l_int32 pixCorrelationBinary() |
40 | | * |
41 | | * Difference of two images of same size |
42 | | * l_int32 pixDisplayDiff() |
43 | | * l_int32 pixDisplayDiffBinary() |
44 | | * l_int32 pixCompareBinary() |
45 | | * l_int32 pixCompareGrayOrRGB() |
46 | | * l_int32 pixCompareGray() |
47 | | * l_int32 pixCompareRGB() |
48 | | * l_int32 pixCompareTiled() |
49 | | * |
50 | | * Other measures of the difference of two images of the same size |
51 | | * NUMA *pixCompareRankDifference() |
52 | | * l_int32 pixTestForSimilarity() |
53 | | * l_int32 pixGetDifferenceStats() |
54 | | * NUMA *pixGetDifferenceHistogram() |
55 | | * l_int32 pixGetPerceptualDiff() |
56 | | * l_int32 pixGetPSNR() |
57 | | * |
58 | | * Comparison of photo regions by histogram |
59 | | * l_int32 pixaComparePhotoRegionsByHisto() -- top-level |
60 | | * l_int32 pixComparePhotoRegionsByHisto() -- top-level for 2 |
61 | | * l_int32 pixGenPhotoHistos() |
62 | | * PIX *pixPadToCenterCentroid() |
63 | | * l_int32 pixCentroid8() |
64 | | * l_int32 pixDecideIfPhotoImage() |
65 | | * static l_int32 findHistoGridDimensions() |
66 | | * l_int32 compareTilesByHisto() |
67 | | * |
68 | | * l_int32 pixCompareGrayByHisto() -- top-level for 2 |
69 | | * static l_int32 pixCompareTilesByHisto() |
70 | | * l_int32 pixCropAlignedToCentroid() |
71 | | * |
72 | | * l_uint8 *l_compressGrayHistograms() |
73 | | * NUMAA *l_uncompressGrayHistograms() |
74 | | * |
75 | | * Translated images at the same resolution |
76 | | * l_int32 pixCompareWithTranslation() |
77 | | * l_int32 pixBestCorrelation() |
78 | | * |
79 | | * For comparing images using tiled histograms, essentially all the |
80 | | * computation goes into deciding if a region of an image is a photo, |
81 | | * whether that photo region is amenable to similarity measurements |
82 | | * using histograms, and finally the calculation of the gray histograms |
83 | | * for each of the tiled regions. The actual comparison is essentially |
84 | | * instantaneous. Therefore, with a large number of images to compare |
85 | | * with each other, it is important to first calculate the histograms |
86 | | * for each image. Then the comparisons, which go as the square of the |
87 | | * number of images, actually takes no time. |
88 | | * |
89 | | * A high level function that takes a pixa of images and does |
90 | | * all comparisons, pixaComparePhotosByHisto(), uses this split |
91 | | * approach. It pads the images so that the centroid is in the center, |
92 | | * which will allow the tiles to be better aligned. |
93 | | * |
94 | | * For testing purposes, two functions are given that do all the work |
95 | | * to compare just two photo regions: |
96 | | * * pixComparePhotoRegionsByHisto() uses the split approach, qualifying |
97 | | * the images first with pixGenPhotoHistos(), and then comparing |
98 | | * with compareTilesByHisto(). |
99 | | * * pixCompareGrayByHisto() aligns the two images by centroid |
100 | | * and calls pixCompareTilesByHisto() to generate the histograms |
101 | | * and do the comparison. |
102 | | * |
103 | | * </pre> |
104 | | */ |
105 | | |
106 | | #ifdef HAVE_CONFIG_H |
107 | | #include <config_auto.h> |
108 | | #endif /* HAVE_CONFIG_H */ |
109 | | |
110 | | #include <string.h> |
111 | | #include <math.h> |
112 | | #include "allheaders.h" |
113 | | |
114 | | /* Small enough to consider equal to 0.0, for plot output */ |
115 | | static const l_float32 TINY = 0.00001f; |
116 | | |
117 | | static l_ok findHistoGridDimensions(l_int32 n, l_int32 w, l_int32 h, |
118 | | l_int32 *pnx, l_int32 *pny, l_int32 debug); |
119 | | static l_ok pixCompareTilesByHisto(PIX *pix1, PIX *pix2, l_int32 maxgray, |
120 | | l_int32 factor, l_int32 n, |
121 | | l_float32 *pscore, PIXA *pixadebug); |
122 | | |
123 | | /*------------------------------------------------------------------* |
124 | | * Test for pix equality * |
125 | | *------------------------------------------------------------------*/ |
126 | | /*! |
127 | | * \brief pixEqual() |
128 | | * |
129 | | * \param[in] pix1 |
130 | | * \param[in] pix2 |
131 | | * \param[out] psame 1 if same; 0 if different |
132 | | * \return 0 if OK; 1 on error |
133 | | * |
134 | | * <pre> |
135 | | * Notes: |
136 | | * (1) Equality is defined as having the same pixel values for |
137 | | * each respective image pixel. |
138 | | * (2) This works on two pix of any depth. If one or both pix |
139 | | * have a colormap, the depths can be different and the |
140 | | * two pix can still be equal. |
141 | | * (3) This ignores the alpha component for 32 bpp images. |
142 | | * (4) If both pix have colormaps and the depths are equal, |
143 | | * use the pixEqualWithCmap() function, which does a fast |
144 | | * comparison if the colormaps are identical and a relatively |
145 | | * slow comparison otherwise. |
146 | | * (5) In all other cases, any existing colormaps must first be |
147 | | * removed before doing pixel comparison. After the colormaps |
148 | | * are removed, the resulting two images must have the same depth. |
149 | | * The "lowest common denominator" is RGB, but this is only |
150 | | * chosen when necessary, or when both have colormaps but |
151 | | * different depths. |
152 | | * (6) For images without colormaps that are not 32 bpp, all bits |
153 | | * in the image part of the data array must be identical. |
154 | | * </pre> |
155 | | */ |
156 | | l_ok |
157 | | pixEqual(PIX *pix1, |
158 | | PIX *pix2, |
159 | | l_int32 *psame) |
160 | 0 | { |
161 | 0 | return pixEqualWithAlpha(pix1, pix2, 0, psame); |
162 | 0 | } |
163 | | |
164 | | |
165 | | /*! |
166 | | * \brief pixEqualWithAlpha() |
167 | | * |
168 | | * \param[in] pix1 |
169 | | * \param[in] pix2 |
170 | | * \param[in] use_alpha 1 to compare alpha in RGBA; 0 to ignore |
171 | | * \param[out] psame 1 if same; 0 if different |
172 | | * \return 0 if OK; 1 on error |
173 | | * |
174 | | * <pre> |
175 | | * Notes: |
176 | | * (1) See notes in pixEqual(). |
177 | | * (2) This is more general than pixEqual(), in that for 32 bpp |
178 | | * RGBA images, where spp = 4, you can optionally include |
179 | | * the alpha component in the comparison. |
180 | | * </pre> |
181 | | */ |
182 | | l_ok |
183 | | pixEqualWithAlpha(PIX *pix1, |
184 | | PIX *pix2, |
185 | | l_int32 use_alpha, |
186 | | l_int32 *psame) |
187 | 0 | { |
188 | 0 | l_int32 w1, h1, d1, w2, h2, d2, wpl1, wpl2; |
189 | 0 | l_int32 spp1, spp2, i, j, color, mismatch, opaque; |
190 | 0 | l_int32 fullwords, linebits, endbits; |
191 | 0 | l_uint32 endmask, wordmask; |
192 | 0 | l_uint32 *data1, *data2, *line1, *line2; |
193 | 0 | PIX *pixs1, *pixs2, *pixt1, *pixt2, *pixalpha; |
194 | 0 | PIXCMAP *cmap1, *cmap2; |
195 | |
|
196 | 0 | if (!psame) |
197 | 0 | return ERROR_INT("psame not defined", __func__, 1); |
198 | 0 | *psame = 0; /* init to not equal */ |
199 | 0 | if (!pix1 || !pix2) |
200 | 0 | return ERROR_INT("pix1 and pix2 not both defined", __func__, 1); |
201 | 0 | pixGetDimensions(pix1, &w1, &h1, &d1); |
202 | 0 | pixGetDimensions(pix2, &w2, &h2, &d2); |
203 | 0 | if (w1 != w2 || h1 != h2) { |
204 | 0 | L_INFO("pix sizes differ\n", __func__); |
205 | 0 | return 0; |
206 | 0 | } |
207 | | |
208 | | /* Suppose the use_alpha flag is true. |
209 | | * If only one of two 32 bpp images has spp == 4, we call that |
210 | | * a "mismatch" of the alpha component. In the case of a mismatch, |
211 | | * if the 4 bpp pix does not have all alpha components opaque (255), |
212 | | * the images are not-equal. However if they are all opaque, |
213 | | * this image is equivalent to spp == 3, so we allow the |
214 | | * comparison to go forward, testing only for the RGB equality. */ |
215 | 0 | spp1 = pixGetSpp(pix1); |
216 | 0 | spp2 = pixGetSpp(pix2); |
217 | 0 | mismatch = 0; |
218 | 0 | if (use_alpha && d1 == 32 && d2 == 32) { |
219 | 0 | mismatch = ((spp1 == 4 && spp2 != 4) || (spp1 != 4 && spp2 == 4)); |
220 | 0 | if (mismatch) { |
221 | 0 | pixalpha = (spp1 == 4) ? pix1 : pix2; |
222 | 0 | pixAlphaIsOpaque(pixalpha, &opaque); |
223 | 0 | if (!opaque) { |
224 | 0 | L_INFO("just one pix has a non-opaque alpha layer\n", __func__); |
225 | 0 | return 0; |
226 | 0 | } |
227 | 0 | } |
228 | 0 | } |
229 | | |
230 | 0 | cmap1 = pixGetColormap(pix1); |
231 | 0 | cmap2 = pixGetColormap(pix2); |
232 | 0 | if (!cmap1 && !cmap2 && (d1 != d2) && (d1 == 32 || d2 == 32)) { |
233 | 0 | L_INFO("no colormaps, pix depths unequal, and one of them is RGB\n", |
234 | 0 | __func__); |
235 | 0 | return 0; |
236 | 0 | } |
237 | | |
238 | 0 | if (cmap1 && cmap2 && (d1 == d2)) /* use special function */ |
239 | 0 | return pixEqualWithCmap(pix1, pix2, psame); |
240 | | |
241 | | /* Must remove colormaps if they exist, and in the process |
242 | | * end up with the resulting images having the same depth. */ |
243 | 0 | if (cmap1 && !cmap2) { |
244 | 0 | pixUsesCmapColor(pix1, &color); |
245 | 0 | if (color && d2 <= 8) /* can't be equal */ |
246 | 0 | return 0; |
247 | 0 | if (d2 < 8) |
248 | 0 | pixs2 = pixConvertTo8(pix2, FALSE); |
249 | 0 | else |
250 | 0 | pixs2 = pixClone(pix2); |
251 | 0 | if (d2 <= 8) |
252 | 0 | pixs1 = pixRemoveColormap(pix1, REMOVE_CMAP_TO_GRAYSCALE); |
253 | 0 | else |
254 | 0 | pixs1 = pixRemoveColormap(pix1, REMOVE_CMAP_TO_FULL_COLOR); |
255 | 0 | } else if (!cmap1 && cmap2) { |
256 | 0 | pixUsesCmapColor(pix2, &color); |
257 | 0 | if (color && d1 <= 8) /* can't be equal */ |
258 | 0 | return 0; |
259 | 0 | if (d1 < 8) |
260 | 0 | pixs1 = pixConvertTo8(pix1, FALSE); |
261 | 0 | else |
262 | 0 | pixs1 = pixClone(pix1); |
263 | 0 | if (d1 <= 8) |
264 | 0 | pixs2 = pixRemoveColormap(pix2, REMOVE_CMAP_TO_GRAYSCALE); |
265 | 0 | else |
266 | 0 | pixs2 = pixRemoveColormap(pix2, REMOVE_CMAP_TO_FULL_COLOR); |
267 | 0 | } else if (cmap1 && cmap2) { /* depths not equal; use rgb */ |
268 | 0 | pixs1 = pixRemoveColormap(pix1, REMOVE_CMAP_TO_FULL_COLOR); |
269 | 0 | pixs2 = pixRemoveColormap(pix2, REMOVE_CMAP_TO_FULL_COLOR); |
270 | 0 | } else { /* no colormaps */ |
271 | 0 | pixs1 = pixClone(pix1); |
272 | 0 | pixs2 = pixClone(pix2); |
273 | 0 | } |
274 | | |
275 | | /* OK, we have no colormaps, but the depths may still be different */ |
276 | 0 | d1 = pixGetDepth(pixs1); |
277 | 0 | d2 = pixGetDepth(pixs2); |
278 | 0 | if (d1 != d2) { |
279 | 0 | if (d1 == 16 || d2 == 16) { |
280 | 0 | L_INFO("one pix is 16 bpp\n", __func__); |
281 | 0 | pixDestroy(&pixs1); |
282 | 0 | pixDestroy(&pixs2); |
283 | 0 | return 0; |
284 | 0 | } |
285 | 0 | pixt1 = pixConvertLossless(pixs1, 8); |
286 | 0 | pixt2 = pixConvertLossless(pixs2, 8); |
287 | 0 | if (!pixt1 || !pixt2) { |
288 | 0 | L_INFO("failure to convert to 8 bpp\n", __func__); |
289 | 0 | pixDestroy(&pixs1); |
290 | 0 | pixDestroy(&pixs2); |
291 | 0 | pixDestroy(&pixt1); |
292 | 0 | pixDestroy(&pixt2); |
293 | 0 | return 0; |
294 | 0 | } |
295 | 0 | } else { |
296 | 0 | pixt1 = pixClone(pixs1); |
297 | 0 | pixt2 = pixClone(pixs2); |
298 | 0 | } |
299 | 0 | pixDestroy(&pixs1); |
300 | 0 | pixDestroy(&pixs2); |
301 | | |
302 | | /* No colormaps, equal depths; do pixel comparisons */ |
303 | 0 | d1 = pixGetDepth(pixt1); |
304 | 0 | d2 = pixGetDepth(pixt2); |
305 | 0 | wpl1 = pixGetWpl(pixt1); |
306 | 0 | wpl2 = pixGetWpl(pixt2); |
307 | 0 | data1 = pixGetData(pixt1); |
308 | 0 | data2 = pixGetData(pixt2); |
309 | |
|
310 | 0 | if (d1 == 32) { /* test either RGB or RGBA pixels */ |
311 | 0 | if (use_alpha && !mismatch) |
312 | 0 | wordmask = (spp1 == 3) ? 0xffffff00 : 0xffffffff; |
313 | 0 | else |
314 | 0 | wordmask = 0xffffff00; |
315 | 0 | for (i = 0; i < h1; i++) { |
316 | 0 | line1 = data1 + wpl1 * i; |
317 | 0 | line2 = data2 + wpl2 * i; |
318 | 0 | for (j = 0; j < wpl1; j++) { |
319 | 0 | if ((*line1 ^ *line2) & wordmask) { |
320 | 0 | pixDestroy(&pixt1); |
321 | 0 | pixDestroy(&pixt2); |
322 | 0 | return 0; |
323 | 0 | } |
324 | 0 | line1++; |
325 | 0 | line2++; |
326 | 0 | } |
327 | 0 | } |
328 | 0 | } else { /* all bits count */ |
329 | 0 | linebits = d1 * w1; |
330 | 0 | fullwords = linebits / 32; |
331 | 0 | endbits = linebits & 31; |
332 | 0 | endmask = (endbits == 0) ? 0 : (0xffffffff << (32 - endbits)); |
333 | 0 | for (i = 0; i < h1; i++) { |
334 | 0 | line1 = data1 + wpl1 * i; |
335 | 0 | line2 = data2 + wpl2 * i; |
336 | 0 | for (j = 0; j < fullwords; j++) { |
337 | 0 | if (*line1 ^ *line2) { |
338 | 0 | pixDestroy(&pixt1); |
339 | 0 | pixDestroy(&pixt2); |
340 | 0 | return 0; |
341 | 0 | } |
342 | 0 | line1++; |
343 | 0 | line2++; |
344 | 0 | } |
345 | 0 | if (endbits) { |
346 | 0 | if ((*line1 ^ *line2) & endmask) { |
347 | 0 | pixDestroy(&pixt1); |
348 | 0 | pixDestroy(&pixt2); |
349 | 0 | return 0; |
350 | 0 | } |
351 | 0 | } |
352 | 0 | } |
353 | 0 | } |
354 | | |
355 | 0 | pixDestroy(&pixt1); |
356 | 0 | pixDestroy(&pixt2); |
357 | 0 | *psame = 1; |
358 | 0 | return 0; |
359 | 0 | } |
360 | | |
361 | | |
362 | | /*! |
363 | | * \brief pixEqualWithCmap() |
364 | | * |
365 | | * \param[in] pix1 |
366 | | * \param[in] pix2 |
367 | | * \param[out] psame |
368 | | * \return 0 if OK, 1 on error |
369 | | * |
370 | | * <pre> |
371 | | * Notes: |
372 | | * (1) This returns same = TRUE if the images have identical content. |
373 | | * (2) Both pix must have a colormap, and be of equal size and depth. |
374 | | * If these conditions are not satisfied, it is not an error; |
375 | | * the returned result is same = FALSE. |
376 | | * (3) We then check whether the colormaps are the same; if so, |
377 | | * the comparison proceeds 32 bits at a time. |
378 | | * (4) If the colormaps are different, the comparison is done by |
379 | | * slow brute force. |
380 | | * </pre> |
381 | | */ |
382 | | l_ok |
383 | | pixEqualWithCmap(PIX *pix1, |
384 | | PIX *pix2, |
385 | | l_int32 *psame) |
386 | 0 | { |
387 | 0 | l_int32 d, w, h, wpl1, wpl2, i, j, linebits, fullwords, endbits; |
388 | 0 | l_int32 rval1, rval2, gval1, gval2, bval1, bval2, samecmaps; |
389 | 0 | l_uint32 endmask, val1, val2; |
390 | 0 | l_uint32 *data1, *data2, *line1, *line2; |
391 | 0 | PIXCMAP *cmap1, *cmap2; |
392 | |
|
393 | 0 | if (!psame) |
394 | 0 | return ERROR_INT("&same not defined", __func__, 1); |
395 | 0 | *psame = 0; |
396 | 0 | if (!pix1) |
397 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
398 | 0 | if (!pix2) |
399 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
400 | | |
401 | 0 | if (pixSizesEqual(pix1, pix2) == 0) |
402 | 0 | return 0; |
403 | 0 | cmap1 = pixGetColormap(pix1); |
404 | 0 | cmap2 = pixGetColormap(pix2); |
405 | 0 | if (!cmap1 || !cmap2) { |
406 | 0 | L_INFO("both images don't have colormap\n", __func__); |
407 | 0 | return 0; |
408 | 0 | } |
409 | 0 | pixGetDimensions(pix1, &w, &h, &d); |
410 | 0 | if (d != 1 && d != 2 && d != 4 && d != 8) { |
411 | 0 | L_INFO("pix depth not in {1, 2, 4, 8}\n", __func__); |
412 | 0 | return 0; |
413 | 0 | } |
414 | | |
415 | 0 | cmapEqual(cmap1, cmap2, 3, &samecmaps); |
416 | 0 | if (samecmaps == TRUE) { /* colormaps are identical; compare by words */ |
417 | 0 | linebits = d * w; |
418 | 0 | wpl1 = pixGetWpl(pix1); |
419 | 0 | wpl2 = pixGetWpl(pix2); |
420 | 0 | data1 = pixGetData(pix1); |
421 | 0 | data2 = pixGetData(pix2); |
422 | 0 | fullwords = linebits / 32; |
423 | 0 | endbits = linebits & 31; |
424 | 0 | endmask = (endbits == 0) ? 0 : (0xffffffff << (32 - endbits)); |
425 | 0 | for (i = 0; i < h; i++) { |
426 | 0 | line1 = data1 + wpl1 * i; |
427 | 0 | line2 = data2 + wpl2 * i; |
428 | 0 | for (j = 0; j < fullwords; j++) { |
429 | 0 | if (*line1 ^ *line2) |
430 | 0 | return 0; |
431 | 0 | line1++; |
432 | 0 | line2++; |
433 | 0 | } |
434 | 0 | if (endbits) { |
435 | 0 | if ((*line1 ^ *line2) & endmask) |
436 | 0 | return 0; |
437 | 0 | } |
438 | 0 | } |
439 | 0 | *psame = 1; |
440 | 0 | return 0; |
441 | 0 | } |
442 | | |
443 | | /* Colormaps aren't identical; compare pixel by pixel */ |
444 | 0 | for (i = 0; i < h; i++) { |
445 | 0 | for (j = 0; j < w; j++) { |
446 | 0 | pixGetPixel(pix1, j, i, &val1); |
447 | 0 | pixGetPixel(pix2, j, i, &val2); |
448 | 0 | pixcmapGetColor(cmap1, val1, &rval1, &gval1, &bval1); |
449 | 0 | pixcmapGetColor(cmap2, val2, &rval2, &gval2, &bval2); |
450 | 0 | if (rval1 != rval2 || gval1 != gval2 || bval1 != bval2) |
451 | 0 | return 0; |
452 | 0 | } |
453 | 0 | } |
454 | | |
455 | 0 | *psame = 1; |
456 | 0 | return 0; |
457 | 0 | } |
458 | | |
459 | | |
460 | | /*! |
461 | | * \brief cmapEqual() |
462 | | * |
463 | | * \param[in] cmap1 |
464 | | * \param[in] cmap2 |
465 | | * \param[in] ncomps 3 for RGB, 4 for RGBA |
466 | | * \param[out] psame |
467 | | * \return 0 if OK, 1 on error |
468 | | * |
469 | | * <pre> |
470 | | * Notes: |
471 | | * (1) This returns %same = TRUE if the colormaps have identical entries. |
472 | | * (2) If %ncomps == 4, the alpha components of the colormaps are also |
473 | | * compared. |
474 | | * </pre> |
475 | | */ |
476 | | l_ok |
477 | | cmapEqual(PIXCMAP *cmap1, |
478 | | PIXCMAP *cmap2, |
479 | | l_int32 ncomps, |
480 | | l_int32 *psame) |
481 | 0 | { |
482 | 0 | l_int32 n1, n2, i, rval1, rval2, gval1, gval2, bval1, bval2, aval1, aval2; |
483 | |
|
484 | 0 | if (!psame) |
485 | 0 | return ERROR_INT("&same not defined", __func__, 1); |
486 | 0 | *psame = FALSE; |
487 | 0 | if (!cmap1) |
488 | 0 | return ERROR_INT("cmap1 not defined", __func__, 1); |
489 | 0 | if (!cmap2) |
490 | 0 | return ERROR_INT("cmap2 not defined", __func__, 1); |
491 | 0 | if (ncomps != 3 && ncomps != 4) |
492 | 0 | return ERROR_INT("ncomps not 3 or 4", __func__, 1); |
493 | | |
494 | 0 | n1 = pixcmapGetCount(cmap1); |
495 | 0 | n2 = pixcmapGetCount(cmap2); |
496 | 0 | if (n1 != n2) { |
497 | 0 | L_INFO("colormap sizes are different\n", __func__); |
498 | 0 | return 0; |
499 | 0 | } |
500 | | |
501 | 0 | for (i = 0; i < n1; i++) { |
502 | 0 | pixcmapGetRGBA(cmap1, i, &rval1, &gval1, &bval1, &aval1); |
503 | 0 | pixcmapGetRGBA(cmap2, i, &rval2, &gval2, &bval2, &aval2); |
504 | 0 | if (rval1 != rval2 || gval1 != gval2 || bval1 != bval2) |
505 | 0 | return 0; |
506 | 0 | if (ncomps == 4 && aval1 != aval2) |
507 | 0 | return 0; |
508 | 0 | } |
509 | 0 | *psame = TRUE; |
510 | 0 | return 0; |
511 | 0 | } |
512 | | |
513 | | |
514 | | /*! |
515 | | * \brief pixUsesCmapColor() |
516 | | * |
517 | | * \param[in] pixs any depth, colormap |
518 | | * \param[out] pcolor TRUE if color found |
519 | | * \return 0 if OK, 1 on error |
520 | | * |
521 | | * <pre> |
522 | | * Notes: |
523 | | * (1) This returns color = TRUE if three things are obtained: |
524 | | * (a) the pix has a colormap |
525 | | * (b) the colormap has at least one color entry |
526 | | * (c) a color entry is actually used |
527 | | * (2) It is used in pixEqual() for comparing two images, in a |
528 | | * situation where it is required to know if the colormap |
529 | | * has color entries that are actually used in the image. |
