/src/leptonica/src/pixarith.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | /*! |
28 | | * \file pixarith.c |
29 | | * <pre> |
30 | | * |
31 | | * One-image grayscale arithmetic operations (8, 16, 32 bpp) |
32 | | * l_int32 pixAddConstantGray() |
33 | | * l_int32 pixMultConstantGray() |
34 | | * |
35 | | * Two-image grayscale arithmetic operations (8, 16, 32 bpp) |
36 | | * PIX *pixAddGray() |
37 | | * PIX *pixSubtractGray() |
38 | | * PIX *pixMultiplyGray() |
39 | | * |
40 | | * Grayscale threshold operation (8, 16, 32 bpp) |
41 | | * PIX *pixThresholdToValue() |
42 | | * |
43 | | * Image accumulator arithmetic operations |
44 | | * PIX *pixInitAccumulate() |
45 | | * PIX *pixFinalAccumulate() |
46 | | * PIX *pixFinalAccumulateThreshold() |
47 | | * l_int32 pixAccumulate() |
48 | | * l_int32 pixMultConstAccumulate() |
49 | | * |
50 | | * Absolute value of difference |
51 | | * PIX *pixAbsDifference() |
52 | | * |
53 | | * Sum of color images |
54 | | * PIX *pixAddRGB() |
55 | | * |
56 | | * Two-image min and max operations (8 and 16 bpp) |
57 | | * PIX *pixMinOrMax() |
58 | | * |
59 | | * Scale pix for maximum dynamic range |
60 | | * PIX *pixMaxDynamicRange() |
61 | | * PIX *pixMaxDynamicRangeRGB() |
62 | | * |
63 | | * RGB pixel value scaling |
64 | | * l_uint32 linearScaleRGBVal() |
65 | | * l_uint32 logScaleRGBVal() |
66 | | * |
67 | | * Log base2 lookup |
68 | | * l_float32 *makeLogBase2Tab() |
69 | | * l_float32 getLogBase2() |
70 | | * |
71 | | * The image accumulator operations are used when you expect |
72 | | * overflow from 8 bits on intermediate results. For example, |
73 | | * you might want a tophat contrast operator which is |
74 | | * 3*I - opening(I,S) - closing(I,S) |
75 | | * To use these operations, first use the init to generate |
76 | | * a 16 bpp image, use the accumulate to add or subtract 8 bpp |
77 | | * images from that, or the multiply constant to multiply |
78 | | * by a small constant (much less than 256 -- we don't want |
79 | | * overflow from the 16 bit images!), and when you're finished |
80 | | * use final to bring the result back to 8 bpp, clipped |
81 | | * if necessary. There is also a divide function, which |
82 | | * can be used to divide one image by another, scaling the |
83 | | * result for maximum dynamic range, and giving back the |
84 | | * 8 bpp result. |
85 | | * |
86 | | * A simpler interface to the arithmetic operations is |
87 | | * provided in pixacc.c. |
88 | | * </pre> |
89 | | */ |
90 | | |
91 | | #ifdef HAVE_CONFIG_H |
92 | | #include <config_auto.h> |
93 | | #endif /* HAVE_CONFIG_H */ |
94 | | |
95 | | #include <string.h> |
96 | | #include <math.h> |
97 | | #include "allheaders.h" |
98 | | |
99 | | /*-------------------------------------------------------------* |
100 | | * One-image grayscale arithmetic operations * |
101 | | *-------------------------------------------------------------*/ |
102 | | /*! |
103 | | * \brief pixAddConstantGray() |
104 | | * |
105 | | * \param[in] pixs 8, 16 or 32 bpp |