530 | | * </pre> |
531 | | */ |
532 | | l_ok |
533 | | pixUsesCmapColor(PIX *pixs, |
534 | | l_int32 *pcolor) |
535 | 0 | { |
536 | 0 | l_int32 n, i, rval, gval, bval, numpix; |
537 | 0 | NUMA *na; |
538 | 0 | PIXCMAP *cmap; |
539 | |
|
540 | 0 | if (!pcolor) |
541 | 0 | return ERROR_INT("&color not defined", __func__, 1); |
542 | 0 | *pcolor = 0; |
543 | 0 | if (!pixs) |
544 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
545 | | |
546 | 0 | if ((cmap = pixGetColormap(pixs)) == NULL) |
547 | 0 | return 0; |
548 | | |
549 | 0 | pixcmapHasColor(cmap, pcolor); |
550 | 0 | if (*pcolor == 0) /* no color */ |
551 | 0 | return 0; |
552 | | |
553 | | /* The cmap has color entries. Are they used? */ |
554 | 0 | na = pixGetGrayHistogram(pixs, 1); |
555 | 0 | n = pixcmapGetCount(cmap); |
556 | 0 | for (i = 0; i < n; i++) { |
557 | 0 | pixcmapGetColor(cmap, i, &rval, &gval, &bval); |
558 | 0 | numaGetIValue(na, i, &numpix); |
559 | 0 | if ((rval != gval || rval != bval) && numpix) { /* color found! */ |
560 | 0 | *pcolor = 1; |
561 | 0 | break; |
562 | 0 | } |
563 | 0 | } |
564 | 0 | numaDestroy(&na); |
565 | |
|
566 | 0 | return 0; |
567 | 0 | } |
568 | | |
569 | | |
570 | | /*------------------------------------------------------------------* |
571 | | * Binary correlation * |
572 | | *------------------------------------------------------------------*/ |
573 | | /*! |
574 | | * \brief pixCorrelationBinary() |
575 | | * |
576 | | * \param[in] pix1 1 bpp |
577 | | * \param[in] pix2 1 bpp |
578 | | * \param[out] pval correlation |
579 | | * \return 0 if OK; 1 on error |
580 | | * |
581 | | * <pre> |
582 | | * Notes: |
583 | | * (1) The correlation is a number between 0.0 and 1.0, |
584 | | * based on foreground similarity: |
585 | | * (|1 AND 2|)**2 |
586 | | * correlation = -------------- |
587 | | * |1| * |2| |
588 | | * where |x| is the count of foreground pixels in image x. |
589 | | * If the images are identical, this is 1.0. |
590 | | * If they have no fg pixels in common, this is 0.0. |
591 | | * If one or both images have no fg pixels, the correlation is 0.0. |
592 | | * (2) Typically the two images are of equal size, but this |
593 | | * is not enforced. Instead, the UL corners are aligned. |
594 | | * </pre> |
595 | | */ |
596 | | l_ok |
597 | | pixCorrelationBinary(PIX *pix1, |
598 | | PIX *pix2, |
599 | | l_float32 *pval) |
600 | 0 | { |
601 | 0 | l_int32 count1, count2, countn; |
602 | 0 | l_int32 *tab8; |
603 | 0 | PIX *pixn; |
604 | |
|
605 | 0 | if (!pval) |
606 | 0 | return ERROR_INT("&pval not defined", __func__, 1); |
607 | 0 | *pval = 0.0; |
608 | 0 | if (!pix1) |
609 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
610 | 0 | if (!pix2) |
611 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
612 | | |
613 | 0 | tab8 = makePixelSumTab8(); |
614 | 0 | pixCountPixels(pix1, &count1, tab8); |
615 | 0 | pixCountPixels(pix2, &count2, tab8); |
616 | 0 | if (count1 == 0 || count2 == 0) { |
617 | 0 | LEPT_FREE(tab8); |
618 | 0 | return 0; |
619 | 0 | } |
620 | 0 | pixn = pixAnd(NULL, pix1, pix2); |
621 | 0 | pixCountPixels(pixn, &countn, tab8); |
622 | 0 | *pval = (l_float32)countn * (l_float32)countn / |
623 | 0 | ((l_float32)count1 * (l_float32)count2); |
624 | 0 | LEPT_FREE(tab8); |
625 | 0 | pixDestroy(&pixn); |
626 | 0 | return 0; |
627 | 0 | } |
628 | | |
629 | | |
630 | | /*------------------------------------------------------------------* |
631 | | * Difference of two images * |
632 | | *------------------------------------------------------------------*/ |
633 | | /*! |
634 | | * \brief pixDisplayDiff() |
635 | | * |
636 | | * \param[in] pix1 any depth |
637 | | * \param[in] pix2 any depth |
638 | | * \param[in] showall 1 to display input images; 0 to only display result |
639 | | * \param[in] mindiff min difference to identify pixel |
640 | | * \param[in] diffcolor color of pixel indicating difference >= mindiff |
641 | | * \return pixd 32 bpp rgb, or NULL on error |
642 | | * |
643 | | * <pre> |
644 | | * Notes: |
645 | | * (1) This aligns the UL corners of pix1 and pix2, crops to the |
646 | | * overlapping pixels, and shows which pixels have a significant |
647 | | * difference in value. |
648 | | * (2) Requires %pix1 and %pix2 to have the same depth. |
649 | | * (3) If rgb, a pixel is identified as different if any component |
650 | | * values of the corresponding pixels equals or exceeds %mindiff. |
651 | | * (4) %diffcolor is in format 0xrrggbbaa. |
652 | | * (5) If %pix1 and %pix2 are 1 bpp, ignores %mindiff and %diffcolor, |
653 | | * and uses the result of pixDisplayDiffBinary(). |
654 | | * </pre> |
655 | | */ |
656 | | PIX * |
657 | | pixDisplayDiff(PIX *pix1, |
658 | | PIX *pix2, |
659 | | l_int32 showall, |
660 | | l_int32 mindiff, |
661 | | l_uint32 diffcolor) |
662 | 0 | { |
663 | 0 | l_int32 i, j, w1, h1, d1, w2, h2, d2, minw, minh, wpl1, wpl2, wpl3; |
664 | 0 | l_int32 rval1, gval1, bval1, rval2, gval2, bval2; |
665 | 0 | l_uint32 val1, val2; |
666 | 0 | l_uint32 *data1, *data2, *data3, *line1, *line2, *line3; |
667 | 0 | PIX *pix3 = NULL, *pix4 = NULL, *pixd; |
668 | 0 | PIXA *pixa1; |
669 | |
|
670 | 0 | if (!pix1 || !pix2) |
671 | 0 | return (PIX *)ERROR_PTR("pix1, pix2 not both defined", __func__, NULL); |
672 | 0 | pixGetDimensions(pix1, &w1, &h1, &d1); |
673 | 0 | pixGetDimensions(pix2, &w2, &h2, &d2); |
674 | 0 | if (d1 != d2) |
675 | 0 | return (PIX *)ERROR_PTR("unequal depths", __func__, NULL); |
676 | 0 | if (mindiff <= 0) |
677 | 0 | return (PIX *)ERROR_PTR("mindiff must be > 0", __func__, NULL); |
678 | | |
679 | 0 | if (d1 == 1) { |
680 | 0 | pix3 = pixDisplayDiffBinary(pix1, pix2); |
681 | 0 | pixd = pixConvertTo32(pix3); |
682 | 0 | pixDestroy(&pix3); |
683 | 0 | } else { |
684 | 0 | minw = L_MIN(w1, w2); |
685 | 0 | minh = L_MIN(h1, h2); |
686 | 0 | pix3 = pixConvertTo32(pix1); |
687 | 0 | pix4 = pixConvertTo32(pix2); |
688 | 0 | pixd = pixCreate(minw, minh, 32); |
689 | 0 | pixRasterop(pixd, 0, 0, minw, minh, PIX_SRC, pix3, 0, 0); |
690 | 0 | data1 = pixGetData(pix3); |
691 | 0 | wpl1 = pixGetWpl(pix3); |
692 | 0 | data2 = pixGetData(pix4); |
693 | 0 | wpl2 = pixGetWpl(pix4); |
694 | 0 | data3 = pixGetData(pixd); |
695 | 0 | wpl3 = pixGetWpl(pixd); |
696 | 0 | for (i = 0; i < minh; i++) { |
697 | 0 | line1 = data1 + i * wpl1; |
698 | 0 | line2 = data2 + i * wpl2; |
699 | 0 | line3 = data3 + i * wpl3; |
700 | 0 | for (j = 0; j < minw; j++) { |
701 | 0 | val1 = GET_DATA_FOUR_BYTES(line1, j); |
702 | 0 | val2 = GET_DATA_FOUR_BYTES(line2, j); |
703 | 0 | extractRGBValues(val1, &rval1, &gval1, &bval1); |
704 | 0 | extractRGBValues(val2, &rval2, &gval2, &bval2); |
705 | 0 | if (L_ABS(rval1 - rval2) >= mindiff || |
706 | 0 | L_ABS(gval1 - gval2) >= mindiff || |
707 | 0 | L_ABS(bval1 - bval2) >= mindiff) |
708 | 0 | SET_DATA_FOUR_BYTES(line3, j, diffcolor); |
709 | 0 | } |
710 | 0 | } |
711 | 0 | } |
712 | | |
713 | 0 | if (showall) { |
714 | 0 | pixa1 = pixaCreate(3); |
715 | 0 | if (d1 == 1) { |
716 | 0 | pixaAddPix(pixa1, pix1, L_COPY); |
717 | 0 | pixaAddPix(pixa1, pix2, L_COPY); |
718 | 0 | } else { |
719 | 0 | pixaAddPix(pixa1, pix3, L_INSERT); |
720 | 0 | pixaAddPix(pixa1, pix4, L_INSERT); |
721 | 0 | } |
722 | 0 | pixaAddPix(pixa1, pixd, L_INSERT); /* save diff image */ |
723 | 0 | pixd = pixaDisplayTiledInColumns(pixa1, 2, 1.0, 30, 2); /* all 3 */ |
724 | 0 | pixaDestroy(&pixa1); |
725 | 0 | } |
726 | 0 | return pixd; |
727 | 0 | } |
728 | | |
729 | | |
730 | | /*! |
731 | | * \brief pixDisplayDiffBinary() |
732 | | * |
733 | | * \param[in] pix1 1 bpp |
734 | | * \param[in] pix2 1 bpp |
735 | | * \return pixd 4 bpp cmapped, or NULL on error |
736 | | * |
737 | | * <pre> |
738 | | * Notes: |
739 | | * (1) This gives a color representation of the difference between |
740 | | * pix1 and pix2. The color difference depends on the order. |
741 | | * The pixels in pixd have 4 colors: |
742 | | * * unchanged: black (on), white (off) |
743 | | * * on in pix1, off in pix2: red |
744 | | * * on in pix2, off in pix1: green |
745 | | * (2) This aligns the UL corners of pix1 and pix2, and crops |
746 | | * to the overlapping pixels. |
747 | | * </pre> |
748 | | */ |
749 | | PIX * |
750 | | pixDisplayDiffBinary(PIX *pix1, |
751 | | PIX *pix2) |
752 | 0 | { |
753 | 0 | l_int32 w1, h1, d1, w2, h2, d2, minw, minh; |
754 | 0 | PIX *pixt, *pixd; |
755 | 0 | PIXCMAP *cmap; |
756 | |
|
757 | 0 | if (!pix1 || !pix2) |
758 | 0 | return (PIX *)ERROR_PTR("pix1, pix2 not both defined", __func__, NULL); |
759 | 0 | pixGetDimensions(pix1, &w1, &h1, &d1); |
760 | 0 | pixGetDimensions(pix2, &w2, &h2, &d2); |
761 | 0 | if (d1 != 1 || d2 != 1) |
762 | 0 | return (PIX *)ERROR_PTR("pix1 and pix2 not 1 bpp", __func__, NULL); |
763 | 0 | minw = L_MIN(w1, w2); |
764 | 0 | minh = L_MIN(h1, h2); |
765 | |
|
766 | 0 | pixd = pixCreate(minw, minh, 4); |
767 | 0 | cmap = pixcmapCreate(4); |
768 | 0 | pixcmapAddColor(cmap, 255, 255, 255); /* initialized to white */ |
769 | 0 | pixcmapAddColor(cmap, 0, 0, 0); |
770 | 0 | pixcmapAddColor(cmap, 255, 0, 0); |
771 | 0 | pixcmapAddColor(cmap, 0, 255, 0); |
772 | 0 | pixSetColormap(pixd, cmap); |
773 | |
|
774 | 0 | pixt = pixAnd(NULL, pix1, pix2); |
775 | 0 | pixPaintThroughMask(pixd, pixt, 0, 0, 0x0); /* black */ |
776 | 0 | pixSubtract(pixt, pix1, pix2); |
777 | 0 | pixPaintThroughMask(pixd, pixt, 0, 0, 0xff000000); /* red */ |
778 | 0 | pixSubtract(pixt, pix2, pix1); |
779 | 0 | pixPaintThroughMask(pixd, pixt, 0, 0, 0x00ff0000); /* green */ |
780 | 0 | pixDestroy(&pixt); |
781 | 0 | return pixd; |
782 | 0 | } |
783 | | |
784 | | |
785 | | /*! |
786 | | * \brief pixCompareBinary() |
787 | | * |
788 | | * \param[in] pix1 1 bpp |
789 | | * \param[in] pix2 1 bpp |
790 | | * \param[in] comptype L_COMPARE_XOR, L_COMPARE_SUBTRACT |
791 | | * \param[out] pfract fraction of pixels that are different |
792 | | * \param[out] ppixdiff [optional] pix of difference |
793 | | * \return 0 if OK; 1 on error |
794 | | * |
795 | | * <pre> |
796 | | * Notes: |
797 | | * (1) The two images are aligned at the UL corner, and do not |
798 | | * need to be the same size. |
799 | | * (2) If using L_COMPARE_SUBTRACT, pix2 is subtracted from pix1. |
800 | | * (3) The total number of pixels is determined by pix1. |
801 | | * (4) On error, the returned fraction is 1.0. |
802 | | * </pre> |
803 | | */ |
804 | | l_ok |
805 | | pixCompareBinary(PIX *pix1, |
806 | | PIX *pix2, |
807 | | l_int32 comptype, |
808 | | l_float32 *pfract, |
809 | | PIX **ppixdiff) |
810 | 0 | { |
811 | 0 | l_int32 w, h, count; |
812 | 0 | PIX *pixt; |
813 | |
|
814 | 0 | if (ppixdiff) *ppixdiff = NULL; |
815 | 0 | if (!pfract) |
816 | 0 | return ERROR_INT("&pfract not defined", __func__, 1); |
817 | 0 | *pfract = 1.0; /* initialize to max difference */ |
818 | 0 | if (!pix1 || pixGetDepth(pix1) != 1) |
819 | 0 | return ERROR_INT("pix1 not defined or not 1 bpp", __func__, 1); |
820 | 0 | if (!pix2 || pixGetDepth(pix2) != 1) |
821 | 0 | return ERROR_INT("pix2 not defined or not 1 bpp", __func__, 1); |
822 | 0 | if (comptype != L_COMPARE_XOR && comptype != L_COMPARE_SUBTRACT) |
823 | 0 | return ERROR_INT("invalid comptype", __func__, 1); |
824 | | |
825 | 0 | if (comptype == L_COMPARE_XOR) |
826 | 0 | pixt = pixXor(NULL, pix1, pix2); |
827 | 0 | else /* comptype == L_COMPARE_SUBTRACT) */ |
828 | 0 | pixt = pixSubtract(NULL, pix1, pix2); |
829 | 0 | pixCountPixels(pixt, &count, NULL); |
830 | 0 | pixGetDimensions(pix1, &w, &h, NULL); |
831 | 0 | *pfract = (l_float32)(count) / (l_float32)(w * h); |
832 | |
|
833 | 0 | if (ppixdiff) |
834 | 0 | *ppixdiff = pixt; |
835 | 0 | else |
836 | 0 | pixDestroy(&pixt); |
837 | 0 | return 0; |
838 | 0 | } |
839 | | |
840 | | |
841 | | /*! |
842 | | * \brief pixCompareGrayOrRGB() |
843 | | * |
844 | | * \param[in] pix1 2,4,8,16 bpp gray, 32 bpp rgb, or colormapped |
845 | | * \param[in] pix2 2,4,8,16 bpp gray, 32 bpp rgb, or colormapped |
846 | | * \param[in] comptype L_COMPARE_SUBTRACT, L_COMPARE_ABS_DIFF |
847 | | * \param[in] plottype gplot plot output type, or 0 for no plot |
848 | | * \param[out] psame [optional] 1 if pixel values are identical |
849 | | * \param[out] pdiff [optional] average difference |
850 | | * \param[out] prmsdiff [optional] rms of difference |
851 | | * \param[out] ppixdiff [optional] pix of difference |
852 | | * \return 0 if OK; 1 on error |
853 | | * |
854 | | * <pre> |
855 | | * Notes: |
856 | | * (1) The two images are aligned at the UL corner, and do not |
857 | | * need to be the same size. If they are not the same size, |
858 | | * the comparison will be made over overlapping pixels. |
859 | | * (2) If there is a colormap, it is removed and the result |
860 | | * is either gray or RGB depending on the colormap. |
861 | | * (3) If RGB, each component is compared separately. |
862 | | * (4) If type is L_COMPARE_ABS_DIFF, pix2 is subtracted from pix1 |
863 | | * and the absolute value is taken. |
864 | | * (5) If type is L_COMPARE_SUBTRACT, pix2 is subtracted from pix1 |
865 | | * and the result is clipped to 0. |
866 | | * (6) The plot output types are specified in gplot.h. |
867 | | * Use 0 if no difference plot is to be made. |
868 | | * (7) If the images are pixelwise identical, no difference |
869 | | * plot is made, even if requested. The result (TRUE or FALSE) |
870 | | * is optionally returned in the parameter 'same'. |
871 | | * (8) The average difference (either subtracting or absolute value) |
872 | | * is optionally returned in the parameter 'diff'. |
873 | | * (9) The RMS difference is optionally returned in the |
874 | | * parameter 'rmsdiff'. For RGB, we return the average of |
875 | | * the RMS differences for each of the components. |
876 | | * (10) Because pixel values are compared, pix1 and pix2 can be equal when: |
877 | | * * they are both gray with different depth |
878 | | * * one is colormapped and the other is not |
879 | | * * they are both colormapped and have different size colormaps |
880 | | * </pre> |
881 | | */ |
882 | | l_ok |
883 | | pixCompareGrayOrRGB(PIX *pix1, |
884 | | PIX *pix2, |
885 | | l_int32 comptype, |
886 | | l_int32 plottype, |
887 | | l_int32 *psame, |
888 | | l_float32 *pdiff, |
889 | | l_float32 *prmsdiff, |
890 | | PIX **ppixdiff) |
891 | 0 | { |
892 | 0 | l_int32 retval, d1, d2; |
893 | 0 | PIX *pixt1, *pixt2, *pixs1, *pixs2; |
894 | |
|
895 | 0 | if (psame) *psame = 0; |
896 | 0 | if (pdiff) *pdiff = 255.0; |
897 | 0 | if (prmsdiff) *prmsdiff = 255.0; |
898 | 0 | if (ppixdiff) *ppixdiff = NULL; |
899 | 0 | if (!pix1 || pixGetDepth(pix1) == 1) |
900 | 0 | return ERROR_INT("pix1 not defined or 1 bpp", __func__, 1); |
901 | 0 | if (!pix2 || pixGetDepth(pix2) == 1) |
902 | 0 | return ERROR_INT("pix2 not defined or 1 bpp", __func__, 1); |
903 | 0 | if (comptype != L_COMPARE_SUBTRACT && comptype != L_COMPARE_ABS_DIFF) |
904 | 0 | return ERROR_INT("invalid comptype", __func__, 1); |
905 | 0 | if (plottype < 0 || plottype >= NUM_GPLOT_OUTPUTS) |
906 | 0 | return ERROR_INT("invalid plottype", __func__, 1); |
907 | | |
908 | 0 | pixt1 = pixRemoveColormap(pix1, REMOVE_CMAP_BASED_ON_SRC); |
909 | 0 | pixt2 = pixRemoveColormap(pix2, REMOVE_CMAP_BASED_ON_SRC); |
910 | 0 | d1 = pixGetDepth(pixt1); |
911 | 0 | d2 = pixGetDepth(pixt2); |
912 | 0 | if (d1 < 8) |
913 | 0 | pixs1 = pixConvertTo8(pixt1, FALSE); |
914 | 0 | else |
915 | 0 | pixs1 = pixClone(pixt1); |
916 | 0 | if (d2 < 8) |
917 | 0 | pixs2 = pixConvertTo8(pixt2, FALSE); |
918 | 0 | else |
919 | 0 | pixs2 = pixClone(pixt2); |
920 | 0 | pixDestroy(&pixt1); |
921 | 0 | pixDestroy(&pixt2); |
922 | 0 | d1 = pixGetDepth(pixs1); |
923 | 0 | d2 = pixGetDepth(pixs2); |
924 | 0 | if (d1 != d2) { |
925 | 0 | pixDestroy(&pixs1); |
926 | 0 | pixDestroy(&pixs2); |
927 | 0 | return ERROR_INT("intrinsic depths are not equal", __func__, 1); |
928 | 0 | } |
929 | | |
930 | 0 | if (d1 == 8 || d1 == 16) |
931 | 0 | retval = pixCompareGray(pixs1, pixs2, comptype, plottype, psame, |
932 | 0 | pdiff, prmsdiff, ppixdiff); |
933 | 0 | else /* d1 == 32 */ |
934 | 0 | retval = pixCompareRGB(pixs1, pixs2, comptype, plottype, psame, |
935 | 0 | pdiff, prmsdiff, ppixdiff); |
936 | 0 | pixDestroy(&pixs1); |
937 | 0 | pixDestroy(&pixs2); |
938 | 0 | return retval; |
939 | 0 | } |
940 | | |
941 | | |
942 | | /*! |
943 | | * \brief pixCompareGray() |
944 | | * |
945 | | * \param[in] pix1 8 or 16 bpp, not cmapped |
946 | | * \param[in] pix2 8 or 16 bpp, not cmapped |
947 | | * \param[in] comptype L_COMPARE_SUBTRACT, L_COMPARE_ABS_DIFF |
948 | | * \param[in] plottype gplot plot output type, or 0 for no plot |
949 | | * \param[out] psame [optional] 1 if pixel values are identical |
950 | | * \param[out] pdiff [optional] average difference |
951 | | * \param[out] prmsdiff [optional] rms of difference |
952 | | * \param[out] ppixdiff [optional] pix of difference |
953 | | * \return 0 if OK; 1 on error |
954 | | * |
955 | | * <pre> |
956 | | * Notes: |
957 | | * (1) See pixCompareGrayOrRGB() for details. |
958 | | * (2) Use pixCompareGrayOrRGB() if the input pix are colormapped. |
959 | | * (3) Note: setting %plottype > 0 can result in writing named |
960 | | * output files. |
961 | | * </pre> |
962 | | */ |
963 | | l_ok |
964 | | pixCompareGray(PIX *pix1, |
965 | | PIX *pix2, |
966 | | l_int32 comptype, |
967 | | l_int32 plottype, |
968 | | l_int32 *psame, |
969 | | l_float32 *pdiff, |
970 | | l_float32 *prmsdiff, |
971 | | PIX **ppixdiff) |
972 | 0 | { |
973 | 0 | char buf[64]; |
974 | 0 | static l_atomic index = 0; |
975 | 0 | l_int32 d1, d2, same, first, last; |
976 | 0 | GPLOT *gplot; |
977 | 0 | NUMA *na, *nac; |
978 | 0 | PIX *pixt; |
979 | |
|
980 | 0 | if (psame) *psame = 0; |
981 | 0 | if (pdiff) *pdiff = 255.0; |
982 | 0 | if (prmsdiff) *prmsdiff = 255.0; |
983 | 0 | if (ppixdiff) *ppixdiff = NULL; |
984 | 0 | if (!pix1) |
985 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
986 | 0 | if (!pix2) |
987 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
988 | 0 | d1 = pixGetDepth(pix1); |
989 | 0 | d2 = pixGetDepth(pix2); |
990 | 0 | if ((d1 != d2) || (d1 != 8 && d1 != 16)) |
991 | 0 | return ERROR_INT("depths unequal or not 8 or 16 bpp", __func__, 1); |
992 | 0 | if (pixGetColormap(pix1) || pixGetColormap(pix2)) |
993 | 0 | return ERROR_INT("pix1 and/or pix2 are colormapped", __func__, 1); |
994 | 0 | if (comptype != L_COMPARE_SUBTRACT && comptype != L_COMPARE_ABS_DIFF) |
995 | 0 | return ERROR_INT("invalid comptype", __func__, 1); |
996 | 0 | if (plottype < 0 || plottype >= NUM_GPLOT_OUTPUTS) |
997 | 0 | return ERROR_INT("invalid plottype", __func__, 1); |
998 | | |
999 | 0 | lept_mkdir("lept/comp"); |
1000 | |
|
1001 | 0 | if (comptype == L_COMPARE_SUBTRACT) |
1002 | 0 | pixt = pixSubtractGray(NULL, pix1, pix2); |
1003 | 0 | else /* comptype == L_COMPARE_ABS_DIFF) */ |
1004 | 0 | pixt = pixAbsDifference(pix1, pix2); |
1005 | |
|
1006 | 0 | pixZero(pixt, &same); |
1007 | 0 | if (same) |
1008 | 0 | L_INFO("Images are pixel-wise identical\n", __func__); |
1009 | 0 | if (psame) *psame = same; |
1010 | |
|
1011 | 0 | if (pdiff) |
1012 | 0 | pixGetAverageMasked(pixt, NULL, 0, 0, 1, L_MEAN_ABSVAL, pdiff); |
1013 | | |
1014 | | /* Don't bother to plot if the images are the same */ |
1015 | 0 | if (plottype && !same) { |
1016 | 0 | L_INFO("Images differ: output plots will be generated\n", __func__); |
1017 | 0 | na = pixGetGrayHistogram(pixt, 1); |
1018 | 0 | numaGetNonzeroRange(na, TINY, &first, &last); |
1019 | 0 | nac = numaClipToInterval(na, 0, last); |
1020 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/comp/compare_gray%d", index); |
1021 | 0 | gplot = gplotCreate(buf, plottype, |
1022 | 0 | "Pixel Difference Histogram", "diff val", |
1023 | 0 | "number of pixels"); |
1024 | 0 | gplotAddPlot(gplot, NULL, nac, GPLOT_LINES, "gray"); |
1025 | 0 | gplotMakeOutput(gplot); |
1026 | 0 | gplotDestroy(&gplot); |
1027 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/comp/compare_gray%d.png", |
1028 | 0 | index++); |
1029 | 0 | l_fileDisplay(buf, 100, 100, 1.0); |
1030 | 0 | numaDestroy(&na); |
1031 | 0 | numaDestroy(&nac); |
1032 | 0 | } |
1033 | |
|
1034 | 0 | if (ppixdiff) |
1035 | 0 | *ppixdiff = pixCopy(NULL, pixt); |
1036 | |
|
1037 | 0 | if (prmsdiff) { |
1038 | 0 | if (comptype == L_COMPARE_SUBTRACT) { /* wrong type for rms diff */ |
1039 | 0 | pixDestroy(&pixt); |
1040 | 0 | pixt = pixAbsDifference(pix1, pix2); |
1041 | 0 | } |
1042 | 0 | pixGetAverageMasked(pixt, NULL, 0, 0, 1, L_ROOT_MEAN_SQUARE, prmsdiff); |
1043 | 0 | } |
1044 | |
|
1045 | 0 | pixDestroy(&pixt); |
1046 | 0 | return 0; |
1047 | 0 | } |
1048 | | |
1049 | | |
1050 | | /*! |
1051 | | * \brief pixCompareRGB() |
1052 | | * |
1053 | | * \param[in] pix1 32 bpp rgb |
1054 | | * \param[in] pix2 32 bpp rgb |
1055 | | * \param[in] comptype L_COMPARE_SUBTRACT, L_COMPARE_ABS_DIFF |
1056 | | * \param[in] plottype gplot plot output type, or 0 for no plot |
1057 | | * \param[out] psame [optional] 1 if pixel values are identical |
1058 | | * \param[out] pdiff [optional] average difference |
1059 | | * \param[out] prmsdiff [optional] rms of difference |
1060 | | * \param[out] ppixdiff [optional] pix of difference |
1061 | | * \return 0 if OK; 1 on error |
1062 | | * |
1063 | | * <pre> |
1064 | | * Notes: |
1065 | | * (1) See pixCompareGrayOrRGB() for details. |
1066 | | * (2) Note: setting %plottype > 0 can result in writing named |
1067 | | * output files. |
1068 | | * </pre> |
1069 | | */ |
1070 | | l_ok |
1071 | | pixCompareRGB(PIX *pix1, |
1072 | | PIX *pix2, |
1073 | | l_int32 comptype, |
1074 | | l_int32 plottype, |
1075 | | l_int32 *psame, |
1076 | | l_float32 *pdiff, |
1077 | | l_float32 *prmsdiff, |
1078 | | PIX **ppixdiff) |
1079 | 0 | { |
1080 | 0 | char buf[64]; |
1081 | 0 | static l_atomic index = 0; |
1082 | 0 | l_int32 rsame, gsame, bsame, same, first, rlast, glast, blast, last; |
1083 | 0 | l_float32 rdiff, gdiff, bdiff; |
1084 | 0 | GPLOT *gplot; |
1085 | 0 | NUMA *nar, *nag, *nab, *narc, *nagc, *nabc; |
1086 | 0 | PIX *pixr1, *pixr2, *pixg1, *pixg2, *pixb1, *pixb2; |
1087 | 0 | PIX *pixr, *pixg, *pixb; |
1088 | |
|
1089 | 0 | if (psame) *psame = 0; |
1090 | 0 | if (pdiff) *pdiff = 0.0; |
1091 | 0 | if (prmsdiff) *prmsdiff = 0.0; |
1092 | 0 | if (ppixdiff) *ppixdiff = NULL; |
1093 | 0 | if (!pix1 || pixGetDepth(pix1) != 32) |
1094 | 0 | return ERROR_INT("pix1 not defined or not 32 bpp", __func__, 1); |
1095 | 0 | if (!pix2 || pixGetDepth(pix2) != 32) |
1096 | 0 | return ERROR_INT("pix2 not defined or not ew bpp", __func__, 1); |
1097 | 0 | if (comptype != L_COMPARE_SUBTRACT && comptype != L_COMPARE_ABS_DIFF) |
1098 | 0 | return ERROR_INT("invalid comptype", __func__, 1); |
1099 | 0 | if (plottype < 0 || plottype >= NUM_GPLOT_OUTPUTS) |
1100 | 0 | return ERROR_INT("invalid plottype", __func__, 1); |
1101 | | |
1102 | 0 | lept_mkdir("lept/comp"); |
1103 | |
|
1104 | 0 | pixr1 = pixGetRGBComponent(pix1, COLOR_RED); |
1105 | 0 | pixr2 = pixGetRGBComponent(pix2, COLOR_RED); |
1106 | 0 | pixg1 = pixGetRGBComponent(pix1, COLOR_GREEN); |
1107 | 0 | pixg2 = pixGetRGBComponent(pix2, COLOR_GREEN); |
1108 | 0 | pixb1 = pixGetRGBComponent(pix1, COLOR_BLUE); |
1109 | 0 | pixb2 = pixGetRGBComponent(pix2, COLOR_BLUE); |
1110 | 0 | if (comptype == L_COMPARE_SUBTRACT) { |
1111 | 0 | pixr = pixSubtractGray(NULL, pixr1, pixr2); |
1112 | 0 | pixg = pixSubtractGray(NULL, pixg1, pixg2); |
1113 | 0 | pixb = pixSubtractGray(NULL, pixb1, pixb2); |
1114 | 0 | } else { /* comptype == L_COMPARE_ABS_DIFF) */ |
1115 | 0 | pixr = pixAbsDifference(pixr1, pixr2); |
1116 | 0 | pixg = pixAbsDifference(pixg1, pixg2); |
1117 | 0 | pixb = pixAbsDifference(pixb1, pixb2); |
1118 | 0 | } |
1119 | |
|
1120 | 0 | pixZero(pixr, &rsame); |
1121 | 0 | pixZero(pixg, &gsame); |
1122 | 0 | pixZero(pixb, &bsame); |
1123 | 0 | same = rsame && gsame && bsame; |
1124 | 0 | if (same) |
1125 | 0 | L_INFO("Images are pixel-wise identical\n", __func__); |
1126 | 0 | if (psame) *psame = same; |
1127 | |
|
1128 | 0 | if (pdiff) { |
1129 | 0 | pixGetAverageMasked(pixr, NULL, 0, 0, 1, L_MEAN_ABSVAL, &rdiff); |
1130 | 0 | pixGetAverageMasked(pixg, NULL, 0, 0, 1, L_MEAN_ABSVAL, &gdiff); |
1131 | 0 | pixGetAverageMasked(pixb, NULL, 0, 0, 1, L_MEAN_ABSVAL, &bdiff); |
1132 | 0 | *pdiff = (rdiff + gdiff + bdiff) / 3.0; |
1133 | 0 | } |
1134 | | |
1135 | | /* Don't bother to plot if the images are the same */ |
1136 | 0 | if (plottype && !same) { |
1137 | 0 | L_INFO("Images differ: output plots will be generated\n", __func__); |
1138 | 0 | nar = pixGetGrayHistogram(pixr, 1); |
1139 | 0 | nag = pixGetGrayHistogram(pixg, 1); |
1140 | 0 | nab = pixGetGrayHistogram(pixb, 1); |
1141 | 0 | numaGetNonzeroRange(nar, TINY, &first, &rlast); |
1142 | 0 | numaGetNonzeroRange(nag, TINY, &first, &glast); |
1143 | 0 | numaGetNonzeroRange(nab, TINY, &first, &blast); |
1144 | 0 | last = L_MAX(rlast, glast); |
1145 | 0 | last = L_MAX(last, blast); |
1146 | 0 | narc = numaClipToInterval(nar, 0, last); |
1147 | 0 | nagc = numaClipToInterval(nag, 0, last); |
1148 | 0 | nabc = numaClipToInterval(nab, 0, last); |
1149 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/comp/compare_rgb%d", index); |
1150 | 0 | gplot = gplotCreate(buf, plottype, |
1151 | 0 | "Pixel Difference Histogram", "diff val", |
1152 | 0 | "number of pixels"); |
1153 | 0 | gplotAddPlot(gplot, NULL, narc, GPLOT_LINES, "red"); |
1154 | 0 | gplotAddPlot(gplot, NULL, nagc, GPLOT_LINES, "green"); |
1155 | 0 | gplotAddPlot(gplot, NULL, nabc, GPLOT_LINES, "blue"); |
1156 | 0 | gplotMakeOutput(gplot); |
1157 | 0 | gplotDestroy(&gplot); |
1158 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/comp/compare_rgb%d.png", |
1159 | 0 | index++); |
1160 | 0 | l_fileDisplay(buf, 100, 100, 1.0); |
1161 | 0 | numaDestroy(&nar); |
1162 | 0 | numaDestroy(&nag); |
1163 | 0 | numaDestroy(&nab); |
1164 | 0 | numaDestroy(&narc); |
1165 | 0 | numaDestroy(&nagc); |
1166 | 0 | numaDestroy(&nabc); |
1167 | 0 | } |
1168 | |
|
1169 | 0 | if (ppixdiff) |
1170 | 0 | *ppixdiff = pixCreateRGBImage(pixr, pixg, pixb); |
1171 | |
|
1172 | 0 | if (prmsdiff) { |
1173 | 0 | if (comptype == L_COMPARE_SUBTRACT) { |
1174 | 0 | pixDestroy(&pixr); |
1175 | 0 | pixDestroy(&pixg); |
1176 | 0 | pixDestroy(&pixb); |
1177 | 0 | pixr = pixAbsDifference(pixr1, pixr2); |
1178 | 0 | pixg = pixAbsDifference(pixg1, pixg2); |
1179 | 0 | pixb = pixAbsDifference(pixb1, pixb2); |
1180 | 0 | } |
1181 | 0 | pixGetAverageMasked(pixr, NULL, 0, 0, 1, L_ROOT_MEAN_SQUARE, &rdiff); |
1182 | 0 | pixGetAverageMasked(pixg, NULL, 0, 0, 1, L_ROOT_MEAN_SQUARE, &gdiff); |
1183 | 0 | pixGetAverageMasked(pixb, NULL, 0, 0, 1, L_ROOT_MEAN_SQUARE, &bdiff); |
1184 | 0 | *prmsdiff = (rdiff + gdiff + bdiff) / 3.0; |
1185 | 0 | } |
1186 | |
|
1187 | 0 | pixDestroy(&pixr1); |
1188 | 0 | pixDestroy(&pixr2); |
1189 | 0 | pixDestroy(&pixg1); |
1190 | 0 | pixDestroy(&pixg2); |
1191 | 0 | pixDestroy(&pixb1); |
1192 | 0 | pixDestroy(&pixb2); |
1193 | 0 | pixDestroy(&pixr); |
1194 | 0 | pixDestroy(&pixg); |
1195 | 0 | pixDestroy(&pixb); |
1196 | 0 | return 0; |
1197 | 0 | } |
1198 | | |
1199 | | |
1200 | | /*! |
1201 | | * \brief pixCompareTiled() |
1202 | | * |
1203 | | * \param[in] pix1 8 bpp or 32 bpp rgb |
1204 | | * \param[in] pix2 8 bpp 32 bpp rgb |
1205 | | * \param[in] sx, sy tile size; must be > 1 in each dimension |
1206 | | * \param[in] type L_MEAN_ABSVAL or L_ROOT_MEAN_SQUARE |
1207 | | * \param[out] ppixdiff pix of difference |
1208 | | * \return 0 if OK; 1 on error |
1209 | | * |
1210 | | * <pre> |
1211 | | * Notes: |
1212 | | * (1) With L_MEAN_ABSVAL, we compute for each tile the |
1213 | | * average abs value of the pixel component difference between |
1214 | | * the two (aligned) images. With L_ROOT_MEAN_SQUARE, we |
1215 | | * compute instead the rms difference over all components. |
1216 | | * (2) The two input pix must be the same depth. Comparison is made |
1217 | | * using UL corner alignment. |
1218 | | * (3) For 32 bpp, the distance between corresponding tiles |
1219 | | * is found by averaging the measured difference over all three |
1220 | | * components of each pixel in the tile. |
1221 | | * (4) The result, pixdiff, contains one pixel for each source tile. |
1222 | | * </pre> |
1223 | | */ |
1224 | | l_ok |
1225 | | pixCompareTiled(PIX *pix1, |
1226 | | PIX *pix2, |
1227 | | l_int32 sx, |
1228 | | l_int32 sy, |
1229 | | l_int32 type, |
1230 | | PIX **ppixdiff) |
1231 | 0 | { |
1232 | 0 | l_int32 d1, d2, w, h; |
1233 | 0 | PIX *pixt, *pixr, *pixg, *pixb; |
1234 | 0 | PIX *pixrdiff, *pixgdiff, *pixbdiff; |
1235 | 0 | PIXACC *pixacc; |
1236 | |
|
1237 | 0 | if (!ppixdiff) |
1238 | 0 | return ERROR_INT("&pixdiff not defined", __func__, 1); |
1239 | 0 | *ppixdiff = NULL; |
1240 | 0 | if (!pix1) |
1241 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
1242 | 0 | if (!pix2) |
1243 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
1244 | 0 | d1 = pixGetDepth(pix1); |
1245 | 0 | d2 = pixGetDepth(pix2); |
1246 | 0 | if (d1 != d2) |
1247 | 0 | return ERROR_INT("depths not equal", __func__, 1); |
1248 | 0 | if (d1 != 8 && d1 != 32) |
1249 | 0 | return ERROR_INT("pix1 not 8 or 32 bpp", __func__, 1); |
1250 | 0 | if (d2 != 8 && d2 != 32) |
1251 | 0 | return ERROR_INT("pix2 not 8 or 32 bpp", __func__, 1); |
1252 | 0 | if (sx < 2 || sy < 2) |
1253 | 0 | return ERROR_INT("sx and sy not both > 1", __func__, 1); |
1254 | 0 | if (type != L_MEAN_ABSVAL && type != L_ROOT_MEAN_SQUARE) |
1255 | 0 | return ERROR_INT("invalid type", __func__, 1); |
1256 | | |
1257 | 0 | pixt = pixAbsDifference(pix1, pix2); |
1258 | 0 | if (d1 == 8) { |
1259 | 0 | *ppixdiff = pixGetAverageTiled(pixt, sx, sy, type); |
1260 | 0 | } else { /* d1 == 32 */ |
1261 | 0 | pixr = pixGetRGBComponent(pixt, COLOR_RED); |
1262 | 0 | pixg = pixGetRGBComponent(pixt, COLOR_GREEN); |
1263 | 0 | pixb = pixGetRGBComponent(pixt, COLOR_BLUE); |
1264 | 0 | pixrdiff = pixGetAverageTiled(pixr, sx, sy, type); |
1265 | 0 | pixgdiff = pixGetAverageTiled(pixg, sx, sy, type); |
1266 | 0 | pixbdiff = pixGetAverageTiled(pixb, sx, sy, type); |
1267 | 0 | pixGetDimensions(pixrdiff, &w, &h, NULL); |
1268 | 0 | pixacc = pixaccCreate(w, h, 0); |
1269 | 0 | pixaccAdd(pixacc, pixrdiff); |
1270 | 0 | pixaccAdd(pixacc, pixgdiff); |
1271 | 0 | pixaccAdd(pixacc, pixbdiff); |
1272 | 0 | pixaccMultConst(pixacc, 1.f / 3.f); |
1273 | 0 | *ppixdiff = pixaccFinal(pixacc, 8); |
1274 | 0 | pixDestroy(&pixr); |
1275 | 0 | pixDestroy(&pixg); |
1276 | 0 | pixDestroy(&pixb); |
1277 | 0 | pixDestroy(&pixrdiff); |
1278 | 0 | pixDestroy(&pixgdiff); |
1279 | 0 | pixDestroy(&pixbdiff); |
1280 | 0 | pixaccDestroy(&pixacc); |
1281 | 0 | } |
1282 | 0 | pixDestroy(&pixt); |
1283 | 0 | return 0; |
1284 | 0 | } |
1285 | | |
1286 | | |
1287 | | /*------------------------------------------------------------------* |
1288 | | * Other measures of the difference of two images * |
1289 | | *------------------------------------------------------------------*/ |
1290 | | /*! |
1291 | | * \brief pixCompareRankDifference() |
1292 | | * |
1293 | | * \param[in] pix1 8 bpp gray or 32 bpp rgb, or colormapped |
1294 | | * \param[in] pix2 8 bpp gray or 32 bpp rgb, or colormapped |
1295 | | * \param[in] factor subsampling factor; use 0 or 1 for no subsampling |
1296 | | * \return narank numa of rank difference, or NULL on error |
1297 | | * |
1298 | | * <pre> |
1299 | | * Notes: |
1300 | | * (1) This answers the question: if the pixel values in each |
1301 | | * component are compared by absolute difference, for |
1302 | | * any value of difference, what is the fraction of |
1303 | | * pixel pairs that have a difference of this magnitude |
1304 | | * or greater. For a difference of 0, the fraction is 1.0. |
1305 | | * In this sense, it is a mapping from pixel difference to |
1306 | | * rank order of difference. |
1307 | | * (2) The two images are aligned at the UL corner, and do not |
1308 | | * need to be the same size. If they are not the same size, |
1309 | | * the comparison will be made over overlapping pixels. |
1310 | | * (3) If there is a colormap, it is removed and the result |
1311 | | * is either gray or RGB depending on the colormap. |
1312 | | * (4) If RGB, pixel differences for each component are aggregated |
1313 | | * into a single histogram. |
1314 | | * </pre> |
1315 | | */ |
1316 | | NUMA * |
1317 | | pixCompareRankDifference(PIX *pix1, |
1318 | | PIX *pix2, |
1319 | | l_int32 factor) |
1320 | 0 | { |
1321 | 0 | l_int32 i; |
1322 | 0 | l_float32 *array1, *array2; |
1323 | 0 | NUMA *nah, *nan, *nad; |
1324 | |
|
1325 | 0 | if (!pix1) |
1326 | 0 | return (NUMA *)ERROR_PTR("pix1 not defined", __func__, NULL); |
1327 | 0 | if (!pix2) |
1328 | 0 | return (NUMA *)ERROR_PTR("pix2 not defined", __func__, NULL); |
1329 | | |
1330 | 0 | if ((nah = pixGetDifferenceHistogram(pix1, pix2, factor)) == NULL) |
1331 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
1332 | | |
1333 | 0 | nan = numaNormalizeHistogram(nah, 1.0); |
1334 | 0 | array1 = numaGetFArray(nan, L_NOCOPY); |
1335 | |
|
1336 | 0 | nad = numaCreate(256); |
1337 | 0 | numaSetCount(nad, 256); /* all initialized to 0.0 */ |
1338 | 0 | array2 = numaGetFArray(nad, L_NOCOPY); |
1339 | | |
1340 | | /* Do rank accumulation on normalized histo of diffs */ |
1341 | 0 | array2[0] = 1.0; |
1342 | 0 | for (i = 1; i < 256; i++) |
1343 | 0 | array2[i] = array2[i - 1] - array1[i - 1]; |
1344 | |
|
1345 | 0 | numaDestroy(&nah); |
1346 | 0 | numaDestroy(&nan); |
1347 | 0 | return nad; |
1348 | 0 | } |
1349 | | |
1350 | | |
1351 | | /*! |
1352 | | * \brief pixTestForSimilarity() |
1353 | | * |
1354 | | * \param[in] pix1 8 bpp gray or 32 bpp rgb, or colormapped |
1355 | | * \param[in] pix2 8 bpp gray or 32 bpp rgb, or colormapped |
1356 | | * \param[in] factor subsampling factor; use 0 or 1 for no subsampling |
1357 | | * \param[in] mindiff minimum pixel difference to be counted; > 0 |
1358 | | * \param[in] maxfract maximum fraction of pixels allowed to have |
1359 | | * diff greater than or equal to mindiff |
1360 | | * \param[in] maxave maximum average difference of pixels allowed for |
1361 | | * pixels with diff greater than or equal to |
1362 | | * mindiff, after subtracting mindiff |
1363 | | * \param[out] psimilar 1 if similar, 0 otherwise |
1364 | | * \param[in] details use 1 to give normalized histogram and other data |
1365 | | * \return 0 if OK, 1 on error |
1366 | | * |
1367 | | * <pre> |
1368 | | * Notes: |
1369 | | * (1) This takes 2 pix that are the same size and determines using |
1370 | | * 3 input parameters if they are "similar". The first parameter |
1371 | | * %mindiff establishes a criterion of pixel-to-pixel similarity: |
1372 | | * two pixels are not similar if their difference in value is |
1373 | | * at least mindiff. Then %maxfract and %maxave are thresholds |
1374 | | * on the number and distribution of dissimilar pixels |
1375 | | * allowed for the two pix to be similar. If the pix are |
1376 | | * to be similar, neither threshold can be exceeded. |
1377 | | * (2) In setting the %maxfract and %maxave thresholds, you have |
1378 | | * these options: |
1379 | | * (a) Base the comparison only on %maxfract. Then set |
1380 | | * %maxave = 0.0 or 256.0. (If 0, we always ignore it.) |
1381 | | * (b) Base the comparison only on %maxave. Then set |
1382 | | * %maxfract = 1.0. |
1383 | | * (c) Base the comparison on both thresholds. |
1384 | | * (3) Example of values that can be expected at mindiff = 15 when |
1385 | | * comparing lossless png encoding with jpeg encoding, q=75: |
1386 | | * (smoothish bg) fractdiff = 0.01, avediff = 2.5 |
1387 | | * (natural scene) fractdiff = 0.13, avediff = 3.5 |
1388 | | * To identify these images as 'similar', select maxfract |
1389 | | * and maxave to be upper bounds of what you expect. |
1390 | | * (4) See pixGetDifferenceStats() for a discussion of why we subtract |
1391 | | * mindiff from the computed average diff of the nonsimilar pixels |
1392 | | * to get the 'avediff' returned by that function. |
1393 | | * (5) If there is a colormap, it is removed and the result |
1394 | | * is either gray or RGB depending on the colormap. |
1395 | | * (6) If RGB, the maximum difference between pixel components is |
1396 | | * saved in the histogram. |
1397 | | * </pre> |
1398 | | */ |
1399 | | l_ok |
1400 | | pixTestForSimilarity(PIX *pix1, |
1401 | | PIX *pix2, |
1402 | | l_int32 factor, |
1403 | | l_int32 mindiff, |
1404 | | l_float32 maxfract, |
1405 | | l_float32 maxave, |
1406 | | l_int32 *psimilar, |
1407 | | l_int32 details) |
1408 | 0 | { |
1409 | 0 | l_float32 fractdiff, avediff; |
1410 | |
|
1411 | 0 | if (!psimilar) |
1412 | 0 | return ERROR_INT("&similar not defined", __func__, 1); |
1413 | 0 | *psimilar = 0; |
1414 | 0 | if (!pix1) |
1415 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
1416 | 0 | if (!pix2) |
1417 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
1418 | 0 | if (pixSizesEqual(pix1, pix2) == 0) |
1419 | 0 | return ERROR_INT("pix sizes not equal", __func__, 1); |
1420 | 0 | if (mindiff <= 0) |
1421 | 0 | return ERROR_INT("mindiff must be > 0", __func__, 1); |
1422 | | |
1423 | 0 | if (pixGetDifferenceStats(pix1, pix2, factor, mindiff, |
1424 | 0 | &fractdiff, &avediff, details)) |
1425 | 0 | return ERROR_INT("diff stats not found", __func__, 1); |
1426 | | |
1427 | 0 | if (maxave <= 0.0) maxave = 256.0; |
1428 | 0 | if (fractdiff <= maxfract && avediff <= maxave) |
1429 | 0 | *psimilar = 1; |
1430 | 0 | return 0; |
1431 | 0 | } |
1432 | | |
1433 | | |
1434 | | /*! |
1435 | | * \brief pixGetDifferenceStats() |
1436 | | * |
1437 | | * \param[in] pix1 8 bpp gray or 32 bpp rgb, or colormapped |