106 | | * \param[in] val amount to add to each pixel |
107 | | * \return 0 if OK, 1 on error |
108 | | * |
109 | | * <pre> |
110 | | * Notes: |
111 | | * (1) In-place operation. |
112 | | * (2) No clipping for 32 bpp. |
113 | | * (3) For 8 and 16 bpp, if val > 0 the result is clipped |
114 | | * to 0xff and 0xffff, rsp. |
115 | | * (4) For 8 and 16 bpp, if val < 0 the result is clipped to 0. |
116 | | * </pre> |
117 | | */ |
118 | | l_ok |
119 | | pixAddConstantGray(PIX *pixs, |
120 | | l_int32 val) |
121 | 0 | { |
122 | 0 | l_int32 i, j, w, h, d, wpl, pval; |
123 | 0 | l_uint32 *data, *line; |
124 | |
|
125 | 0 | if (!pixs) |
126 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
127 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
128 | 0 | if (d != 8 && d != 16 && d != 32) |
129 | 0 | return ERROR_INT("pixs not 8, 16 or 32 bpp", __func__, 1); |
130 | | |
131 | 0 | data = pixGetData(pixs); |
132 | 0 | wpl = pixGetWpl(pixs); |
133 | 0 | for (i = 0; i < h; i++) { |
134 | 0 | line = data + i * wpl; |
135 | 0 | if (d == 8) { |
136 | 0 | if (val < 0) { |
137 | 0 | for (j = 0; j < w; j++) { |
138 | 0 | pval = GET_DATA_BYTE(line, j); |
139 | 0 | pval = L_MAX(0, pval + val); |
140 | 0 | SET_DATA_BYTE(line, j, pval); |
141 | 0 | } |
142 | 0 | } else { /* val >= 0 */ |
143 | 0 | for (j = 0; j < w; j++) { |
144 | 0 | pval = GET_DATA_BYTE(line, j); |
145 | 0 | pval = L_MIN(255, pval + val); |
146 | 0 | SET_DATA_BYTE(line, j, pval); |
147 | 0 | } |
148 | 0 | } |
149 | 0 | } else if (d == 16) { |
150 | 0 | if (val < 0) { |
151 | 0 | for (j = 0; j < w; j++) { |
152 | 0 | pval = GET_DATA_TWO_BYTES(line, j); |
153 | 0 | pval = L_MAX(0, pval + val); |
154 | 0 | SET_DATA_TWO_BYTES(line, j, pval); |
155 | 0 | } |
156 | 0 | } else { /* val >= 0 */ |
157 | 0 | for (j = 0; j < w; j++) { |
158 | 0 | pval = GET_DATA_TWO_BYTES(line, j); |
159 | 0 | pval = L_MIN(0xffff, pval + val); |
160 | 0 | SET_DATA_TWO_BYTES(line, j, pval); |
161 | 0 | } |
162 | 0 | } |
163 | 0 | } else { /* d == 32; no check for overflow (< 0 or > 0xffffffff) */ |
164 | 0 | for (j = 0; j < w; j++) |
165 | 0 | *(line + j) += val; |
166 | 0 | } |
167 | 0 | } |
168 | |
|
169 | 0 | return 0; |
170 | 0 | } |
171 | | |
172 | | |
173 | | /*! |
174 | | * \brief pixMultConstantGray() |
175 | | * |
176 | | * \param[in] pixs 8, 16 or 32 bpp |
177 | | * \param[in] val >= 0.0; amount to multiply by each pixel |
178 | | * \return 0 if OK, 1 on error |
179 | | * |
180 | | * <pre> |
181 | | * Notes: |
182 | | * (1) In-place operation; val must be >= 0. |
183 | | * (2) No clipping for 32 bpp. |
184 | | * (3) For 8 and 16 bpp, the result is clipped to 0xff and 0xffff, rsp. |
185 | | * </pre> |
186 | | */ |
187 | | l_ok |
188 | | pixMultConstantGray(PIX *pixs, |
189 | | l_float32 val) |
190 | 0 | { |
191 | 0 | l_int32 i, j, w, h, d, wpl, pval; |
192 | 0 | l_uint32 upval; |
193 | 0 | l_uint32 *data, *line; |
194 | |
|
195 | 0 | if (!pixs) |
196 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