1438 | | * \param[in] pix2 8 bpp gray or 32 bpp rgb, or colormapped |
1439 | | * \param[in] factor subsampling factor; use 0 or 1 for no subsampling |
1440 | | * \param[in] mindiff minimum pixel difference to be counted; > 0 |
1441 | | * \param[out] pfractdiff fraction of pixels with diff greater than or |
1442 | | * equal to mindiff |
1443 | | * \param[out] pavediff average difference of pixels with diff greater |
1444 | | * than or equal to mindiff, less mindiff |
1445 | | * \param[in] details use 1 to give normalized histogram and other data |
1446 | | * \return 0 if OK, 1 on error |
1447 | | * |
1448 | | * <pre> |
1449 | | * Notes: |
1450 | | * (1) This takes a threshold %mindiff and describes the difference |
1451 | | * between two images in terms of two numbers: |
1452 | | * (a) the fraction of pixels, %fractdiff, whose difference |
1453 | | * equals or exceeds the threshold %mindiff, and |
1454 | | * (b) the average value %avediff of the difference in pixel value |
1455 | | * for the pixels in the set given by (a), after you subtract |
1456 | | * %mindiff. The reason for subtracting %mindiff is that |
1457 | | * you then get a useful measure for the rate of falloff |
1458 | | * of the distribution for larger differences. For example, |
1459 | | * if %mindiff = 10 and you find that %avediff = 2.5, it |
1460 | | * says that of the pixels with diff > 10, the average of |
1461 | | * their diffs is just mindiff + 2.5 = 12.5. This is a |
1462 | | * fast falloff in the histogram with increasing difference. |
1463 | | * (2) The two images are aligned at the UL corner, and do not |
1464 | | * need to be the same size. If they are not the same size, |
1465 | | * the comparison will be made over overlapping pixels. |
1466 | | * (3) If there is a colormap, it is removed and the result |
1467 | | * is either gray or RGB depending on the colormap. |
1468 | | * (4) If RGB, the maximum difference between pixel components is |
1469 | | * saved in the histogram. |
1470 | | * (5) Set %details == 1 to see the difference histogram and get |
1471 | | * an output that shows for each value of %mindiff, what are the |
1472 | | * minimum values required for fractdiff and avediff in order |
1473 | | * that the two pix will be considered similar. |
1474 | | * </pre> |
1475 | | */ |
1476 | | l_ok |
1477 | | pixGetDifferenceStats(PIX *pix1, |
1478 | | PIX *pix2, |
1479 | | l_int32 factor, |
1480 | | l_int32 mindiff, |
1481 | | l_float32 *pfractdiff, |
1482 | | l_float32 *pavediff, |
1483 | | l_int32 details) |
1484 | 0 | { |
1485 | 0 | l_int32 i, first, last, diff; |
1486 | 0 | l_float32 fract, ave; |
1487 | 0 | l_float32 *array; |
1488 | 0 | NUMA *nah, *nan, *nac; |
1489 | |
|
1490 | 0 | if (pfractdiff) *pfractdiff = 0.0; |
1491 | 0 | if (pavediff) *pavediff = 0.0; |
1492 | 0 | if (!pfractdiff) |
1493 | 0 | return ERROR_INT("&fractdiff not defined", __func__, 1); |
1494 | 0 | if (!pavediff) |
1495 | 0 | return ERROR_INT("&avediff not defined", __func__, 1); |
1496 | 0 | if (!pix1) |
1497 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
1498 | 0 | if (!pix2) |
1499 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
1500 | 0 | if (mindiff <= 0) |
1501 | 0 | return ERROR_INT("mindiff must be > 0", __func__, 1); |
1502 | | |
1503 | 0 | if ((nah = pixGetDifferenceHistogram(pix1, pix2, factor)) == NULL) |
1504 | 0 | return ERROR_INT("na not made", __func__, 1); |
1505 | | |
1506 | 0 | if ((nan = numaNormalizeHistogram(nah, 1.0)) == NULL) { |
1507 | 0 | numaDestroy(&nah); |
1508 | 0 | return ERROR_INT("nan not made", __func__, 1); |
1509 | 0 | } |
1510 | 0 | array = numaGetFArray(nan, L_NOCOPY); |
1511 | |
|
1512 | 0 | if (details) { |
1513 | 0 | lept_mkdir("lept/comp"); |
1514 | 0 | numaGetNonzeroRange(nan, 0.0, &first, &last); |
1515 | 0 | nac = numaClipToInterval(nan, first, last); |
1516 | 0 | gplotSimple1(nac, GPLOT_PNG, "/tmp/lept/comp/histo", |
1517 | 0 | "Difference histogram"); |
1518 | 0 | l_fileDisplay("/tmp/lept/comp/histo.png", 500, 0, 1.0); |
1519 | 0 | lept_stderr("\nNonzero values in normalized histogram:"); |
1520 | 0 | numaWriteStderr(nac); |
1521 | 0 | numaDestroy(&nac); |
1522 | 0 | lept_stderr(" Mindiff fractdiff avediff\n"); |
1523 | 0 | lept_stderr(" -----------------------------------\n"); |
1524 | 0 | for (diff = 1; diff < L_MIN(2 * mindiff, last); diff++) { |
1525 | 0 | fract = 0.0; |
1526 | 0 | ave = 0.0; |
1527 | 0 | for (i = diff; i <= last; i++) { |
1528 | 0 | fract += array[i]; |
1529 | 0 | ave += (l_float32)i * array[i]; |
1530 | 0 | } |
1531 | 0 | ave = (fract == 0.0) ? 0.0 : ave / fract; |
1532 | 0 | ave -= diff; |
1533 | 0 | lept_stderr("%5d %7.4f %7.4f\n", |
1534 | 0 | diff, fract, ave); |
1535 | 0 | } |
1536 | 0 | lept_stderr(" -----------------------------------\n"); |
1537 | 0 | } |
1538 | |
|
1539 | 0 | fract = 0.0; |
1540 | 0 | ave = 0.0; |
1541 | 0 | for (i = mindiff; i < 256; i++) { |
1542 | 0 | fract += array[i]; |
1543 | 0 | ave += (l_float32)i * array[i]; |
1544 | 0 | } |
1545 | 0 | ave = (fract == 0.0) ? 0.0 : ave / fract; |
1546 | 0 | ave -= mindiff; |
1547 | |
|
1548 | 0 | *pfractdiff = fract; |
1549 | 0 | *pavediff = ave; |
1550 | |
|
1551 | 0 | numaDestroy(&nah); |
1552 | 0 | numaDestroy(&nan); |
1553 | 0 | return 0; |
1554 | 0 | } |
1555 | | |
1556 | | |
1557 | | /*! |
1558 | | * \brief pixGetDifferenceHistogram() |
1559 | | * |
1560 | | * \param[in] pix1 8 bpp gray or 32 bpp rgb, or colormapped |
1561 | | * \param[in] pix2 8 bpp gray or 32 bpp rgb, or colormapped |
1562 | | * \param[in] factor subsampling factor; use 0 or 1 for no subsampling |
1563 | | * \return na Numa of histogram of differences, or NULL on error |
1564 | | * |
1565 | | * <pre> |
1566 | | * Notes: |
1567 | | * (1) The two images are aligned at the UL corner, and do not |
1568 | | * need to be the same size. If they are not the same size, |
1569 | | * the comparison will be made over overlapping pixels. |
1570 | | * (2) If there is a colormap, it is removed and the result |
1571 | | * is either gray or RGB depending on the colormap. |
1572 | | * (3) If RGB, the maximum difference between pixel components is |
1573 | | * saved in the histogram. |
1574 | | * </pre> |
1575 | | */ |
1576 | | NUMA * |
1577 | | pixGetDifferenceHistogram(PIX *pix1, |
1578 | | PIX *pix2, |
1579 | | l_int32 factor) |
1580 | 0 | { |
1581 | 0 | l_int32 w1, h1, d1, w2, h2, d2, w, h, wpl1, wpl2; |
1582 | 0 | l_int32 i, j, val, val1, val2; |
1583 | 0 | l_int32 rval1, rval2, gval1, gval2, bval1, bval2; |
1584 | 0 | l_int32 rdiff, gdiff, bdiff, maxdiff; |
1585 | 0 | l_uint32 *data1, *data2, *line1, *line2; |
1586 | 0 | l_float32 *array; |
1587 | 0 | NUMA *na; |
1588 | 0 | PIX *pixt1, *pixt2; |
1589 | |
|
1590 | 0 | if (!pix1) |
1591 | 0 | return (NUMA *)ERROR_PTR("pix1 not defined", __func__, NULL); |
1592 | 0 | if (!pix2) |
1593 | 0 | return (NUMA *)ERROR_PTR("pix2 not defined", __func__, NULL); |
1594 | 0 | d1 = pixGetDepth(pix1); |
1595 | 0 | d2 = pixGetDepth(pix2); |
1596 | 0 | if (d1 == 16 || d2 == 16) |
1597 | 0 | return (NUMA *)ERROR_PTR("d == 16 not supported", __func__, NULL); |
1598 | 0 | if (d1 < 8 && !pixGetColormap(pix1)) |
1599 | 0 | return (NUMA *)ERROR_PTR("pix1 depth < 8 bpp and not cmapped", |
1600 | 0 | __func__, NULL); |
1601 | 0 | if (d2 < 8 && !pixGetColormap(pix2)) |
1602 | 0 | return (NUMA *)ERROR_PTR("pix2 depth < 8 bpp and not cmapped", |
1603 | 0 | __func__, NULL); |
1604 | 0 | pixt1 = pixRemoveColormap(pix1, REMOVE_CMAP_BASED_ON_SRC); |
1605 | 0 | pixt2 = pixRemoveColormap(pix2, REMOVE_CMAP_BASED_ON_SRC); |
1606 | 0 | pixGetDimensions(pixt1, &w1, &h1, &d1); |
1607 | 0 | pixGetDimensions(pixt2, &w2, &h2, &d2); |
1608 | 0 | if (d1 != d2) { |
1609 | 0 | pixDestroy(&pixt1); |
1610 | 0 | pixDestroy(&pixt2); |
1611 | 0 | return (NUMA *)ERROR_PTR("pix depths not equal", __func__, NULL); |
1612 | 0 | } |
1613 | 0 | if (factor < 1) factor = 1; |
1614 | |
|
1615 | 0 | na = numaCreate(256); |
1616 | 0 | numaSetCount(na, 256); /* all initialized to 0.0 */ |
1617 | 0 | array = numaGetFArray(na, L_NOCOPY); |
1618 | 0 | w = L_MIN(w1, w2); |
1619 | 0 | h = L_MIN(h1, h2); |
1620 | 0 | data1 = pixGetData(pixt1); |
1621 | 0 | data2 = pixGetData(pixt2); |
1622 | 0 | wpl1 = pixGetWpl(pixt1); |
1623 | 0 | wpl2 = pixGetWpl(pixt2); |
1624 | 0 | if (d1 == 8) { |
1625 | 0 | for (i = 0; i < h; i += factor) { |
1626 | 0 | line1 = data1 + i * wpl1; |
1627 | 0 | line2 = data2 + i * wpl2; |
1628 | 0 | for (j = 0; j < w; j += factor) { |
1629 | 0 | val1 = GET_DATA_BYTE(line1, j); |
1630 | 0 | val2 = GET_DATA_BYTE(line2, j); |
1631 | 0 | val = L_ABS(val1 - val2); |
1632 | 0 | array[val]++; |
1633 | 0 | } |
1634 | 0 | } |
1635 | 0 | } else { /* d1 == 32 */ |
1636 | 0 | for (i = 0; i < h; i += factor) { |
1637 | 0 | line1 = data1 + i * wpl1; |
1638 | 0 | line2 = data2 + i * wpl2; |
1639 | 0 | for (j = 0; j < w; j += factor) { |
1640 | 0 | extractRGBValues(line1[j], &rval1, &gval1, &bval1); |
1641 | 0 | extractRGBValues(line2[j], &rval2, &gval2, &bval2); |
1642 | 0 | rdiff = L_ABS(rval1 - rval2); |
1643 | 0 | gdiff = L_ABS(gval1 - gval2); |
1644 | 0 | bdiff = L_ABS(bval1 - bval2); |
1645 | 0 | maxdiff = L_MAX(rdiff, gdiff); |
1646 | 0 | maxdiff = L_MAX(maxdiff, bdiff); |
1647 | 0 | array[maxdiff]++; |
1648 | 0 | } |
1649 | 0 | } |
1650 | 0 | } |
1651 | |
|
1652 | 0 | pixDestroy(&pixt1); |
1653 | 0 | pixDestroy(&pixt2); |
1654 | 0 | return na; |
1655 | 0 | } |
1656 | | |
1657 | | |
1658 | | /*! |
1659 | | * \brief pixGetPerceptualDiff() |
1660 | | * |
1661 | | * \param[in] pixs1 8 bpp gray or 32 bpp rgb, or colormapped |
1662 | | * \param[in] pixs2 8 bpp gray or 32 bpp rgb, or colormapped |
1663 | | * \param[in] sampling subsampling factor; use 0 or 1 for no subsampling |
1664 | | * \param[in] dilation size of grayscale or color Sel; odd |
1665 | | * \param[in] mindiff minimum pixel difference to be counted; > 0 |
1666 | | * \param[out] pfract fraction of pixels with diff greater than mindiff |
1667 | | * \param[out] ppixdiff1 [optional] showing difference (gray or color) |
1668 | | * \param[out] ppixdiff2 [optional] showing pixels of sufficient diff |
1669 | | * \return 0 if OK, 1 on error |
1670 | | * |
1671 | | * <pre> |
1672 | | * Notes: |
1673 | | * (1) This takes 2 pix and determines, using 2 input parameters: |
1674 | | * * %dilation specifies the amount of grayscale or color |
1675 | | * dilation to apply to the images, to compensate for |
1676 | | * a small amount of misregistration. A typical number might |
1677 | | * be 5, which uses a 5x5 Sel. Grayscale dilation expands |
1678 | | * lighter pixels into darker pixel regions. |
1679 | | * * %mindiff determines the threshold on the difference in |
1680 | | * pixel values to be counted -- two pixels are not similar |
1681 | | * if their difference in value is at least %mindiff. For |
1682 | | * color pixels, we use the maximum component difference. |
1683 | | * (2) The pixelwise comparison is always done with the UL corners |
1684 | | * aligned. The sizes of pix1 and pix2 need not be the same, |
1685 | | * although in practice it can be useful to scale to the same size. |
1686 | | * (3) If there is a colormap, it is removed and the result |
1687 | | * is either gray or RGB depending on the colormap. |
1688 | | * (4) Two optional diff images can be retrieved (typ. for debugging): |
1689 | | * pixdiff1: the gray or color difference |
1690 | | * pixdiff2: thresholded to 1 bpp for pixels exceeding %mindiff |
1691 | | * (5) The returned value of fract can be compared to some threshold, |
1692 | | * which is application dependent. |
1693 | | * (6) This method is in analogy to the two-sided hausdorff transform, |
1694 | | * except here it is for d > 1. For d == 1 (see pixRankHaustest()), |
1695 | | * we verify that when one pix1 is dilated, it covers at least a |
1696 | | * given fraction of the pixels in pix2, and v.v.; in that |
1697 | | * case, the two pix are sufficiently similar. Here, we |
1698 | | * do an analogous thing: subtract the dilated pix1 from pix2 to |
1699 | | * get a 1-sided hausdorff-like transform. Then do it the |
1700 | | * other way. Take the component-wise max of the two results, |
1701 | | * and threshold to get the fraction of pixels with a difference |
1702 | | * below the threshold. |
1703 | | * </pre> |
1704 | | */ |
1705 | | l_ok |
1706 | | pixGetPerceptualDiff(PIX *pixs1, |
1707 | | PIX *pixs2, |
1708 | | l_int32 sampling, |
1709 | | l_int32 dilation, |
1710 | | l_int32 mindiff, |
1711 | | l_float32 *pfract, |
1712 | | PIX **ppixdiff1, |
1713 | | PIX **ppixdiff2) |
1714 | 0 | { |
1715 | 0 | l_int32 d1, d2, w, h, count; |
1716 | 0 | PIX *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7, *pix8, *pix9; |
1717 | 0 | PIX *pix10, *pix11; |
1718 | |
|
1719 | 0 | if (ppixdiff1) *ppixdiff1 = NULL; |
1720 | 0 | if (ppixdiff2) *ppixdiff2 = NULL; |
1721 | 0 | if (!pfract) |
1722 | 0 | return ERROR_INT("&fract not defined", __func__, 1); |
1723 | 0 | *pfract = 1.0; /* init to completely different */ |
1724 | 0 | if ((dilation & 1) == 0) |
1725 | 0 | return ERROR_INT("dilation must be odd", __func__, 1); |
1726 | 0 | if (!pixs1) |
1727 | 0 | return ERROR_INT("pixs1 not defined", __func__, 1); |
1728 | 0 | if (!pixs2) |
1729 | 0 | return ERROR_INT("pixs2 not defined", __func__, 1); |
1730 | 0 | d1 = pixGetDepth(pixs1); |
1731 | 0 | d2 = pixGetDepth(pixs2); |
1732 | 0 | if (!pixGetColormap(pixs1) && d1 < 8) |
1733 | 0 | return ERROR_INT("pixs1 not cmapped and < 8 bpp", __func__, 1); |
1734 | 0 | if (!pixGetColormap(pixs2) && d2 < 8) |
1735 | 0 | return ERROR_INT("pixs2 not cmapped and < 8 bpp", __func__, 1); |
1736 | | |
1737 | | /* Integer downsample if requested */ |
1738 | 0 | if (sampling > 1) { |
1739 | 0 | pix1 = pixScaleByIntSampling(pixs1, sampling); |
1740 | 0 | pix2 = pixScaleByIntSampling(pixs2, sampling); |
1741 | 0 | } else { |
1742 | 0 | pix1 = pixClone(pixs1); |
1743 | 0 | pix2 = pixClone(pixs2); |
1744 | 0 | } |
1745 | | |
1746 | | /* Remove colormaps */ |
1747 | 0 | if (pixGetColormap(pix1)) { |
1748 | 0 | pix3 = pixRemoveColormap(pix1, REMOVE_CMAP_BASED_ON_SRC); |
1749 | 0 | d1 = pixGetDepth(pix3); |
1750 | 0 | } else { |
1751 | 0 | pix3 = pixClone(pix1); |
1752 | 0 | } |
1753 | 0 | if (pixGetColormap(pix2)) { |
1754 | 0 | pix4 = pixRemoveColormap(pix2, REMOVE_CMAP_BASED_ON_SRC); |
1755 | 0 | d2 = pixGetDepth(pix4); |
1756 | 0 | } else { |
1757 | 0 | pix4 = pixClone(pix2); |
1758 | 0 | } |
1759 | 0 | pixDestroy(&pix1); |
1760 | 0 | pixDestroy(&pix2); |
1761 | 0 | if (d1 != d2 || (d1 != 8 && d1 != 32)) { |
1762 | 0 | pixDestroy(&pix3); |
1763 | 0 | pixDestroy(&pix4); |
1764 | 0 | L_INFO("depths unequal or not in {8,32}: d1 = %d, d2 = %d\n", |
1765 | 0 | __func__, d1, d2); |
1766 | 0 | return 1; |
1767 | 0 | } |
1768 | | |
1769 | | /* In each direction, do a small dilation and subtract the dilated |
1770 | | * image from the other image to get a one-sided difference. |
1771 | | * Then take the max of the differences for each direction |
1772 | | * and clipping each component to 255 if necessary. Note that |
1773 | | * for RGB images, the dilations and max selection are done |
1774 | | * component-wise, and the conversion to grayscale also uses the |
1775 | | * maximum component. The resulting grayscale images are |
1776 | | * thresholded using %mindiff. */ |
1777 | 0 | if (d1 == 8) { |
1778 | 0 | pix5 = pixDilateGray(pix3, dilation, dilation); |
1779 | 0 | pixCompareGray(pix4, pix5, L_COMPARE_SUBTRACT, 0, NULL, NULL, NULL, |
1780 | 0 | &pix7); |
1781 | 0 | pix6 = pixDilateGray(pix4, dilation, dilation); |
1782 | 0 | pixCompareGray(pix3, pix6, L_COMPARE_SUBTRACT, 0, NULL, NULL, NULL, |
1783 | 0 | &pix8); |
1784 | 0 | pix9 = pixMinOrMax(NULL, pix7, pix8, L_CHOOSE_MAX); |
1785 | 0 | pix10 = pixThresholdToBinary(pix9, mindiff); |
1786 | 0 | pixInvert(pix10, pix10); |
1787 | 0 | pixCountPixels(pix10, &count, NULL); |
1788 | 0 | pixGetDimensions(pix10, &w, &h, NULL); |
1789 | 0 | *pfract = (w <= 0 || h <= 0) ? 0.0 : |
1790 | 0 | (l_float32)count / (l_float32)(w * h); |
1791 | 0 | pixDestroy(&pix5); |
1792 | 0 | pixDestroy(&pix6); |
1793 | 0 | pixDestroy(&pix7); |
1794 | 0 | pixDestroy(&pix8); |
1795 | 0 | if (ppixdiff1) |
1796 | 0 | *ppixdiff1 = pix9; |
1797 | 0 | else |
1798 | 0 | pixDestroy(&pix9); |
1799 | 0 | if (ppixdiff2) |
1800 | 0 | *ppixdiff2 = pix10; |
1801 | 0 | else |
1802 | 0 | pixDestroy(&pix10); |
1803 | 0 | } else { /* d1 == 32 */ |
1804 | 0 | pix5 = pixColorMorph(pix3, L_MORPH_DILATE, dilation, dilation); |
1805 | 0 | pixCompareRGB(pix4, pix5, L_COMPARE_SUBTRACT, 0, NULL, NULL, NULL, |
1806 | 0 | &pix7); |
1807 | 0 | pix6 = pixColorMorph(pix4, L_MORPH_DILATE, dilation, dilation); |
1808 | 0 | pixCompareRGB(pix3, pix6, L_COMPARE_SUBTRACT, 0, NULL, NULL, NULL, |
1809 | 0 | &pix8); |
1810 | 0 | pix9 = pixMinOrMax(NULL, pix7, pix8, L_CHOOSE_MAX); |
1811 | 0 | pix10 = pixConvertRGBToGrayMinMax(pix9, L_CHOOSE_MAX); |
1812 | 0 | pix11 = pixThresholdToBinary(pix10, mindiff); |
1813 | 0 | pixInvert(pix11, pix11); |
1814 | 0 | pixCountPixels(pix11, &count, NULL); |
1815 | 0 | pixGetDimensions(pix11, &w, &h, NULL); |
1816 | 0 | *pfract = (w <= 0 || h <= 0) ? 0.0 : |
1817 | 0 | (l_float32)count / (l_float32)(w * h); |
1818 | 0 | pixDestroy(&pix5); |
1819 | 0 | pixDestroy(&pix6); |
1820 | 0 | pixDestroy(&pix7); |
1821 | 0 | pixDestroy(&pix8); |
1822 | 0 | pixDestroy(&pix10); |
1823 | 0 | if (ppixdiff1) |
1824 | 0 | *ppixdiff1 = pix9; |
1825 | 0 | else |
1826 | 0 | pixDestroy(&pix9); |
1827 | 0 | if (ppixdiff2) |
1828 | 0 | *ppixdiff2 = pix11; |
1829 | 0 | else |
1830 | 0 | pixDestroy(&pix11); |
1831 | |
|
1832 | 0 | } |
1833 | 0 | pixDestroy(&pix3); |
1834 | 0 | pixDestroy(&pix4); |
1835 | 0 | return 0; |
1836 | 0 | } |
1837 | | |
1838 | | |
1839 | | /*! |
1840 | | * \brief pixGetPSNR() |
1841 | | * |
1842 | | * \param[in] pix1, pix2 8 or 32 bpp; no colormap |
1843 | | * \param[in] factor sampling factor; >= 1 |
1844 | | * \param[out] ppsnr power signal/noise ratio difference |
1845 | | * \return 0 if OK, 1 on error |
1846 | | * |
1847 | | * <pre> |
1848 | | * Notes: |
1849 | | * (1) This computes the power S/N ratio, in dB, for the difference |
1850 | | * between two images. By convention, the power S/N |
1851 | | * for a grayscale image is ('log' == log base 10, |
1852 | | * and 'ln == log base e): |
1853 | | * PSNR = 10 * log((255/MSE)^2) |
1854 | | * = 4.3429 * ln((255/MSE)^2) |
1855 | | * = -4.3429 * ln((MSE/255)^2) |
1856 | | * where MSE is the mean squared error. |
1857 | | * Here are some examples: |
1858 | | * MSE PSNR |
1859 | | * --- ---- |
1860 | | * 10 28.1 |
1861 | | * 3 38.6 |
1862 | | * 1 48.1 |
1863 | | * 0.1 68.1 |
1864 | | * (2) If pix1 and pix2 have the same pixel values, the MSE = 0.0 |
1865 | | * and the PSNR is infinity. For that case, this returns |
1866 | | * PSNR = 1000, which corresponds to the very small MSE of |
1867 | | * about 10^(-48). |
1868 | | * </pre> |
1869 | | */ |
1870 | | l_ok |
1871 | | pixGetPSNR(PIX *pix1, |
1872 | | PIX *pix2, |
1873 | | l_int32 factor, |
1874 | | l_float32 *ppsnr) |
1875 | 0 | { |
1876 | 0 | l_int32 same, i, j, w, h, d, wpl1, wpl2, v1, v2, r1, g1, b1, r2, g2, b2; |
1877 | 0 | l_uint32 *data1, *data2, *line1, *line2; |
1878 | 0 | l_float32 mse; /* mean squared error */ |
1879 | |
|
1880 | 0 | if (!ppsnr) |
1881 | 0 | return ERROR_INT("&psnr not defined", __func__, 1); |
1882 | 0 | *ppsnr = 0.0; |
1883 | 0 | if (!pix1 || !pix2) |
1884 | 0 | return ERROR_INT("empty input pix", __func__, 1); |
1885 | 0 | if (!pixSizesEqual(pix1, pix2)) |
1886 | 0 | return ERROR_INT("pix sizes unequal", __func__, 1); |
1887 | 0 | if (pixGetColormap(pix1)) |
1888 | 0 | return ERROR_INT("pix1 has colormap", __func__, 1); |
1889 | 0 | if (pixGetColormap(pix2)) |
1890 | 0 | return ERROR_INT("pix2 has colormap", __func__, 1); |
1891 | 0 | pixGetDimensions(pix1, &w, &h, &d); |
1892 | 0 | if (d != 8 && d != 32) |
1893 | 0 | return ERROR_INT("pix not 8 or 32 bpp", __func__, 1); |
1894 | 0 | if (factor < 1) |
1895 | 0 | return ERROR_INT("invalid sampling factor", __func__, 1); |
1896 | | |
1897 | 0 | pixEqual(pix1, pix2, &same); |
1898 | 0 | if (same) { |
1899 | 0 | *ppsnr = 1000.0; /* crazy big exponent */ |
1900 | 0 | return 0; |
1901 | 0 | } |
1902 | | |
1903 | 0 | data1 = pixGetData(pix1); |
1904 | 0 | data2 = pixGetData(pix2); |
1905 | 0 | wpl1 = pixGetWpl(pix1); |
1906 | 0 | wpl2 = pixGetWpl(pix2); |
1907 | 0 | mse = 0.0; |
1908 | 0 | if (d == 8) { |
1909 | 0 | for (i = 0; i < h; i += factor) { |
1910 | 0 | line1 = data1 + i * wpl1; |
1911 | 0 | line2 = data2 + i * wpl2; |
1912 | 0 | for (j = 0; j < w; j += factor) { |
1913 | 0 | v1 = GET_DATA_BYTE(line1, j); |
1914 | 0 | v2 = GET_DATA_BYTE(line2, j); |
1915 | 0 | mse += (l_float32)(v1 - v2) * (v1 - v2); |
1916 | 0 | } |
1917 | 0 | } |
1918 | 0 | } else { /* d == 32 */ |
1919 | 0 | for (i = 0; i < h; i += factor) { |
1920 | 0 | line1 = data1 + i * wpl1; |
1921 | 0 | line2 = data2 + i * wpl2; |
1922 | 0 | for (j = 0; j < w; j += factor) { |
1923 | 0 | extractRGBValues(line1[j], &r1, &g1, &b1); |
1924 | 0 | extractRGBValues(line2[j], &r2, &g2, &b2); |
1925 | 0 | mse += ((l_float32)(r1 - r2) * (r1 - r2) + |
1926 | 0 | (g1 - g2) * (g1 - g2) + |
1927 | 0 | (b1 - b2) * (b1 - b2)) / 3.0; |
1928 | 0 | } |
1929 | 0 | } |
1930 | 0 | } |
1931 | 0 | mse = mse / ((l_float32)(w) * h); |
1932 | |
|
1933 | 0 | *ppsnr = -4.3429448 * log(mse / (255 * 255)); |
1934 | 0 | return 0; |
1935 | 0 | } |
1936 | | |
1937 | | |
1938 | | /*------------------------------------------------------------------* |
1939 | | * Comparison of photo regions by histogram * |
1940 | | *------------------------------------------------------------------*/ |
1941 | | /*! |
1942 | | * \brief pixaComparePhotoRegionsByHisto() |
1943 | | * |
1944 | | * \param[in] pixa any depth; colormap OK |
1945 | | * \param[in] minratio requiring sizes be compatible; < 1.0 |
1946 | | * \param[in] textthresh threshold for text/photo; use 0 for default |
1947 | | * \param[in] factor subsampling; >= 1 |
1948 | | * \param[in] n in range {1, ... 7}. n^2 is the maximum number |
1949 | | * of subregions for histograms; typ. n = 3. |
1950 | | * \param[in] simthresh threshold for similarity; use 0 for default |
1951 | | * \param[out] pnai array giving similarity class indices |
1952 | | * \param[out] pscores [optional] score matrix as 1-D array of size N^2 |
1953 | | * \param[out] ppixd [optional] pix of similarity classes |
1954 | | * \param[in] debug 1 to output histograms; 0 otherwise |
1955 | | * \return 0 if OK, 1 on error |
1956 | | * |
1957 | | * <pre> |
1958 | | * Notes: |
1959 | | * (1) This function takes a pixa of cropped photo images and |
1960 | | * compares each one to the others for similarity. |
1961 | | * Each image is first tested to see if it is a photo that can |
1962 | | * be compared by tiled histograms. If so, it is padded to put |
1963 | | * the centroid in the center of the image, and the histograms |
1964 | | * are generated. The final step of comparing each histogram |
1965 | | * with all the others is very fast. |
1966 | | * (2) To make the histograms, each image is subdivided in a maximum |
1967 | | * of n^2 subimages. The parameter %n specifies the "side" of |
1968 | | * an n x n grid of such subimages. If the subimages have an |
1969 | | * aspect ratio larger than 2, the grid will change, again using n^2 |
1970 | | * as a maximum for the number of subimages. For example, |
1971 | | * if n == 3, but the image is 600 x 200 pixels, a 3x3 grid |
1972 | | * would have subimages of 200 x 67 pixels, which is more |
1973 | | * than 2:1, so we change to a 4x2 grid where each subimage |
1974 | | * has 150 x 100 pixels. |
1975 | | * (3) An initial filter gives %score = 0 if the ratio of widths |
1976 | | * and heights (smallest / largest) does not exceed a |
1977 | | * threshold %minratio. If set at 1.0, both images must be |
1978 | | * exactly the same size. A typical value for %minratio is 0.9. |
1979 | | * (4) The comparison score between two images is a value in [0.0 .. 1.0]. |
1980 | | * If the comparison score >= %simthresh, the images are placed in |
1981 | | * the same similarity class. Default value for %simthresh is 0.25. |
1982 | | * (5) An array %nai of similarity class indices for pix in the |
1983 | | * input pixa is returned. |
1984 | | * (6) There are two debugging options: |
1985 | | * * An optional 2D matrix of scores is returned as a 1D array. |
1986 | | * A visualization of this is written to a temp file. |
1987 | | * * An optional pix showing the similarity classes can be |
1988 | | * returned. Text in each input pix is reproduced. |
1989 | | * (7) See the notes in pixComparePhotoRegionsByHisto() for details |
1990 | | * on the implementation. |
1991 | | * </pre> |
1992 | | */ |
1993 | | l_ok |
1994 | | pixaComparePhotoRegionsByHisto(PIXA *pixa, |
1995 | | l_float32 minratio, |
1996 | | l_float32 textthresh, |
1997 | | l_int32 factor, |
1998 | | l_int32 n, |
1999 | | l_float32 simthresh, |
2000 | | NUMA **pnai, |
2001 | | l_float32 **pscores, |
2002 | | PIX **ppixd, |
2003 | | l_int32 debug) |
2004 | 0 | { |
2005 | 0 | char *text; |
2006 | 0 | l_int32 i, j, nim, w, h, w1, h1, w2, h2, ival, index, classid; |
2007 | 0 | l_float32 score; |
2008 | 0 | l_float32 *scores; |
2009 | 0 | NUMA *nai, *naw, *nah; |
2010 | 0 | NUMAA *naa; |
2011 | 0 | NUMAA **n3a; /* array of naa */ |
2012 | 0 | PIX *pix; |
2013 | |
|
2014 | 0 | if (pscores) *pscores = NULL; |
2015 | 0 | if (ppixd) *ppixd = NULL; |
2016 | 0 | if (!pnai) |
2017 | 0 | return ERROR_INT("&na not defined", __func__, 1); |
2018 | 0 | *pnai = NULL; |
2019 | 0 | if (!pixa) |
2020 | 0 | return ERROR_INT("pixa not defined", __func__, 1); |
2021 | 0 | if (minratio < 0.0 || minratio > 1.0) |
2022 | 0 | return ERROR_INT("minratio not in [0.0 ... 1.0]", __func__, 1); |
2023 | 0 | if (textthresh <= 0.0) textthresh = 1.3f; |
2024 | 0 | if (factor < 1) |
2025 | 0 | return ERROR_INT("subsampling factor must be >= 1", __func__, 1); |
2026 | 0 | if (n < 1 || n > 7) { |
2027 | 0 | L_WARNING("n = %d is invalid; setting to 4\n", __func__, n); |
2028 | 0 | n = 4; |
2029 | 0 | } |
2030 | 0 | if (simthresh <= 0.0) simthresh = 0.25; |
2031 | 0 | if (simthresh > 1.0) |
2032 | 0 | return ERROR_INT("simthresh invalid; should be near 0.25", __func__, 1); |
2033 | | |
2034 | | /* Prepare the histograms */ |
2035 | 0 | nim = pixaGetCount(pixa); |
2036 | 0 | if ((n3a = (NUMAA **)LEPT_CALLOC(nim, sizeof(NUMAA *))) == NULL) |
2037 | 0 | return ERROR_INT("calloc fail for n3a", __func__, 1); |
2038 | 0 | naw = numaCreate(0); |
2039 | 0 | nah = numaCreate(0); |
2040 | 0 | for (i = 0; i < nim; i++) { |
2041 | 0 | pix = pixaGetPix(pixa, i, L_CLONE); |
2042 | 0 | text = pixGetText(pix); |
2043 | 0 | pixSetResolution(pix, 150, 150); |
2044 | 0 | index = (debug) ? i : 0; |
2045 | 0 | pixGenPhotoHistos(pix, NULL, factor, textthresh, n, |
2046 | 0 | &naa, &w, &h, index); |
2047 | 0 | n3a[i] = naa; |
2048 | 0 | numaAddNumber(naw, w); |
2049 | 0 | numaAddNumber(nah, h); |
2050 | 0 | if (naa) |
2051 | 0 | lept_stderr("Image %s is photo\n", text); |
2052 | 0 | else |
2053 | 0 | lept_stderr("Image %s is NOT photo\n", text); |
2054 | 0 | pixDestroy(&pix); |
2055 | 0 | } |
2056 | | |
2057 | | /* Do the comparisons. We are making a set of classes, where |
2058 | | * all similar images are placed in the same class. There are |
2059 | | * 'nim' input images. The classes are labeled by 'classid' (all |
2060 | | * similar images get the same 'classid' value), and 'nai' maps |
2061 | | * the classid of the image in the input array to the classid |
2062 | | * of the similarity class. */ |
2063 | 0 | if ((scores = |
2064 | 0 | (l_float32 *)LEPT_CALLOC((size_t)nim * nim, sizeof(l_float32))) |
2065 | 0 | == NULL) { |
2066 | 0 | L_ERROR("calloc fail for scores\n", __func__); |
2067 | 0 | goto cleanup; |
2068 | 0 | } |
2069 | 0 | nai = numaMakeConstant(-1, nim); /* classid array */ |
2070 | 0 | for (i = 0, classid = 0; i < nim; i++) { |
2071 | 0 | scores[nim * i + i] = 1.0; |
2072 | 0 | numaGetIValue(nai, i, &ival); |
2073 | 0 | if (ival != -1) /* already set */ |
2074 | 0 | continue; |
2075 | 0 | numaSetValue(nai, i, classid); |
2076 | 0 | if (n3a[i] == NULL) { /* not a photo */ |
2077 | 0 | classid++; |
2078 | 0 | continue; |
2079 | 0 | } |
2080 | 0 | numaGetIValue(naw, i, &w1); |
2081 | 0 | numaGetIValue(nah, i, &h1); |
2082 | 0 | for (j = i + 1; j < nim; j++) { |
2083 | 0 | numaGetIValue(nai, j, &ival); |
2084 | 0 | if (ival != -1) /* already set */ |
2085 | 0 | continue; |
2086 | 0 | if (n3a[j] == NULL) /* not a photo */ |
2087 | 0 | continue; |
2088 | 0 | numaGetIValue(naw, j, &w2); |
2089 | 0 | numaGetIValue(nah, j, &h2); |
2090 | 0 | compareTilesByHisto(n3a[i], n3a[j], minratio, w1, h1, w2, h2, |
2091 | 0 | &score, NULL); |
2092 | 0 | scores[nim * i + j] = score; |
2093 | 0 | scores[nim * j + i] = score; /* the score array is symmetric */ |
2094 | | /* lept_stderr("score = %5.3f\n", score); */ |
2095 | 0 | if (score > simthresh) { |
2096 | 0 | numaSetValue(nai, j, classid); |
2097 | 0 | lept_stderr( |
2098 | 0 | "Setting %d similar to %d, in class %d; score %5.3f\n", |
2099 | 0 | j, i, classid, score); |
2100 | 0 | } |
2101 | 0 | } |
2102 | 0 | classid++; |
2103 | 0 | } |
2104 | 0 | *pnai = nai; |
2105 | | |
2106 | | /* Debug: optionally save and display the score array. |
2107 | | * All images that are photos are represented by a point on |
2108 | | * the diagonal. Other images in the same similarity class |
2109 | | * are on the same horizontal raster line to the right. |
2110 | | * The array has been symmetrized, so images in the same |
2111 | | * same similarity class also appear on the same column below. */ |
2112 | 0 | if (pscores) { |
2113 | 0 | l_int32 wpl, fact; |
2114 | 0 | l_uint32 *line, *data; |
2115 | 0 | PIX *pix2, *pix3; |
2116 | 0 | pix2 = pixCreate(nim, nim, 8); |
2117 | 0 | data = pixGetData(pix2); |
2118 | 0 | wpl = pixGetWpl(pix2); |
2119 | 0 | for (i = 0; i < nim; i++) { |
2120 | 0 | line = data + i * wpl; |
2121 | 0 | for (j = 0; j < nim; j++) { |
2122 | 0 | SET_DATA_BYTE(line, j, |
2123 | 0 | L_MIN(255, 4.0 * 255 * scores[nim * i + j])); |
2124 | 0 | } |
2125 | 0 | } |
2126 | 0 | fact = L_MAX(2, 1000 / nim); |
2127 | 0 | pix3 = pixExpandReplicate(pix2, fact); |
2128 | 0 | lept_stderr("Writing to /tmp/lept/comp/scorearray.png\n"); |
2129 | 0 | lept_mkdir("lept/comp"); |
2130 | 0 | pixWrite("/tmp/lept/comp/scorearray.png", pix3, IFF_PNG); |
2131 | 0 | pixDestroy(&pix2); |
2132 | 0 | pixDestroy(&pix3); |
2133 | 0 | *pscores = scores; |
2134 | 0 | } else { |
2135 | 0 | LEPT_FREE(scores); |
2136 | 0 | } |
2137 | | |
2138 | | /* Debug: optionally display and save the image comparisons. |
2139 | | * Image similarity classes are displayed by column; similar |
2140 | | * images are displayed in the same column. */ |
2141 | 0 | if (ppixd) |
2142 | 0 | *ppixd = pixaDisplayTiledByIndex(pixa, nai, 200, 20, 2, 6, 0x0000ff00); |
2143 | |
|
2144 | 0 | cleanup: |
2145 | 0 | numaDestroy(&naw); |
2146 | 0 | numaDestroy(&nah); |
2147 | 0 | for (i = 0; i < nim; i++) |
2148 | 0 | numaaDestroy(&n3a[i]); |
2149 | 0 | LEPT_FREE(n3a); |
2150 | 0 | return 0; |
2151 | 0 | } |
2152 | | |
2153 | | |
2154 | | /*! |
2155 | | * \brief pixComparePhotoRegionsByHisto() |
2156 | | * |
2157 | | * \param[in] pix1, pix2 any depth; colormap OK |
2158 | | * \param[in] box1, box2 [optional] photo regions from each; can be null |
2159 | | * \param[in] minratio requiring sizes be compatible; < 1.0 |
2160 | | * \param[in] factor subsampling factor; >= 1 |
2161 | | * \param[in] n in range {1, ... 7}. n^2 is the maximum number |
2162 | | * of subregions for histograms; typ. n = 3. |
2163 | | * \param[out] pscore similarity score of histograms |
2164 | | * \param[in] debugflag 1 for debug output; 0 for no debugging |
2165 | | * \return 0 if OK, 1 on error |
2166 | | * |
2167 | | * <pre> |
2168 | | * Notes: |
2169 | | * (1) This function compares two grayscale photo regions. If a |
2170 | | * box is given, the region is clipped; otherwise assume |
2171 | | * the entire images are photo regions. This is done with a |
2172 | | * set of not more than n^2 spatially aligned histograms, which are |
2173 | | * aligned using the centroid of the inverse image. |
2174 | | * (2) The parameter %n specifies the "side" of an n x n grid |
2175 | | * of subimages. If the subimages have an aspect ratio larger |
2176 | | * than 2, the grid will change, using n^2 as a maximum for |
2177 | | * the number of subimages. For example, if n == 3, but the |
2178 | | * image is 600 x 200 pixels, a 3x3 grid would have subimages |
2179 | | * of 200 x 67 pixels, which is more than 2:1, so we change |
2180 | | * to a 4x2 grid where each subimage has 150 x 100 pixels. |
2181 | | * (3) An initial filter gives %score = 0 if the ratio of widths |
2182 | | * and heights (smallest / largest) does not exceed a |
2183 | | * threshold %minratio. This must be between 0.5 and 1.0. |
2184 | | * If set at 1.0, both images must be exactly the same size. |
2185 | | * A typical value for %minratio is 0.9. |
2186 | | * (4) Because this function should not be used on text or |
2187 | | * line graphics, which can give false positive results |
2188 | | * (i.e., high scores for different images), filter the images |
2189 | | * using pixGenPhotoHistos(), which returns tiled histograms |
2190 | | * only if an image is not text and comparison is expected |
2191 | | * to work with histograms. If either image fails the test, |
2192 | | * the comparison returns a score of 0.0. |
2193 | | * (5) The white value counts in the histograms are removed; they |
2194 | | * are typically pixels that were padded to achieve alignment. |
2195 | | * (6) For an efficient representation of the histogram, normalize |
2196 | | * using a multiplicative factor so that the number in the |
2197 | | * maximum bucket is 255. It then takes 256 bytes to store. |
2198 | | * (7) When comparing the histograms of two regions, use the |
2199 | | * Earth Mover distance (EMD), with the histograms normalized |
2200 | | * so that the sum over bins is the same. Further normalize |
2201 | | * by dividing by 255, so that the result is in [0.0 ... 1.0]. |
2202 | | * (8) Get a similarity score S = 1.0 - k * D, where |
2203 | | * k is a constant, say in the range 5-10 |
2204 | | * D = normalized EMD |
2205 | | * and for multiple tiles, take the Min(S) to be the final score. |
2206 | | * Using aligned tiles gives protection against accidental |
2207 | | * similarity of the overall grayscale histograms. |
2208 | | * A small number of aligned tiles works well. |
2209 | | * (9) With debug on, you get a pdf that shows, for each tile, |
2210 | | * the images, histograms and score. |
2211 | | * </pre> |
2212 | | */ |
2213 | | l_ok |
2214 | | pixComparePhotoRegionsByHisto(PIX *pix1, |
2215 | | PIX *pix2, |
2216 | | BOX *box1, |
2217 | | BOX *box2, |
2218 | | l_float32 minratio, |
2219 | | l_int32 factor, |
2220 | | l_int32 n, |
2221 | | l_float32 *pscore, |
2222 | | l_int32 debugflag) |
2223 | 0 | { |
2224 | 0 | l_int32 w1, h1, w2, h2, w1c, h1c, w2c, h2c, debugindex; |
2225 | 0 | l_float32 wratio, hratio; |
2226 | 0 | NUMAA *naa1, *naa2; |
2227 | 0 | PIX *pix3, *pix4; |
2228 | 0 | PIXA *pixa; |
2229 | |
|
2230 | 0 | if (!pscore) |
2231 | 0 | return ERROR_INT("&score not defined", __func__, 1); |
2232 | 0 | *pscore = 0.0; |
2233 | 0 | if (!pix1 || !pix2) |
2234 | 0 | return ERROR_INT("pix1 and pix2 not both defined", __func__, 1); |
2235 | 0 | if (minratio < 0.5 || minratio > 1.0) |
2236 | 0 | return ERROR_INT("minratio not in [0.5 ... 1.0]", __func__, 1); |
2237 | 0 | if (factor < 1) |
2238 | 0 | return ERROR_INT("subsampling factor must be >= 1", __func__, 1); |
2239 | 0 | if (n < 1 || n > 7) { |
2240 | 0 | L_WARNING("n = %d is invalid; setting to 4\n", __func__, n); |
2241 | 0 | n = 4; |
2242 | 0 | } |
2243 | |
|
2244 | 0 | debugindex = 0; |
2245 | 0 | if (debugflag) { |
2246 | 0 | lept_mkdir("lept/comp"); |
2247 | 0 | debugindex = 666; /* arbitrary number used for naming output */ |
2248 | 0 | } |
2249 | | |
2250 | | /* Initial filter by size */ |
2251 | 0 | if (box1) |
2252 | 0 | boxGetGeometry(box1, NULL, NULL, &w1, &h1); |
2253 | 0 | else |
2254 | 0 | pixGetDimensions(pix1, &w1, &h1, NULL); |
2255 | 0 | if (box2) |
2256 | 0 | boxGetGeometry(box2, NULL, NULL, &w2, &h2); |
2257 | 0 | else |
2258 | 0 | pixGetDimensions(pix1, &w2, &h2, NULL); |
2259 | 0 | wratio = (w1 < w2) ? (l_float32)w1 / (l_float32)w2 : |
2260 | 0 | (l_float32)w2 / (l_float32)w1; |
2261 | 0 | hratio = (h1 < h2) ? (l_float32)h1 / (l_float32)h2 : |
2262 | 0 | (l_float32)h2 / (l_float32)h1; |
2263 | 0 | if (wratio < minratio || hratio < minratio) |
2264 | 0 | return 0; |
2265 | | |
2266 | | /* Initial crop, if necessary, and make histos */ |
2267 | 0 | if (box1) |
2268 | 0 | pix3 = pixClipRectangle(pix1, box1, NULL); |
2269 | 0 | else |
2270 | 0 | pix3 = pixClone(pix1); |
2271 | 0 | pixGenPhotoHistos(pix3, NULL, factor, 0, n, &naa1, &w1c, &h1c, debugindex); |
2272 | 0 | pixDestroy(&pix3); |
2273 | 0 | if (!naa1) return 0; |
2274 | 0 | if (box2) |
2275 | 0 | pix4 = pixClipRectangle(pix2, box2, NULL); |
2276 | 0 | else |
2277 | 0 | pix4 = pixClone(pix2); |
2278 | 0 | pixGenPhotoHistos(pix4, NULL, factor, 0, n, &naa2, &w2c, &h2c, debugindex); |
2279 | 0 | pixDestroy(&pix4); |
2280 | 0 | if (!naa2) return 0; |
2281 | | |
2282 | | /* Compare histograms */ |
2283 | 0 | pixa = (debugflag) ? pixaCreate(0) : NULL; |
2284 | 0 | compareTilesByHisto(naa1, naa2, minratio, w1c, h1c, w2c, h2c, pscore, pixa); |
2285 | 0 | pixaDestroy(&pixa); |
2286 | 0 | return 0; |
2287 | 0 | } |
2288 | | |
2289 | | |
2290 | | /*! |
2291 | | * \brief pixGenPhotoHistos() |
2292 | | * |
2293 | | * \param[in] pixs depth > 1 bpp; colormap OK |
2294 | | * \param[in] box [optional] region to be selected; can be null |
2295 | | * \param[in] factor subsampling; >= 1 |
2296 | | * \param[in] thresh threshold for photo/text; use 0 for default |
2297 | | * \param[in] n in range {1, ... 7}. n^2 is the maximum number |
2298 | | * of subregions for histograms; typ. n = 3. |
2299 | | * \param[out] pnaa nx * ny 256-entry gray histograms |
2300 | | * \param[out] pw width of image used to make histograms |
2301 | | * \param[out] ph height of image used to make histograms |
2302 | | * \param[in] debugindex 0 for no debugging; positive integer otherwise |
2303 | | * \return 0 if OK, 1 on error |
2304 | | * |
2305 | | * <pre> |
2306 | | * Notes: |
2307 | | * (1) This crops and converts to 8 bpp if necessary. It adds a |
2308 | | * minimal white boundary such that the centroid of the |
2309 | | * photo-inverted image is in the center. This allows |
2310 | | * automatic alignment with histograms of other image regions. |
2311 | | * (2) The parameter %n specifies the "side" of the n x n grid |
2312 | | * of subimages. If the subimages have an aspect ratio larger |
2313 | | * than 2, the grid will change, using n^2 as a maximum for |
2314 | | * the number of subimages. For example, if n == 3, but the |
2315 | | * image is 600 x 200 pixels, a 3x3 grid would have subimages |
2316 | | * of 200 x 67 pixels, which is more than 2:1, so we change |
2317 | | * to a 4x2 grid where each subimage has 150 x 100 pixels. |
2318 | | * (3) The white value in the histogram is removed, because of |
2319 | | * the padding. |
2320 | | * (4) Use 0 for conservative default (1.3) for thresh. |
2321 | | * (5) For an efficient representation of the histogram, normalize |
2322 | | * using a multiplicative factor so that the number in the |
2323 | | * maximum bucket is 255. It then takes 256 bytes to store. |
2324 | | * (6) With %debugindex > 0, this makes a pdf that shows, for each tile, |
2325 | | * the images and histograms. |
2326 | | * </pre> |
2327 | | */ |
2328 | | l_ok |
2329 | | pixGenPhotoHistos(PIX *pixs, |
2330 | | BOX *box, |
2331 | | l_int32 factor, |
2332 | | l_float32 thresh, |
2333 | | l_int32 n, |
2334 | | NUMAA **pnaa, |
2335 | | l_int32 *pw, |
2336 | | l_int32 *ph, |
2337 | | l_int32 debugindex) |
2338 | 0 | { |
2339 | 0 | char buf[64]; |
2340 | 0 | NUMAA *naa; |
2341 | 0 | PIX *pix1, *pix2, *pix3, *pixm; |
2342 | 0 | PIXA *pixa; |
2343 | |
|
2344 | 0 | if (pnaa) *pnaa = NULL; |
2345 | 0 | if (pw) *pw = 0; |
2346 | 0 | if (ph) *ph = 0; |
2347 | 0 | if (!pnaa) |
2348 | 0 | return ERROR_INT("&naa not defined", __func__, 1); |
2349 | 0 | if (!pw || !ph) |
2350 | 0 | return ERROR_INT("&w and &h not both defined", __func__, 1); |
2351 | 0 | if (!pixs || pixGetDepth(pixs) == 1) |
2352 | 0 | return ERROR_INT("pixs not defined or 1 bpp", __func__, 1); |
2353 | 0 | if (factor < 1) |
2354 | 0 | return ERROR_INT("subsampling factor must be >= 1", __func__, 1); |
2355 | 0 | if (thresh <= 0.0) thresh = 1.3f; /* default */ |
2356 | 0 | if (n < 1 || n > 7) { |
2357 | 0 | L_WARNING("n = %d is invalid; setting to 4\n", __func__, n); |
2358 | 0 | n = 4; |
2359 | 0 | } |
2360 | |
|
2361 | 0 | pixa = NULL; |
2362 | 0 | if (debugindex > 0) { |
2363 | 0 | pixa = pixaCreate(0); |
2364 | 0 | lept_mkdir("lept/comp"); |
2365 | 0 | } |
2366 | | |
2367 | | /* Initial crop, if necessary */ |
2368 | 0 | if (box) |
2369 | 0 | pix1 = pixClipRectangle(pixs, box, NULL); |
2370 | 0 | else |
2371 | 0 | pix1 = pixClone(pixs); |
2372 | | |
2373 | | /* Convert to 8 bpp and pad to center the centroid */ |
2374 | 0 | pix2 = pixConvertTo8(pix1, FALSE); |
2375 | 0 | pix3 = pixPadToCenterCentroid(pix2, factor); |
2376 | | |
2377 | | /* Set to 255 all pixels above 230. Do this so that light gray |
2378 | | * pixels do not enter into the comparison. */ |
2379 | 0 | pixm = pixThresholdToBinary(pix3, 230); |
2380 | 0 | pixInvert(pixm, pixm); |
2381 | 0 | pixSetMaskedGeneral(pix3, pixm, 255, 0, 0); |
2382 | 0 | pixDestroy(&pixm); |
2383 | |
|
2384 | 0 | if (debugindex > 0) { |
2385 | 0 | PIX *pix4, *pix5, *pix6, *pix7, *pix8; |
2386 | 0 | PIXA *pixa2; |
2387 | 0 | pix4 = pixConvertTo32(pix2); |
2388 | 0 | pix5 = pixConvertTo32(pix3); |
2389 | 0 | pix6 = pixScaleToSize(pix4, 400, 0); |
2390 | 0 | pix7 = pixScaleToSize(pix5, 400, 0); |
2391 | 0 | pixa2 = pixaCreate(2); |
2392 | 0 | pixaAddPix(pixa2, pix6, L_INSERT); |
2393 | 0 | pixaAddPix(pixa2, pix7, L_INSERT); |
2394 | 0 | pix8 = pixaDisplayTiledInRows(pixa2, 32, 1000, 1.0, 0, 50, 3); |
2395 | 0 | pixaAddPix(pixa, pix8, L_INSERT); |
2396 | 0 | pixDestroy(&pix4); |
2397 | 0 | pixDestroy(&pix5); |
2398 | 0 | pixaDestroy(&pixa2); |
2399 | 0 | } |
2400 | 0 | pixDestroy(&pix1); |
2401 | 0 | pixDestroy(&pix2); |
2402 | | |
2403 | | /* Test if this is a photoimage */ |
2404 | 0 | pixDecideIfPhotoImage(pix3, factor, thresh, n, &naa, pixa); |
2405 | 0 | if (naa) { |
2406 | 0 | *pnaa = naa; |
2407 | 0 | *pw = pixGetWidth(pix3); |
2408 | 0 | *ph = pixGetHeight(pix3); |
2409 | 0 | } |
2410 | |
|
2411 | 0 | if (pixa) { |
2412 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/comp/tiledhistos.%d.pdf", |
2413 | 0 | debugindex); |
2414 | 0 | lept_stderr("Writing to %s\n", buf); |
2415 | 0 | pixaConvertToPdf(pixa, 300, 1.0, L_FLATE_ENCODE, 0, NULL, buf); |
2416 | 0 | pixaDestroy(&pixa); |
2417 | 0 | } |
2418 | |
|
2419 | 0 | pixDestroy(&pix3); |
2420 | 0 | return 0; |
2421 | 0 | } |
2422 | | |
2423 | | |
2424 | | /*! |
2425 | | * \brief pixPadToCenterCentroid() |
2426 | | * |
2427 | | * \param[in] pixs any depth, colormap OK |
2428 | | * \param[in] factor subsampling for centroid; >= 1 |
2429 | | * \return pixd padded with white pixels, or NULL on error. |
2430 | | * |
2431 | | * <pre> |
2432 | | * Notes: |
2433 | | * (1) This add minimum white padding to an 8 bpp pix, such that |
2434 | | * the centroid of the photometric inverse is in the center of |
2435 | | * the resulting image. Thus in computing the centroid, |
2436 | | * black pixels have weight 255, and white pixels have weight 0. |
2437 | | * </pre> |
2438 | | */ |
2439 | | PIX * |
2440 | | pixPadToCenterCentroid(PIX *pixs, |
2441 | | l_int32 factor) |
2442 | | |
2443 | 0 | { |
2444 | 0 | l_float32 cx, cy; |
2445 | 0 | l_int32 xs, ys, delx, dely, icx, icy, ws, hs, wd, hd; |
2446 | 0 | PIX *pix1, *pixd; |
2447 | |
|
2448 | 0 | if (!pixs) |
2449 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2450 | 0 | if (factor < 1) |
2451 | 0 | return (PIX *)ERROR_PTR("invalid sampling factor", __func__, NULL); |
2452 | | |
2453 | 0 | pix1 = pixConvertTo8(pixs, FALSE); |
2454 | 0 | pixCentroid8(pix1, factor, &cx, &cy); |
2455 | 0 | icx = (l_int32)(cx + 0.5); |
2456 | 0 | icy = (l_int32)(cy + 0.5); |
2457 | 0 | pixGetDimensions(pix1, &ws, &hs, NULL); |
2458 | 0 | delx = ws - 2 * icx; |
2459 | 0 | dely = hs - 2 * icy; |
2460 | 0 | xs = L_MAX(0, delx); |
2461 | 0 | ys = L_MAX(0, dely); |
2462 | 0 | wd = 2 * L_MAX(icx, ws - icx); |
2463 | 0 | hd = 2 * L_MAX(icy, hs - icy); |
2464 | 0 | pixd = pixCreate(wd, hd, 8); |
2465 | 0 | pixSetAll(pixd); /* to white */ |
2466 | 0 | pixCopyResolution(pixd, pixs); |
2467 | 0 | pixRasterop(pixd, xs, ys, ws, hs, PIX_SRC, pix1, 0, 0); |
2468 | 0 | pixDestroy(&pix1); |
2469 | 0 | return pixd; |
2470 | 0 | } |
2471 | | |
2472 | | |
2473 | | /*! |
2474 | | * \brief pixCentroid8() |
2475 | | * |
2476 | | * \param[in] pixs 8 bpp |
2477 | | * \param[in] factor subsampling factor; >= 1 |
2478 | | * \param[out] pcx x value of centroid |
2479 | | * \param[out] pcy y value of centroid |
2480 | | * \return 0 if OK, 1 on error |
2481 | | * |
2482 | | * <pre> |
2483 | | * Notes: |
2484 | | * (1) This first does a photometric inversion (black = 255, white = 0). |
2485 | | * It then finds the centroid of the result. The inversion is |
2486 | | * done because white is usually background, so the centroid |
2487 | | * is computed based on the "foreground" gray pixels, and the |
2488 | | * darker the pixel, the more weight it is given. |
2489 | | * </pre> |
2490 | | */ |
2491 | | l_ok |
2492 | | pixCentroid8(PIX *pixs, |
2493 | | l_int32 factor, |
2494 | | l_float32 *pcx, |
2495 | | l_float32 *pcy) |
2496 | 0 | { |
2497 | 0 | l_int32 i, j, w, h, wpl, val; |
2498 | 0 | l_float32 sumx, sumy, sumv; |
2499 | 0 | l_uint32 *data, *line; |
2500 | 0 | PIX *pix1; |
2501 | |
|
2502 | 0 | if (pcx) *pcx = 0.0; |
2503 | 0 | if (pcy) *pcy = 0.0; |
2504 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
2505 | 0 | return ERROR_INT("pixs undefined or not 8 bpp", __func__, 1); |
2506 | 0 | if (factor < 1) |
2507 | 0 | return ERROR_INT("subsampling factor must be >= 1", __func__, 1); |
2508 | 0 | if (!pcx || !pcy) |
2509 | 0 | return ERROR_INT("&cx and &cy not both defined", __func__, 1); |
2510 | | |
2511 | 0 | pix1 = pixInvert(NULL, pixs); |
2512 | 0 | pixGetDimensions(pix1, &w, &h, NULL); |
2513 | 0 | data = pixGetData(pix1); |
2514 | 0 | wpl = pixGetWpl(pix1); |
2515 | 0 | sumx = sumy = sumv = 0.0; |
2516 | 0 | for (i = 0; i < h; i++) { |
2517 | 0 | line = data + i * wpl; |
2518 | 0 | for (j = 0; j < w; j++) { |
2519 | 0 | val = GET_DATA_BYTE(line, j); |
2520 | 0 | sumx += val * j; |
2521 | 0 | sumy += val * i; |
2522 | 0 | sumv += val; |
2523 | 0 | } |
2524 | 0 | } |
2525 | 0 | pixDestroy(&pix1); |
2526 | |
|
2527 | 0 | if (sumv == 0) { |
2528 | 0 | L_INFO("input image is white\n", __func__); |
2529 | 0 | *pcx = (l_float32)(w) / 2; |
2530 | 0 | *pcy = (l_float32)(h) / 2; |
2531 | 0 | } else { |
2532 | 0 | *pcx = sumx / sumv; |
2533 | 0 | *pcy = sumy / sumv; |
2534 | 0 | } |
2535 | |
|
2536 | 0 | return 0; |
2537 | 0 | } |
2538 | | |
2539 | | |
2540 | | /*! |
2541 | | * \brief pixDecideIfPhotoImage() |
2542 | | * |
2543 | | * \param[in] pix 8 bpp, centroid in center |
2544 | | * \param[in] factor subsampling for histograms; >= 1 |
2545 | | * \param[in] thresh threshold for photo/text; use 0 for default |
2546 | | * \param[in] n in range {1, ... 7}. n^2 is the maximum number |
2547 | | * of subregions for histograms; typ. n = 3. |
2548 | | * \param[out] pnaa array of normalized histograms |
2549 | | * \param[in] pixadebug [optional] use only for debug output |
2550 | | * \return 0 if OK, 1 on error |
2551 | | * |
2552 | | * <pre> |
2553 | | * Notes: |
2554 | | * (1) The input image must be 8 bpp (no colormap), and padded with |
2555 | | * white pixels so the centroid of photo-inverted pixels is at |
2556 | | * the center of the image. |
2557 | | * (2) The parameter %n specifies the "side" of the n x n grid |
2558 | | * of subimages. If the subimages have an aspect ratio larger |
2559 | | * than 2, the grid will change, using n^2 as a maximum for |
2560 | | * the number of subimages. For example, if n == 3, but the |
2561 | | * image is 600 x 200 pixels, a 3x3 grid would have subimages |
2562 | | * of 200 x 67 pixels, which is more than 2:1, so we change |
2563 | | * to a 4x2 grid where each subimage has 150 x 100 pixels. |
2564 | | * (3) If the pix is not almost certainly a photoimage, the returned |
2565 | | * histograms (%naa) are null. |
2566 | | * (4) If histograms are generated, the white (255) count is set |
2567 | | * to 0. This removes all pixels values above 230, including |
2568 | | * white padding from the centroid matching operation, from |
2569 | | * consideration. The resulting histograms are then normalized |
2570 | | * so the maximum count is 255. |
2571 | | * (5) Default for %thresh is 1.3; this seems sufficiently conservative. |
2572 | | * (6) Use %pixadebug == NULL unless debug output is requested. |
2573 | | * </pre> |
2574 | | */ |
2575 | | l_ok |
2576 | | pixDecideIfPhotoImage(PIX *pix, |
2577 | | l_int32 factor, |
2578 | | l_float32 thresh, |
2579 | | l_int32 n, |
2580 | | NUMAA **pnaa, |
2581 | | PIXA *pixadebug) |
2582 | 0 | { |
2583 | 0 | char buf[64]; |
2584 | 0 | l_int32 i, w, h, nx, ny, ngrids, istext, isphoto; |
2585 | 0 | l_float32 maxval, sum1, sum2, ratio; |
2586 | 0 | L_BMF *bmf; |
2587 | 0 | NUMA *na1, *na2, *na3, *narv; |
2588 | 0 | NUMAA *naa; |
2589 | 0 | PIX *pix1; |
2590 | 0 | PIXA *pixa1, *pixa2, *pixa3; |
2591 | |
|
2592 | 0 | if (!pnaa) |
2593 | 0 | return ERROR_INT("&naa not defined", __func__, 1); |
2594 | 0 | *pnaa = NULL; |
2595 | 0 | if (!pix || pixGetDepth(pix) != 8 || pixGetColormap(pix)) |
2596 | 0 | return ERROR_INT("pix undefined or invalid", __func__, 1); |
2597 | 0 | if (n < 1 || n > 7) { |
2598 | 0 | L_WARNING("n = %d is invalid; setting to 4\n", __func__, n); |
2599 | 0 | n = 4; |
2600 | 0 | } |
2601 | 0 | if (thresh <= 0.0) thresh = 1.3f; /* default */ |
2602 | | |
2603 | | /* Look for text lines */ |
2604 | 0 | pixDecideIfText(pix, NULL, &istext, pixadebug); |
2605 | 0 | if (istext) { |
2606 | 0 | L_INFO("Image is text\n", __func__); |
2607 | 0 | return 0; |
2608 | 0 | } |
2609 | | |
2610 | | /* Determine grid from n */ |
2611 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2612 | 0 | if (w == 0 || h == 0) |
2613 | 0 | return ERROR_INT("invalid pix dimension", __func__, 1); |
2614 | 0 | findHistoGridDimensions(n, w, h, &nx, &ny, 1); |
2615 | | |
2616 | | /* Evaluate histograms in each tile */ |
2617 | 0 | pixa1 = pixaSplitPix(pix, nx, ny, 0, 0); |
2618 | 0 | ngrids = nx * ny; |
2619 | 0 | bmf = (pixadebug) ? bmfCreate(NULL, 6) : NULL; |
2620 | 0 | naa = numaaCreate(ngrids); |
2621 | 0 | if (pixadebug) { |
2622 | 0 | lept_rmdir("lept/compplot"); |
2623 | 0 | lept_mkdir("lept/compplot"); |
2624 | 0 | } |
2625 | 0 | for (i = 0; i < ngrids; i++) { |
2626 | 0 | pix1 = pixaGetPix(pixa1, i, L_CLONE); |
2627 | | |
2628 | | /* Get histograms, set white count to 0, normalize max to 255 */ |
2629 | 0 | na1 = pixGetGrayHistogram(pix1, factor); |
2630 | 0 | numaSetValue(na1, 255, 0); |
2631 | 0 | na2 = numaWindowedMean(na1, 5); /* do some smoothing */ |
2632 | 0 | numaGetMax(na2, &maxval, NULL); |
2633 | 0 | na3 = numaTransform(na2, 0, 255.0 / maxval); |
2634 | 0 | if (pixadebug) { |
2635 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/compplot/plot.%d", i); |
2636 | 0 | gplotSimple1(na3, GPLOT_PNG, buf, "Histos"); |
2637 | 0 | } |
2638 | |
|
2639 | 0 | numaaAddNuma(naa, na3, L_INSERT); |
2640 | 0 | numaDestroy(&na1); |
2641 | 0 | numaDestroy(&na2); |
2642 | 0 | pixDestroy(&pix1); |
2643 | 0 | } |
2644 | 0 | if (pixadebug) { |
2645 | 0 | pix1 = pixaDisplayTiledInColumns(pixa1, nx, 1.0, 30, 2); |
2646 | 0 | pixaAddPix(pixadebug, pix1, L_INSERT); |
2647 | 0 | pixa2 = pixaReadFiles("/tmp/lept/compplot", ".png"); |
2648 | 0 | pixa3 = pixaScale(pixa2, 0.4f, 0.4f); |
2649 | 0 | pix1 = pixaDisplayTiledInColumns(pixa3, nx, 1.0, 30, 2); |
2650 | 0 | pixaAddPix(pixadebug, pix1, L_INSERT); |
2651 | 0 | pixaDestroy(&pixa2); |
2652 | 0 | pixaDestroy(&pixa3); |
2653 | 0 | } |
2654 | | |
2655 | | /* Compute the standard deviation between these histos to decide |
2656 | | * if the image is photo or something more like line art, |
2657 | | * which does not support good comparison by tiled histograms. */ |
2658 | 0 | grayInterHistogramStats(naa, 5, NULL, NULL, NULL, &narv); |
2659 | | |
2660 | | /* For photos, the root variance has a larger weight of |
2661 | | * values in the range [50 ... 150] compared to [200 ... 230], |
2662 | | * than text or line art. For the latter, most of the variance |
2663 | | * between tiles is in the lightest parts of the image, well |
2664 | | * above 150. */ |
2665 | 0 | numaGetSumOnInterval(narv, 50, 150, &sum1); |
2666 | 0 | numaGetSumOnInterval(narv, 200, 230, &sum2); |
2667 | 0 | if (sum2 == 0.0) { /* shouldn't happen */ |
2668 | 0 | ratio = 0.001f; /* anything very small for debug output */ |
2669 | 0 | isphoto = 0; /* be conservative */ |
2670 | 0 | } else { |
2671 | 0 | ratio = sum1 / sum2; |
2672 | 0 | isphoto = (ratio > thresh) ? 1 : 0; |
2673 | 0 | } |
2674 | 0 | if (pixadebug) { |
2675 | 0 | if (isphoto) |
2676 | 0 | L_INFO("ratio %f > %f; isphoto is true\n", |
2677 | 0 | __func__, ratio, thresh); |
2678 | 0 | else |
2679 | 0 | L_INFO("ratio %f < %f; isphoto is false\n", |
2680 | 0 | __func__, ratio, thresh); |
2681 | 0 | } |
2682 | 0 | if (isphoto) |
2683 | 0 | *pnaa = naa; |
2684 | 0 | else |
2685 | 0 | numaaDestroy(&naa); |
2686 | 0 | bmfDestroy(&bmf); |
2687 | 0 | numaDestroy(&narv); |
2688 | 0 | pixaDestroy(&pixa1); |
2689 | 0 | return 0; |
2690 | 0 | } |
2691 | | |
2692 | | |
2693 | | /*! |
2694 | | * \brief findHistoGridDimensions() |
2695 | | * |
2696 | | * \param[in] n max number of grid elements is n^2; typ. n = 3 |
2697 | | * \param[in] w width of image to be subdivided |
2698 | | * \param[in] h height of image to be subdivided |
2699 | | * \param[out] pnx number of grid elements in x direction |
2700 | | * \param[out] pny number of grid elements in y direction |
2701 | | * \param[in] debug 1 for debug output to stderr |
2702 | | * \return 0 if OK, 1 on error |
2703 | | * |
2704 | | * <pre> |
2705 | | * Notes: |
2706 | | * (1) This determines the number of subdivisions to be used on |
2707 | | * the image in each direction. A histogram will be built |
2708 | | * for each subimage. |
2709 | | * (2) The parameter %n specifies the "side" of the n x n grid |
2710 | | * of subimages. If the subimages have an aspect ratio larger |
2711 | | * than 2, the grid will change, using n^2 as a maximum for |
2712 | | * the number of subimages. For example, if n == 3, but the |
2713 | | * image is 600 x 200 pixels, a 3x3 grid would have subimages |
2714 | | * of 200 x 67 pixels, which is more than 2:1, so we change |
2715 | | * to a 4x2 grid where each subimage has 150 x 100 pixels. |
2716 | | * </pre> |
2717 | | */ |
2718 | | static l_ok |
2719 | | findHistoGridDimensions(l_int32 n, |
2720 | | l_int32 w, |
2721 | | l_int32 h, |
2722 | | l_int32 *pnx, |
2723 | | l_int32 *pny, |
2724 | | l_int32 debug) |
2725 | 0 | { |
2726 | 0 | l_int32 nx, ny, max; |
2727 | 0 | l_float32 ratio; |
2728 | |
|
2729 | 0 | ratio = (l_float32)w / (l_float32)h; |
2730 | 0 | max = n * n; |
2731 | 0 | nx = ny = n; |
2732 | 0 | while (nx > 1 && ny > 1) { |
2733 | 0 | if (ratio > 2.0) { /* reduce ny */ |
2734 | 0 | ny--; |
2735 | 0 | nx = max / ny; |
2736 | 0 | if (debug) |
2737 | 0 | lept_stderr("nx = %d, ny = %d, ratio w/h = %4.2f\n", |
2738 | 0 | nx, ny, ratio); |
2739 | 0 | } else if (ratio < 0.5) { /* reduce nx */ |
2740 | 0 | nx--; |
2741 | 0 | ny = max / nx; |
2742 | 0 | if (debug) |
2743 | 0 | lept_stderr("nx = %d, ny = %d, ratio w/h = %4.2f\n", |
2744 | 0 | nx, ny, ratio); |
2745 | 0 | } else { /* we're ok */ |
2746 | 0 | if (debug) |
2747 | 0 | lept_stderr("nx = %d, ny = %d, ratio w/h = %4.2f\n", |
2748 | 0 | nx, ny, ratio); |
2749 | 0 | break; |
2750 | 0 | } |
2751 | 0 | ratio = (l_float32)(ny * w) / (l_float32)(nx * h); |
2752 | 0 | } |
2753 | 0 | *pnx = nx; |
2754 | 0 | *pny = ny; |
2755 | 0 | return 0; |
2756 | 0 | } |
2757 | | |
2758 | | |
2759 | | /*! |
2760 | | * \brief compareTilesByHisto() |
2761 | | * |
2762 | | * \param[in] naa1, naa2 each is a set of 256 entry histograms |
2763 | | * \param[in] minratio requiring image sizes be compatible; < 1.0 |
2764 | | * \param[in] w1, h1, w2, h2 image sizes from which histograms were made |
2765 | | * \param[out] pscore similarity score of histograms |
2766 | | * \param[in] pixadebug [optional] use only for debug output |
2767 | | * \return 0 if OK, 1 on error |
2768 | | * |
2769 | | * <pre> |
2770 | | * Notes: |
2771 | | * (1) naa1 and naa2 must be generated using pixGenPhotoHistos(), |
2772 | | * using the same tile sizes. |
2773 | | * (2) The image dimensions must be similar. The score is 0.0 |
2774 | | * if the ratio of widths and heights (smallest / largest) |
2775 | | * exceeds a threshold %minratio, which must be between |
2776 | | * 0.5 and 1.0. If set at 1.0, both images must be exactly |
2777 | | * the same size. A typical value for %minratio is 0.9. |
2778 | | * (3) The input pixadebug is null unless debug output is requested. |
2779 | | * </pre> |
2780 | | */ |
2781 | | l_ok |
2782 | | compareTilesByHisto(NUMAA *naa1, |
2783 | | NUMAA *naa2, |
2784 | | l_float32 minratio, |
2785 | | l_int32 w1, |
2786 | | l_int32 h1, |
2787 | | l_int32 w2, |
2788 | | l_int32 h2, |
2789 | | l_float32 *pscore, |
2790 | | PIXA *pixadebug) |
2791 | 0 | { |
2792 | 0 | char buf1[128], buf2[128]; |
2793 | 0 | l_int32 i, n; |
2794 | 0 | l_float32 wratio, hratio, score, minscore, dist; |
2795 | 0 | L_BMF *bmf; |
2796 | 0 | NUMA *na1, *na2, *nadist, *nascore; |
2797 | |
|
2798 | 0 | if (!pscore) |
2799 | 0 | return ERROR_INT("&score not defined", __func__, 1); |
2800 | 0 | *pscore = 0.0; |
2801 | 0 | if (!naa1 || !naa2) |
2802 | 0 | return ERROR_INT("naa1 and naa2 not both defined", __func__, 1); |
2803 | | |
2804 | | /* Filter for different sizes */ |
2805 | 0 | wratio = (w1 < w2) ? (l_float32)w1 / (l_float32)w2 : |
2806 | 0 | (l_float32)w2 / (l_float32)w1; |
2807 | 0 | hratio = (h1 < h2) ? (l_float32)h1 / (l_float32)h2 : |
2808 | 0 | (l_float32)h2 / (l_float32)h1; |
2809 | 0 | if (wratio < minratio || hratio < minratio) { |
2810 | 0 | if (pixadebug) |
2811 | 0 | L_INFO("Sizes differ: wratio = %f, hratio = %f\n", |
2812 | 0 | __func__, wratio, hratio); |
2813 | 0 | return 0; |
2814 | 0 | } |
2815 | 0 | n = numaaGetCount(naa1); |
2816 | 0 | if (n != numaaGetCount(naa2)) { /* due to differing w/h ratio */ |
2817 | 0 | L_INFO("naa1 and naa2 sizes are different\n", __func__); |
2818 | 0 | return 0; |
2819 | 0 | } |
2820 | | |
2821 | 0 | if (pixadebug) { |
2822 | 0 | lept_rmdir("lept/comptile"); |
2823 | 0 | lept_mkdir("lept/comptile"); |
2824 | 0 | } |
2825 | | |
2826 | | |
2827 | | /* Evaluate histograms in each tile. Remove white before |
2828 | | * computing EMD, because there are may be a lot of white |
2829 | | * pixels due to padding, and we don't want to include them. |
2830 | | * This also makes the debug histo plots more informative. */ |
2831 | 0 | minscore = 1.0; |
2832 | 0 | nadist = numaCreate(n); |
2833 | 0 | nascore = numaCreate(n); |
2834 | 0 | bmf = (pixadebug) ? bmfCreate(NULL, 6) : NULL; |
2835 | 0 | for (i = 0; i < n; i++) { |
2836 | 0 | na1 = numaaGetNuma(naa1, i, L_CLONE); |
2837 | 0 | na2 = numaaGetNuma(naa2, i, L_CLONE); |
2838 | 0 | numaSetValue(na1, 255, 0.0); |
2839 | 0 | numaSetValue(na2, 255, 0.0); |
2840 | | |
2841 | | /* To compare histograms, use the normalized earthmover distance. |
2842 | | * Further normalize to get the EM distance as a fraction of the |
2843 | | * maximum distance in the histogram (255). Finally, scale this |
2844 | | * up by 10.0, and subtract from 1.0 to get a similarity score. */ |
2845 | 0 | numaEarthMoverDistance(na1, na2, &dist); |
2846 | 0 | score = L_MAX(0.0, 1.0 - 10.0 * (dist / 255.)); |
2847 | 0 | numaAddNumber(nadist, dist); |
2848 | 0 | numaAddNumber(nascore, score); |
2849 | 0 | minscore = L_MIN(minscore, score); |
2850 | 0 | if (pixadebug) { |
2851 | 0 | snprintf(buf1, sizeof(buf1), "/tmp/lept/comptile/plot.%d", i); |
2852 | 0 | gplotSimple2(na1, na2, GPLOT_PNG, buf1, "Histos"); |
2853 | 0 | } |
2854 | 0 | numaDestroy(&na1); |
2855 | 0 | numaDestroy(&na2); |
2856 | 0 | } |
2857 | 0 | *pscore = minscore; |
2858 | |
|
2859 | 0 | if (pixadebug) { |
2860 | 0 | for (i = 0; i < n; i++) { |
2861 | 0 | PIX *pix1, *pix2; |
2862 | 0 | snprintf(buf1, sizeof(buf1), "/tmp/lept/comptile/plot.%d.png", i); |
2863 | 0 | pix1 = pixRead(buf1); |
2864 | 0 | numaGetFValue(nadist, i, &dist); |
2865 | 0 | numaGetFValue(nascore, i, &score); |
2866 | 0 | snprintf(buf2, sizeof(buf2), |
2867 | 0 | "Image %d\ndist = %5.3f, score = %5.3f", i, dist, score); |
2868 | 0 | pix2 = pixAddTextlines(pix1, bmf, buf2, 0x0000ff00, L_ADD_BELOW); |
2869 | 0 | pixaAddPix(pixadebug, pix2, L_INSERT); |
2870 | 0 | pixDestroy(&pix1); |
2871 | 0 | } |
2872 | 0 | lept_stderr("Writing to /tmp/lept/comptile/comparegray.pdf\n"); |
2873 | 0 | pixaConvertToPdf(pixadebug, 300, 1.0, L_FLATE_ENCODE, 0, NULL, |
2874 | 0 | "/tmp/lept/comptile/comparegray.pdf"); |
2875 | 0 | numaWriteDebug("/tmp/lept/comptile/scores.na", nascore); |
2876 | 0 | numaWriteDebug("/tmp/lept/comptile/dists.na", nadist); |
2877 | 0 | } |
2878 | |
|
2879 | 0 | bmfDestroy(&bmf); |
2880 | 0 | numaDestroy(&nadist); |
2881 | 0 | numaDestroy(&nascore); |
2882 | 0 | return 0; |
2883 | 0 | } |
2884 | | |
2885 | | |
2886 | | /*! |
2887 | | * \brief pixCompareGrayByHisto() |
2888 | | * |
2889 | | * \param[in] pix1, pix2 any depth; colormap OK |
2890 | | * \param[in] box1, box2 [optional] region selected from each; can be null |
2891 | | * \param[in] minratio requiring sizes be compatible; < 1.0 |
2892 | | * \param[in] maxgray max value to keep in histo; >= 200, 255 to keep all |
2893 | | * \param[in] factor subsampling factor; >= 1 |
2894 | | * \param[in] n in range {1, ... 7}. n^2 is the maximum number |
2895 | | * of subregions for histograms; typ. n = 3. |
2896 | | * \param[out] pscore similarity score of histograms |
2897 | | * \param[in] debugflag 1 for debug output; 0 for no debugging |
2898 | | * \return 0 if OK, 1 on error |
2899 | | * |
2900 | | * <pre> |
2901 | | * Notes: |
2902 | | * (1) This function compares two grayscale photo regions. It can |
2903 | | * do it with a single histogram from each region, or with a |
2904 | | * set of spatially aligned histograms. For both cases, |
2905 | | * align the regions using the centroid of the inverse image, |
2906 | | * and crop to the smallest of the two. |
2907 | | * (2) The parameter %n specifies the "side" of an n x n grid |
2908 | | * of subimages. If the subimages have an aspect ratio larger |
2909 | | * than 2, the grid will change, using n^2 as a maximum for |
2910 | | * the number of subimages. For example, if n == 3, but the |
2911 | | * image is 600 x 200 pixels, a 3x3 grid would have subimages |
2912 | | * of 200 x 67 pixels, which is more than 2:1, so we change |
2913 | | * to a 4x2 grid where each subimage has 150 x 100 pixels. |
2914 | | * (3) An initial filter gives %score = 0 if the ratio of widths |
2915 | | * and heights (smallest / largest) does not exceed a |
2916 | | * threshold %minratio. This must be between 0.5 and 1.0. |
2917 | | * If set at 1.0, both images must be exactly the same size. |
2918 | | * A typical value for %minratio is 0.9. |
2919 | | * (4) The lightest values in the histogram can be disregarded. |
2920 | | * Set %maxgray to the lightest value to be kept. For example, |
2921 | | * to eliminate white (255), set %maxgray = 254. %maxgray must |
2922 | | * be >= 200. |
2923 | | * (5) For an efficient representation of the histogram, normalize |
2924 | | * using a multiplicative factor so that the number in the |
2925 | | * maximum bucket is 255. It then takes 256 bytes to store. |
2926 | | * (6) When comparing the histograms of two regions: |
2927 | | * ~ Use %maxgray = 254 to ignore the white pixels, the number |
2928 | | * of which may be sensitive to the crop region if the pixels |
2929 | | * outside that region are white. |
2930 | | * ~ Use the Earth Mover distance (EMD), with the histograms |
2931 | | * normalized so that the sum over bins is the same. |
2932 | | * Further normalize by dividing by 255, so that the result |
2933 | | * is in [0.0 ... 1.0]. |
2934 | | * (7) Get a similarity score S = 1.0 - k * D, where |
2935 | | * k is a constant, say in the range 5-10 |
2936 | | * D = normalized EMD |
2937 | | * and for multiple tiles, take the Min(S) to be the final score. |
2938 | | * Using aligned tiles gives protection against accidental |
2939 | | * similarity of the overall grayscale histograms. |
2940 | | * A small number of aligned tiles works well. |
2941 | | * (8) With debug on, you get a pdf that shows, for each tile, |
2942 | | * the images, histograms and score. |
2943 | | * (9) When to use: |
2944 | | * (a) Because this function should not be used on text or |
2945 | | * line graphics, which can give false positive results |
2946 | | * (i.e., high scores for different images), the input |
2947 | | * images should be filtered. |
2948 | | * (b) To filter, first use pixDecideIfText(). If that function |
2949 | | * says the image is text, do not use it. If the function |
2950 | | * says it is not text, it still may be line graphics, and |
2951 | | * in that case, use: |
2952 | | * pixGetGrayHistogramTiled() |
2953 | | * grayInterHistogramStats() |
2954 | | * to determine whether it is photo or line graphics. |
2955 | | * </pre> |
2956 | | */ |
2957 | | l_ok |
2958 | | pixCompareGrayByHisto(PIX *pix1, |
2959 | | PIX *pix2, |
2960 | | BOX *box1, |
2961 | | BOX *box2, |
2962 | | l_float32 minratio, |
2963 | | l_int32 maxgray, |
2964 | | l_int32 factor, |
2965 | | l_int32 n, |
2966 | | l_float32 *pscore, |
2967 | | l_int32 debugflag) |
2968 | 0 | { |
2969 | 0 | l_int32 w1, h1, w2, h2; |
2970 | 0 | l_float32 wratio, hratio; |
2971 | 0 | BOX *box3, *box4; |
2972 | 0 | PIX *pix3, *pix4, *pix5, *pix6, *pix7, *pix8; |
2973 | 0 | PIXA *pixa; |
2974 | |
|
2975 | 0 | if (!pscore) |
2976 | 0 | return ERROR_INT("&score not defined", __func__, 1); |
2977 | 0 | *pscore = 0.0; |
2978 | 0 | if (!pix1 || !pix2) |
2979 | 0 | return ERROR_INT("pix1 and pix2 not both defined", __func__, 1); |
2980 | 0 | if (minratio < 0.5 || minratio > 1.0) |
2981 | 0 | return ERROR_INT("minratio not in [0.5 ... 1.0]", __func__, 1); |
2982 | 0 | if (maxgray < 200) |
2983 | 0 | return ERROR_INT("invalid maxgray; should be >= 200", __func__, 1); |
2984 | 0 | maxgray = L_MIN(255, maxgray); |
2985 | 0 | if (factor < 1) |
2986 | 0 | return ERROR_INT("subsampling factor must be >= 1", __func__, 1); |
2987 | 0 | if (n < 1 || n > 7) { |
2988 | 0 | L_WARNING("n = %d is invalid; setting to 4\n", __func__, n); |
2989 | 0 | n = 4; |
2990 | 0 | } |
2991 | |
|
2992 | 0 | if (debugflag) |
2993 | 0 | lept_mkdir("lept/comp"); |
2994 | | |
2995 | | /* Initial filter by size */ |
2996 | 0 | if (box1) |
2997 | 0 | boxGetGeometry(box1, NULL, NULL, &w1, &h1); |
2998 | 0 | else |
2999 | 0 | pixGetDimensions(pix1, &w1, &h1, NULL); |
3000 | 0 | if (box2) |
3001 | 0 | boxGetGeometry(box2, NULL, NULL, &w2, &h2); |
3002 | 0 | else |
3003 | 0 | pixGetDimensions(pix1, &w2, &h2, NULL); |
3004 | 0 | wratio = (w1 < w2) ? (l_float32)w1 / (l_float32)w2 : |
3005 | 0 | (l_float32)w2 / (l_float32)w1; |
3006 | 0 | hratio = (h1 < h2) ? (l_float32)h1 / (l_float32)h2 : |
3007 | 0 | (l_float32)h2 / (l_float32)h1; |
3008 | 0 | if (wratio < minratio || hratio < minratio) |
3009 | 0 | return 0; |
3010 | | |
3011 | | /* Initial crop, if necessary */ |
3012 | 0 | if (box1) |
3013 | 0 | pix3 = pixClipRectangle(pix1, box1, NULL); |
3014 | 0 | else |
3015 | 0 | pix3 = pixClone(pix1); |
3016 | 0 | if (box2) |
3017 | 0 | pix4 = pixClipRectangle(pix2, box2, NULL); |
3018 | 0 | else |
3019 | 0 | pix4 = pixClone(pix2); |
3020 | | |
3021 | | /* Convert to 8 bpp, align centroids and do maximal crop */ |
3022 | 0 | pix5 = pixConvertTo8(pix3, FALSE); |
3023 | 0 | pix6 = pixConvertTo8(pix4, FALSE); |
3024 | 0 | pixCropAlignedToCentroid(pix5, pix6, factor, &box3, &box4); |
3025 | 0 | pix7 = pixClipRectangle(pix5, box3, NULL); |
3026 | 0 | pix8 = pixClipRectangle(pix6, box4, NULL); |
3027 | 0 | pixa = (debugflag) ? pixaCreate(0) : NULL; |
3028 | 0 | if (debugflag) { |
3029 | 0 | PIX *pix9, *pix10, *pix11, *pix12, *pix13; |
3030 | 0 | PIXA *pixa2; |
3031 | 0 | pix9 = pixConvertTo32(pix5); |
3032 | 0 | pix10 = pixConvertTo32(pix6); |
3033 | 0 | pixRenderBoxArb(pix9, box3, 2, 255, 0, 0); |
3034 | 0 | pixRenderBoxArb(pix10, box4, 2, 255, 0, 0); |
3035 | 0 | pix11 = pixScaleToSize(pix9, 400, 0); |
3036 | 0 | pix12 = pixScaleToSize(pix10, 400, 0); |
3037 | 0 | pixa2 = pixaCreate(2); |
3038 | 0 | pixaAddPix(pixa2, pix11, L_INSERT); |
3039 | 0 | pixaAddPix(pixa2, pix12, L_INSERT); |
3040 | 0 | pix13 = pixaDisplayTiledInRows(pixa2, 32, 1000, 1.0, 0, 50, 0); |
3041 | 0 | pixaAddPix(pixa, pix13, L_INSERT); |
3042 | 0 | pixDestroy(&pix9); |
3043 | 0 | pixDestroy(&pix10); |
3044 | 0 | pixaDestroy(&pixa2); |
3045 | 0 | } |
3046 | 0 | pixDestroy(&pix3); |
3047 | 0 | pixDestroy(&pix4); |
3048 | 0 | pixDestroy(&pix5); |
3049 | 0 | pixDestroy(&pix6); |
3050 | 0 | boxDestroy(&box3); |
3051 | 0 | boxDestroy(&box4); |
3052 | | |
3053 | | /* Tile and compare histograms */ |
3054 | 0 | pixCompareTilesByHisto(pix7, pix8, maxgray, factor, n, pscore, pixa); |
3055 | 0 | pixaDestroy(&pixa); |
3056 | 0 | pixDestroy(&pix7); |
3057 | 0 | pixDestroy(&pix8); |
3058 | 0 | return 0; |
3059 | 0 | } |
3060 | | |
3061 | | |
3062 | | /*! |
3063 | | * \brief pixCompareTilesByHisto() |
3064 | | * |
3065 | | * \param[in] pix1, pix2 8 bpp |
3066 | | * \param[in] maxgray max value to keep in histo; 255 to keep all |
3067 | | * \param[in] factor subsampling factor; >= 1 |
3068 | | * \param[in] n see pixCompareGrayByHisto() |
3069 | | * \param[out] pscore similarity score of histograms |
3070 | | * \param[in] pixadebug [optional] use only for debug output |
3071 | | * \return 0 if OK, 1 on error |
3072 | | * |
3073 | | * <pre> |
3074 | | * Notes: |
3075 | | * (1) This static function is only called from pixCompareGrayByHisto(). |
3076 | | * The input images have been converted to 8 bpp if necessary, |
3077 | | * aligned and cropped. |
3078 | | * (2) The input pixadebug is null unless debug output is requested. |
3079 | | * (3) See pixCompareGrayByHisto() for details. |
3080 | | * </pre> |
3081 | | */ |
3082 | | static l_ok |
3083 | | pixCompareTilesByHisto(PIX *pix1, |
3084 | | PIX *pix2, |
3085 | | l_int32 maxgray, |
3086 | | l_int32 factor, |
3087 | | l_int32 n, |
3088 | | l_float32 *pscore, |
3089 | | PIXA *pixadebug) |
3090 | 0 | { |
3091 | 0 | char buf[64]; |
3092 | 0 | l_int32 w, h, i, j, nx, ny, ngr; |
3093 | 0 | l_float32 score, minscore, maxval1, maxval2, dist; |
3094 | 0 | L_BMF *bmf; |
3095 | 0 | NUMA *na1, *na2, *na3, *na4, *na5, *na6, *na7; |
3096 | 0 | PIX *pix3, *pix4; |
3097 | 0 | PIXA *pixa1, *pixa2; |
3098 | |
|
3099 | 0 | if (!pscore) |
3100 | 0 | return ERROR_INT("&score not defined", __func__, 1); |
3101 | 0 | *pscore = 0.0; |
3102 | 0 | if (!pix1 || !pix2) |
3103 | 0 | return ERROR_INT("pix1 and pix2 not both defined", __func__, 1); |
3104 | | |
3105 | | /* Determine grid from n */ |
3106 | 0 | pixGetDimensions(pix1, &w, &h, NULL); |
3107 | 0 | findHistoGridDimensions(n, w, h, &nx, &ny, 1); |
3108 | 0 | ngr = nx * ny; |
3109 | | |
3110 | | /* Evaluate histograms in each tile */ |
3111 | 0 | pixa1 = pixaSplitPix(pix1, nx, ny, 0, 0); |
3112 | 0 | pixa2 = pixaSplitPix(pix2, nx, ny, 0, 0); |
3113 | 0 | na7 = (pixadebug) ? numaCreate(ngr) : NULL; |
3114 | 0 | bmf = (pixadebug) ? bmfCreate(NULL, 6) : NULL; |
3115 | 0 | minscore = 1.0; |
3116 | 0 | for (i = 0; i < ngr; i++) { |
3117 | 0 | pix3 = pixaGetPix(pixa1, i, L_CLONE); |
3118 | 0 | pix4 = pixaGetPix(pixa2, i, L_CLONE); |
3119 | | |
3120 | | /* Get histograms, set white count to 0, normalize max to 255 */ |
3121 | 0 | na1 = pixGetGrayHistogram(pix3, factor); |
3122 | 0 | na2 = pixGetGrayHistogram(pix4, factor); |
3123 | 0 | if (maxgray < 255) { |
3124 | 0 | for (j = maxgray + 1; j <= 255; j++) { |
3125 | 0 | numaSetValue(na1, j, 0); |
3126 | 0 | numaSetValue(na2, j, 0); |
3127 | 0 | } |
3128 | 0 | } |
3129 | 0 | na3 = numaWindowedMean(na1, 5); |
3130 | 0 | na4 = numaWindowedMean(na2, 5); |
3131 | 0 | numaGetMax(na3, &maxval1, NULL); |
3132 | 0 | numaGetMax(na4, &maxval2, NULL); |
3133 | 0 | na5 = numaTransform(na3, 0, 255.0 / maxval1); |
3134 | 0 | na6 = numaTransform(na4, 0, 255.0 / maxval2); |
3135 | 0 | if (pixadebug) { |
3136 | 0 | gplotSimple2(na5, na6, GPLOT_PNG, "/tmp/lept/comp/plot1", "Histos"); |
3137 | 0 | } |
3138 | | |
3139 | | /* To compare histograms, use the normalized earthmover distance. |
3140 | | * Further normalize to get the EM distance as a fraction of the |
3141 | | * maximum distance in the histogram (255). Finally, scale this |
3142 | | * up by 10.0, and subtract from 1.0 to get a similarity score. */ |
3143 | 0 | numaEarthMoverDistance(na5, na6, &dist); |
3144 | 0 | score = L_MAX(0.0, 1.0 - 8.0 * (dist / 255.)); |
3145 | 0 | if (pixadebug) numaAddNumber(na7, score); |
3146 | 0 | minscore = L_MIN(minscore, score); |
3147 | 0 | if (pixadebug) { |
3148 | 0 | PIX *pix5, *pix6, *pix7, *pix8, *pix9, *pix10; |
3149 | 0 | PIXA *pixa3; |
3150 | 0 | l_int32 w, h, wscale; |
3151 | 0 | pixa3 = pixaCreate(3); |
3152 | 0 | pixGetDimensions(pix3, &w, &h, NULL); |
3153 | 0 | wscale = (w > h) ? 700 : 400; |
3154 | 0 | pix5 = pixScaleToSize(pix3, wscale, 0); |
3155 | 0 | pix6 = pixScaleToSize(pix4, wscale, 0); |
3156 | 0 | pixaAddPix(pixa3, pix5, L_INSERT); |
3157 | 0 | pixaAddPix(pixa3, pix6, L_INSERT); |
3158 | 0 | pix7 = pixRead("/tmp/lept/comp/plot1.png"); |
3159 | 0 | pix8 = pixScaleToSize(pix7, 700, 0); |
3160 | 0 | snprintf(buf, sizeof(buf), "%5.3f", score); |
3161 | 0 | pix9 = pixAddTextlines(pix8, bmf, buf, 0x0000ff00, L_ADD_RIGHT); |
3162 | 0 | pixaAddPix(pixa3, pix9, L_INSERT); |
3163 | 0 | pix10 = pixaDisplayTiledInRows(pixa3, 32, 1000, 1.0, 0, 50, 0); |
3164 | 0 | pixaAddPix(pixadebug, pix10, L_INSERT); |
3165 | 0 | pixDestroy(&pix7); |
3166 | 0 | pixDestroy(&pix8); |
3167 | 0 | pixaDestroy(&pixa3); |
3168 | 0 | } |
3169 | 0 | numaDestroy(&na1); |
3170 | 0 | numaDestroy(&na2); |
3171 | 0 | numaDestroy(&na3); |
3172 | 0 | numaDestroy(&na4); |
3173 | 0 | numaDestroy(&na5); |
3174 | 0 | numaDestroy(&na6); |
3175 | 0 | pixDestroy(&pix3); |
3176 | 0 | pixDestroy(&pix4); |
3177 | 0 | } |
3178 | 0 | *pscore = minscore; |
3179 | |
|
3180 | 0 | if (pixadebug) { |
3181 | 0 | pixaConvertToPdf(pixadebug, 300, 1.0, L_FLATE_ENCODE, 0, NULL, |
3182 | 0 | "/tmp/lept/comp/comparegray.pdf"); |
3183 | 0 | numaWriteDebug("/tmp/lept/comp/tilescores.na", na7); |
3184 | 0 | } |
3185 | |
|
3186 | 0 | bmfDestroy(&bmf); |
3187 | 0 | numaDestroy(&na7); |
3188 | 0 | pixaDestroy(&pixa1); |
3189 | 0 | pixaDestroy(&pixa2); |
3190 | 0 | return 0; |
3191 | 0 | } |
3192 | | |
3193 | | |
3194 | | /*! |
3195 | | * \brief pixCropAlignedToCentroid() |
3196 | | * |
3197 | | * \param[in] pix1, pix2 any depth; colormap OK |
3198 | | * \param[in] factor subsampling; >= 1 |
3199 | | * \param[out] pbox1 crop box for pix1 |
3200 | | * \param[out] pbox2 crop box for pix2 |
3201 | | * \return 0 if OK, 1 on error |
3202 | | * |
3203 | | * <pre> |
3204 | | * Notes: |
3205 | | * (1) This finds the maximum crop boxes for two 8 bpp images when |
3206 | | * their centroids of their photometric inverses are aligned. |
3207 | | * Black pixels have weight 255; white pixels have weight 0. |
3208 | | * </pre> |
3209 | | */ |
3210 | | l_ok |
3211 | | pixCropAlignedToCentroid(PIX *pix1, |
3212 | | PIX *pix2, |
3213 | | l_int32 factor, |
3214 | | BOX **pbox1, |
3215 | | BOX **pbox2) |
3216 | 0 | { |
3217 | 0 | l_float32 cx1, cy1, cx2, cy2; |
3218 | 0 | l_int32 w1, h1, w2, h2, icx1, icy1, icx2, icy2; |
3219 | 0 | l_int32 xm, xm1, xm2, xp, xp1, xp2, ym, ym1, ym2, yp, yp1, yp2; |
3220 | 0 | PIX *pix3, *pix4; |
3221 | |
|
3222 | 0 | if (pbox1) *pbox1 = NULL; |
3223 | 0 | if (pbox2) *pbox2 = NULL; |
3224 | 0 | if (!pix1 || !pix2) |
3225 | 0 | return ERROR_INT("pix1 and pix2 not both defined", __func__, 1); |
3226 | 0 | if (factor < 1) |
3227 | 0 | return ERROR_INT("subsampling factor must be >= 1", __func__, 1); |
3228 | 0 | if (!pbox1 || !pbox2) |
3229 | 0 | return ERROR_INT("&box1 and &box2 not both defined", __func__, 1); |
3230 | | |
3231 | 0 | pix3 = pixConvertTo8(pix1, FALSE); |
3232 | 0 | pix4 = pixConvertTo8(pix2, FALSE); |
3233 | 0 | pixCentroid8(pix3, factor, &cx1, &cy1); |
3234 | 0 | pixCentroid8(pix4, factor, &cx2, &cy2); |
3235 | 0 | pixGetDimensions(pix3, &w1, &h1, NULL); |
3236 | 0 | pixGetDimensions(pix4, &w2, &h2, NULL); |
3237 | 0 | pixDestroy(&pix3); |
3238 | 0 | pixDestroy(&pix4); |
3239 | |
|
3240 | 0 | icx1 = (l_int32)(cx1 + 0.5); |
3241 | 0 | icy1 = (l_int32)(cy1 + 0.5); |
3242 | 0 | icx2 = (l_int32)(cx2 + 0.5); |
3243 | 0 | icy2 = (l_int32)(cy2 + 0.5); |
3244 | 0 | xm = L_MIN(icx1, icx2); |
3245 | 0 | xm1 = icx1 - xm; |
3246 | 0 | xm2 = icx2 - xm; |
3247 | 0 | xp = L_MIN(w1 - icx1, w2 - icx2); /* one pixel beyond to the right */ |
3248 | 0 | xp1 = icx1 + xp; |
3249 | 0 | xp2 = icx2 + xp; |
3250 | 0 | ym = L_MIN(icy1, icy2); |
3251 | 0 | ym1 = icy1 - ym; |
3252 | 0 | ym2 = icy2 - ym; |
3253 | 0 | yp = L_MIN(h1 - icy1, h2 - icy2); /* one pixel below the bottom */ |
3254 | 0 | yp1 = icy1 + yp; |
3255 | 0 | yp2 = icy2 + yp; |
3256 | 0 | *pbox1 = boxCreate(xm1, ym1, xp1 - xm1, yp1 - ym1); |
3257 | 0 | *pbox2 = boxCreate(xm2, ym2, xp2 - xm2, yp2 - ym2); |
3258 | 0 | return 0; |
3259 | 0 | } |
3260 | | |
3261 | | |
3262 | | /*! |
3263 | | * \brief l_compressGrayHistograms() |
3264 | | * |
3265 | | * \param[in] naa set of 256-entry histograms |
3266 | | * \param[in] w, h size of image |
3267 | | * \param[out] psize size of byte array |
3268 | | * \return 0 if OK, 1 on error |
3269 | | * |
3270 | | * <pre> |
3271 | | * Notes: |
3272 | | * (1) This first writes w and h to the byte array as 4 byte ints. |
3273 | | * (2) Then it normalizes each histogram to a max value of 255, |
3274 | | * and saves each value as a byte. If there are |
3275 | | * N histograms, the output bytearray has 8 + 256 * N bytes. |
3276 | | * (3) Further compression of the array with zlib yields only about |
3277 | | * a 25% decrease in size, so we don't bother. If size reduction |
3278 | | * were important, a lossy transform using a 1-dimensional DCT |
3279 | | * would be effective, because we don't care about the fine |
3280 | | * details of these histograms. |
3281 | | * </pre> |
3282 | | */ |
3283 | | l_uint8 * |
3284 | | l_compressGrayHistograms(NUMAA *naa, |
3285 | | l_int32 w, |
3286 | | l_int32 h, |
3287 | | size_t *psize) |
3288 | 0 | { |
3289 | 0 | l_uint8 *bytea; |
3290 | 0 | l_int32 i, j, n, nn, ival; |
3291 | 0 | l_float32 maxval; |
3292 | 0 | NUMA *na1, *na2; |
3293 | |
|
3294 | 0 | if (!psize) |
3295 | 0 | return (l_uint8 *)ERROR_PTR("&size not defined", __func__, NULL); |
3296 | 0 | *psize = 0; |
3297 | 0 | if (!naa) |
3298 | 0 | return (l_uint8 *)ERROR_PTR("naa not defined", __func__, NULL); |
3299 | 0 | n = numaaGetCount(naa); |
3300 | 0 | for (i = 0; i < n; i++) { |
3301 | 0 | nn = numaaGetNumaCount(naa, i); |
3302 | 0 | if (nn != 256) { |
3303 | 0 | L_ERROR("%d numbers in numa[%d]\n", __func__, nn, i); |
3304 | 0 | return NULL; |
3305 | 0 | } |
3306 | 0 | } |
3307 | | |
3308 | 0 | if ((bytea = (l_uint8 *)LEPT_CALLOC(8 + 256 * n, sizeof(l_uint8))) == NULL) |
3309 | 0 | return (l_uint8 *)ERROR_PTR("bytea not made", __func__, NULL); |
3310 | 0 | *psize = 8 + 256 * n; |
3311 | 0 | l_setDataFourBytes(bytea, 0, w); |
3312 | 0 | l_setDataFourBytes(bytea, 1, h); |
3313 | 0 | for (i = 0; i < n; i++) { |
3314 | 0 | na1 = numaaGetNuma(naa, i, L_COPY); |
3315 | 0 | numaGetMax(na1, &maxval, NULL); |
3316 | 0 | na2 = numaTransform(na1, 0, 255.0 / maxval); |
3317 | 0 | for (j = 0; j < 256; j++) { |
3318 | 0 | numaGetIValue(na2, j, &ival); |
3319 | 0 | bytea[8 + 256 * i + j] = ival; |
3320 | 0 | } |
3321 | 0 | numaDestroy(&na1); |
3322 | 0 | numaDestroy(&na2); |
3323 | 0 | } |
3324 | |
|
3325 | 0 | return bytea; |
3326 | 0 | } |
3327 | | |
3328 | | |
3329 | | /*! |
3330 | | * \brief l_uncompressGrayHistograms() |
3331 | | * |
3332 | | * \param[in] bytea byte array of size 8 + 256 * N, N an integer |
3333 | | * \param[in] size size of byte array |
3334 | | * \param[out] pw width of the image that generated the histograms |
3335 | | * \param[out] ph height of the image |
3336 | | * \return numaa representing N histograms, each with 256 bins, |
3337 | | * or NULL on error. |
3338 | | * |
3339 | | * <pre> |
3340 | | * Notes: |
3341 | | * (1) The first 8 bytes are read as two 32-bit ints. |
3342 | | * (2) Then this constructs a numaa representing some number of |
3343 | | * gray histograms that are normalized such that the max value |
3344 | | * in each histogram is 255. The data is stored as a byte |
3345 | | * array, with 256 bytes holding the data for each histogram. |
3346 | | * Each gray histogram was computed from a tile of a grayscale image. |
3347 | | * </pre> |
3348 | | */ |
3349 | | NUMAA * |
3350 | | l_uncompressGrayHistograms(l_uint8 *bytea, |
3351 | | size_t size, |
3352 | | l_int32 *pw, |
3353 | | l_int32 *ph) |
3354 | 0 | { |
3355 | 0 | l_int32 i, j, n; |
3356 | 0 | NUMA *na; |
3357 | 0 | NUMAA *naa; |
3358 | |
|
3359 | 0 | if (pw) *pw = 0; |
3360 | 0 | if (ph) *ph = 0; |
3361 | 0 | if (!pw || !ph) |
3362 | 0 | return (NUMAA *)ERROR_PTR("&w and &h not both defined", __func__, NULL); |
3363 | 0 | if (!bytea) |
3364 | 0 | return (NUMAA *)ERROR_PTR("bytea not defined", __func__, NULL); |
3365 | 0 | n = (size - 8) / 256; |
3366 | 0 | if ((size - 8) % 256 != 0) |
3367 | 0 | return (NUMAA *)ERROR_PTR("bytea size is invalid", __func__, NULL); |
3368 | | |
3369 | 0 | *pw = l_getDataFourBytes(bytea, 0); |
3370 | 0 | *ph = l_getDataFourBytes(bytea, 1); |
3371 | 0 | naa = numaaCreate(n); |
3372 | 0 | for (i = 0; i < n; i++) { |
3373 | 0 | na = numaCreate(256); |
3374 | 0 | for (j = 0; j < 256; j++) |
3375 | 0 | numaAddNumber(na, bytea[8 + 256 * i + j]); |
3376 | 0 | numaaAddNuma(naa, na, L_INSERT); |
3377 | 0 | } |
3378 | |
|
3379 | 0 | return naa; |
3380 | 0 | } |
3381 | | |
3382 | | |
3383 | | /*------------------------------------------------------------------* |
3384 | | * Translated images at the same resolution * |
3385 | | *------------------------------------------------------------------*/ |
3386 | | /*! |
3387 | | * \brief pixCompareWithTranslation() |
3388 | | * |
3389 | | * \param[in] pix1, pix2 any depth; colormap OK |
3390 | | * \param[in] thresh threshold for converting to 1 bpp |
3391 | | * \param[out] pdelx x translation on pix2 to align with pix1 |
3392 | | * \param[out] pdely y translation on pix2 to align with pix1 |
3393 | | * \param[out] pscore correlation score at best alignment |
3394 | | * \param[in] debugflag 1 for debug output; 0 for no debugging |
3395 | | * \return 0 if OK, 1 on error |
3396 | | * |
3397 | | * <pre> |
3398 | | * Notes: |
3399 | | * (1) This does a coarse-to-fine search for best translational |
3400 | | * alignment of two images, measured by a scoring function |
3401 | | * that is the correlation between the fg pixels. |
3402 | | * (2) The threshold is used if the images aren't 1 bpp. |
3403 | | * (3) With debug on, you get a pdf that shows, as a grayscale |
3404 | | * image, the score as a function of shift from the initial |
3405 | | * estimate, for each of the four levels. The shift is 0 at |
3406 | | * the center of the image. |
3407 | | * (4) With debug on, you also get a pdf that shows the |
3408 | | * difference at the best alignment between the two images, |
3409 | | * at each of the four levels. The red and green pixels |
3410 | | * show locations where one image has a fg pixel and the |
3411 | | * other doesn't. The black pixels are where both images |
3412 | | * have fg pixels, and white pixels are where neither image |
3413 | | * has fg pixels. |
3414 | | * </pre> |
3415 | | */ |
3416 | | l_ok |
3417 | | pixCompareWithTranslation(PIX *pix1, |
3418 | | PIX *pix2, |
3419 | | l_int32 thresh, |
3420 | | l_int32 *pdelx, |
3421 | | l_int32 *pdely, |
3422 | | l_float32 *pscore, |
3423 | | l_int32 debugflag) |
3424 | 0 | { |
3425 | 0 | l_uint8 *subtab; |
3426 | 0 | l_int32 i, level, area1, area2, delx, dely; |
3427 | 0 | l_int32 etransx, etransy, maxshift, dbint; |
3428 | 0 | l_int32 *stab, *ctab; |
3429 | 0 | l_float32 cx1, cx2, cy1, cy2, score; |
3430 | 0 | PIX *pixb1, *pixb2, *pixt1, *pixt2, *pixt3, *pixt4; |
3431 | 0 | PIXA *pixa1, *pixa2, *pixadb = NULL; |
3432 | |
|
3433 | 0 | if (pdelx) *pdelx = 0; |
3434 | 0 | if (pdely) *pdely = 0; |
3435 | 0 | if (pscore) *pscore = 0.0; |
3436 | 0 | if (!pdelx || !pdely) |
3437 | 0 | return ERROR_INT("&delx and &dely not defined", __func__, 1); |
3438 | 0 | if (!pscore) |
3439 | 0 | return ERROR_INT("&score not defined", __func__, 1); |
3440 | 0 | if (!pix1) |
3441 | 0 | return ERROR_INT("pix1 not defined", __func__, 1); |
3442 | 0 | if (!pix2) |
3443 | 0 | return ERROR_INT("pix2 not defined", __func__, 1); |
3444 | | |
3445 | | /* Make tables */ |
3446 | 0 | subtab = makeSubsampleTab2x(); |
3447 | 0 | stab = makePixelSumTab8(); |
3448 | 0 | ctab = makePixelCentroidTab8(); |
3449 | | |
3450 | | /* Binarize each image */ |
3451 | 0 | pixb1 = pixConvertTo1(pix1, thresh); |
3452 | 0 | pixb2 = pixConvertTo1(pix2, thresh); |
3453 | | |
3454 | | /* Make a cascade of 2x reduced images for each, thresholding |
3455 | | * with level 2 (neutral), down to 8x reduction */ |
3456 | 0 | pixa1 = pixaCreate(4); |
3457 | 0 | pixa2 = pixaCreate(4); |
3458 | 0 | if (debugflag) |
3459 | 0 | pixadb = pixaCreate(4); |
3460 | 0 | pixaAddPix(pixa1, pixb1, L_INSERT); |
3461 | 0 | pixaAddPix(pixa2, pixb2, L_INSERT); |
3462 | 0 | for (i = 0; i < 3; i++) { |
3463 | 0 | pixt1 = pixReduceRankBinary2(pixb1, 2, subtab); |
3464 | 0 | pixt2 = pixReduceRankBinary2(pixb2, 2, subtab); |
3465 | 0 | pixaAddPix(pixa1, pixt1, L_INSERT); |
3466 | 0 | pixaAddPix(pixa2, pixt2, L_INSERT); |
3467 | 0 | pixb1 = pixt1; |
3468 | 0 | pixb2 = pixt2; |
3469 | 0 | } |
3470 | | |
3471 | | /* At the lowest level, use the centroids with a maxshift of 6 |
3472 | | * to search for the best alignment. Then at higher levels, |
3473 | | * use the result from the level below as the initial approximation |
3474 | | * for the alignment, and search with a maxshift of 2. */ |
3475 | 0 | for (level = 3; level >= 0; level--) { |
3476 | 0 | pixt1 = pixaGetPix(pixa1, level, L_CLONE); |
3477 | 0 | pixt2 = pixaGetPix(pixa2, level, L_CLONE); |
3478 | 0 | pixCountPixels(pixt1, &area1, stab); |
3479 | 0 | pixCountPixels(pixt2, &area2, stab); |
3480 | 0 | if (level == 3) { |
3481 | 0 | pixCentroid(pixt1, ctab, stab, &cx1, &cy1); |
3482 | 0 | pixCentroid(pixt2, ctab, stab, &cx2, &cy2); |
3483 | 0 | etransx = lept_roundftoi(cx1 - cx2); |
3484 | 0 | etransy = lept_roundftoi(cy1 - cy2); |
3485 | 0 | maxshift = 6; |
3486 | 0 | } else { |
3487 | 0 | etransx = 2 * delx; |
3488 | 0 | etransy = 2 * dely; |
3489 | 0 | maxshift = 2; |
3490 | 0 | } |
3491 | 0 | dbint = (debugflag) ? level + 1 : 0; |
3492 | 0 | pixBestCorrelation(pixt1, pixt2, area1, area2, etransx, etransy, |
3493 | 0 | maxshift, stab, &delx, &dely, &score, dbint); |
3494 | 0 | if (debugflag) { |
3495 | 0 | lept_stderr("Level %d: delx = %d, dely = %d, score = %7.4f\n", |
3496 | 0 | level, delx, dely, score); |
3497 | 0 | pixRasteropIP(pixt2, delx, dely, L_BRING_IN_WHITE); |
3498 | 0 | pixt3 = pixDisplayDiffBinary(pixt1, pixt2); |
3499 | 0 | pixt4 = pixExpandReplicate(pixt3, 8 / (1 << (3 - level))); |
3500 | 0 | pixaAddPix(pixadb, pixt4, L_INSERT); |
3501 | 0 | pixDestroy(&pixt3); |
3502 | 0 | } |
3503 | 0 | pixDestroy(&pixt1); |
3504 | 0 | pixDestroy(&pixt2); |
3505 | 0 | } |
3506 | |
|
3507 | 0 | if (debugflag) { |
3508 | 0 | pixaConvertToPdf(pixadb, 300, 1.0, L_FLATE_ENCODE, 0, NULL, |
3509 | 0 | "/tmp/lept/comp/compare.pdf"); |
3510 | 0 | convertFilesToPdf("/tmp/lept/comp", "correl_", 30, 1.0, L_FLATE_ENCODE, |
3511 | 0 | 0, "Correlation scores at levels 1 through 5", |
3512 | 0 | "/tmp/lept/comp/correl.pdf"); |
3513 | 0 | pixaDestroy(&pixadb); |
3514 | 0 | } |
3515 | |
|
3516 | 0 | *pdelx = delx; |
3517 | 0 | *pdely = dely; |
3518 | 0 | *pscore = score; |
3519 | 0 | pixaDestroy(&pixa1); |
3520 | 0 | pixaDestroy(&pixa2); |
3521 | 0 | LEPT_FREE(subtab); |
3522 | 0 | LEPT_FREE(stab); |
3523 | 0 | LEPT_FREE(ctab); |
3524 | 0 | return 0; |
3525 | 0 | } |
3526 | | |
3527 | | |
3528 | | /*! |
3529 | | * \brief pixBestCorrelation() |
3530 | | * |
3531 | | * \param[in] pix1 1 bpp |
3532 | | * \param[in] pix2 1 bpp |
3533 | | * \param[in] area1 number of on pixels in pix1 |
3534 | | * \param[in] area2 number of on pixels in pix2 |
3535 | | * \param[in] etransx estimated x translation of pix2 to align with pix1 |
3536 | | * \param[in] etransy estimated y translation of pix2 to align with pix1 |
3537 | | * \param[in] maxshift max x and y shift of pix2, around the estimated |
3538 | | * alignment location, relative to pix1 |
3539 | | * \param[in] tab8 [optional] sum tab for ON pixels in byte; can be NULL |
3540 | | * \param[out] pdelx [optional] best x shift of pix2 relative to pix1 |
3541 | | * \param[out] pdely [optional] best y shift of pix2 relative to pix1 |
3542 | | * \param[out] pscore [optional] maximum score found; can be NULL |
3543 | | * \param[in] debugflag <= 0 to skip; positive to generate output. |
3544 | | * The integer is used to label the debug image. |
3545 | | * \return 0 if OK, 1 on error |
3546 | | * |
3547 | | * <pre> |
3548 | | * Notes: |
3549 | | * (1) This maximizes the correlation score between two 1 bpp images, |
3550 | | * by starting with an estimate of the alignment |
3551 | | * (%etransx, %etransy) and computing the correlation around this. |
3552 | | * It optionally returns the shift (%delx, %dely) that maximizes |
3553 | | * the correlation score when pix2 is shifted by this amount |
3554 | | * relative to pix1. |
3555 | | * (2) Get the centroids of pix1 and pix2, using pixCentroid(), |
3556 | | * to compute (%etransx, %etransy). Get the areas using |
3557 | | * pixCountPixels(). |
3558 | | * (3) The centroid of pix2 is shifted with respect to the centroid |
3559 | | * of pix1 by all values between -maxshiftx and maxshiftx, |
3560 | | * and likewise for the y shifts. Therefore, the number of |
3561 | | * correlations computed is: |
3562 | | * (2 * maxshiftx + 1) * (2 * maxshifty + 1) |
3563 | | * Consequently, if pix1 and pix2 are large, you should do this |
3564 | | * in a coarse-to-fine sequence. See the use of this function |
3565 | | * in pixCompareWithTranslation(). |
3566 | | * </pre> |
3567 | | */ |
3568 | | l_ok |
3569 | | pixBestCorrelation(PIX *pix1, |
3570 | | PIX *pix2, |
3571 | | l_int32 area1, |
3572 | | l_int32 area2, |
3573 | | l_int32 etransx, |
3574 | | l_int32 etransy, |
3575 | | l_int32 maxshift, |
3576 | | l_int32 *tab8, |
3577 | | l_int32 *pdelx, |
3578 | | l_int32 *pdely, |
3579 | | l_float32 *pscore, |
3580 | | l_int32 debugflag) |
3581 | 0 | { |
3582 | 0 | l_int32 shiftx, shifty, delx, dely; |
3583 | 0 | l_int32 *tab; |
3584 | 0 | l_float32 maxscore, score; |
3585 | 0 | FPIX *fpix = NULL; |
3586 | 0 | PIX *pix3, *pix4; |
3587 | |
|
3588 | 0 | if (pdelx) *pdelx = 0; |
3589 | 0 | if (pdely) *pdely = 0; |
3590 | 0 | if (pscore) *pscore = 0.0; |
3591 | 0 | if (!pix1 || pixGetDepth(pix1) != 1) |
3592 | 0 | return ERROR_INT("pix1 not defined or not 1 bpp", __func__, 1); |
3593 | 0 | if (!pix2 || pixGetDepth(pix2) != 1) |
3594 | 0 | return ERROR_INT("pix2 not defined or not 1 bpp", __func__, 1); |
3595 | 0 | if (!area1 || !area2) |
3596 | 0 | return ERROR_INT("areas must be > 0", __func__, 1); |
3597 | | |
3598 | 0 | if (debugflag > 0) |
3599 | 0 | fpix = fpixCreate(2 * maxshift + 1, 2 * maxshift + 1); |
3600 | |
|
3601 | 0 | if (!tab8) |
3602 | 0 | tab = makePixelSumTab8(); |
3603 | 0 | else |
3604 | 0 | tab = tab8; |
3605 | | |
3606 | | /* Search over a set of {shiftx, shifty} for the max */ |
3607 | 0 | maxscore = 0; |
3608 | 0 | delx = etransx; |
3609 | 0 | dely = etransy; |
3610 | 0 | for (shifty = -maxshift; shifty <= maxshift; shifty++) { |
3611 | 0 | for (shiftx = -maxshift; shiftx <= maxshift; shiftx++) { |
3612 | 0 | pixCorrelationScoreShifted(pix1, pix2, area1, area2, |
3613 | 0 | etransx + shiftx, |
3614 | 0 | etransy + shifty, tab, &score); |
3615 | 0 | if (debugflag > 0) { |
3616 | 0 | fpixSetPixel(fpix, maxshift + shiftx, maxshift + shifty, |
3617 | 0 | 1000.0 * score); |
3618 | | /* lept_stderr("(sx, sy) = (%d, %d): score = %6.4f\n", |
3619 | | shiftx, shifty, score); */ |
3620 | 0 | } |
3621 | 0 | if (score > maxscore) { |
3622 | 0 | maxscore = score; |
3623 | 0 | delx = etransx + shiftx; |
3624 | 0 | dely = etransy + shifty; |
3625 | 0 | } |
3626 | 0 | } |
3627 | 0 | } |
3628 | |
|
3629 | 0 | if (debugflag > 0) { |
3630 | 0 | char buf[128]; |
3631 | 0 | lept_mkdir("lept/comp"); |
3632 | 0 | pix3 = fpixDisplayMaxDynamicRange(fpix); |
3633 | 0 | pix4 = pixExpandReplicate(pix3, 20); |
3634 | 0 | snprintf(buf, sizeof(buf), "/tmp/lept/comp/correl_%d.png", |
3635 | 0 | debugflag); |
3636 | 0 | pixWrite(buf, pix4, IFF_PNG); |
3637 | 0 | pixDestroy(&pix3); |
3638 | 0 | pixDestroy(&pix4); |
3639 | 0 | fpixDestroy(&fpix); |
3640 | 0 | } |
3641 | |
|
3642 | 0 | if (pdelx) *pdelx = delx; |
3643 | 0 | if (pdely) *pdely = dely; |
3644 | 0 | if (pscore) *pscore = maxscore; |
3645 | 0 | if (!tab8) LEPT_FREE(tab); |
3646 | 0 | return 0; |
3647 | 0 | } |