197 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
198 | 0 | if (d != 8 && d != 16 && d != 32) |
199 | 0 | return ERROR_INT("pixs not 8, 16 or 32 bpp", __func__, 1); |
200 | 0 | if (val < 0.0) |
201 | 0 | return ERROR_INT("val < 0.0", __func__, 1); |
202 | | |
203 | 0 | data = pixGetData(pixs); |
204 | 0 | wpl = pixGetWpl(pixs); |
205 | 0 | for (i = 0; i < h; i++) { |
206 | 0 | line = data + i * wpl; |
207 | 0 | if (d == 8) { |
208 | 0 | for (j = 0; j < w; j++) { |
209 | 0 | pval = GET_DATA_BYTE(line, j); |
210 | 0 | pval = (l_int32)(val * pval); |
211 | 0 | pval = L_MIN(255, pval); |
212 | 0 | SET_DATA_BYTE(line, j, pval); |
213 | 0 | } |
214 | 0 | } else if (d == 16) { |
215 | 0 | for (j = 0; j < w; j++) { |
216 | 0 | pval = GET_DATA_TWO_BYTES(line, j); |
217 | 0 | pval = (l_int32)(val * pval); |
218 | 0 | pval = L_MIN(0xffff, pval); |
219 | 0 | SET_DATA_TWO_BYTES(line, j, pval); |
220 | 0 | } |
221 | 0 | } else { /* d == 32; no clipping */ |
222 | 0 | for (j = 0; j < w; j++) { |
223 | 0 | upval = *(line + j); |
224 | 0 | upval = (l_uint32)(val * upval); |
225 | 0 | *(line + j) = upval; |
226 | 0 | } |
227 | 0 | } |
228 | 0 | } |
229 | |
|
230 | 0 | return 0; |
231 | 0 | } |
232 | | |
233 | | |
234 | | /*-------------------------------------------------------------* |
235 | | * Two-image grayscale arithmetic ops * |
236 | | *-------------------------------------------------------------*/ |
237 | | /*! |
238 | | * \brief pixAddGray() |
239 | | * |
240 | | * \param[in] pixd [optional]; this can be null, equal to pixs1, or |
241 | | * different from pixs1 |
242 | | * \param[in] pixs1 can be equal to pixd |
243 | | * \param[in] pixs2 |
244 | | * \return pixd always |
245 | | * |
246 | | * <pre> |
247 | | * Notes: |
248 | | * (1) Arithmetic addition of two 8, 16 or 32 bpp images. |
249 | | * (2) For 8 and 16 bpp, we do explicit clipping to 0xff and 0xffff, |
250 | | * respectively. |
251 | | * (3) Alignment is to UL corner. |
252 | | * (4) There are 3 cases. The result can go to a new dest, |
253 | | * in-place to pixs1, or to an existing input dest: |
254 | | * * pixd == null: (src1 + src2) --> new pixd |
255 | | * * pixd == pixs1: (src1 + src2) --> src1 (in-place) |
256 | | * * pixd != pixs1: (src1 + src2) --> input pixd |
257 | | * (5) pixs2 must be different from both pixd and pixs1. |
258 | | * </pre> |
259 | | */ |
260 | | PIX * |
261 | | pixAddGray(PIX *pixd, |
262 | | PIX *pixs1, |
263 | | PIX *pixs2) |
264 | 0 | { |
265 | 0 | l_int32 i, j, d, ws, hs, w, h, wpls, wpld, val, sum; |
266 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
267 | |
|
268 | 0 | if (!pixs1) |
269 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
270 | 0 | if (!pixs2) |
271 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
272 | 0 | if (pixs2 == pixs1) |
273 | 0 | return (PIX *)ERROR_PTR("pixs2 and pixs1 must differ", __func__, pixd); |
274 | 0 | if (pixs2 == pixd) |
275 | 0 | return (PIX *)ERROR_PTR("pixs2 and pixd must differ", __func__, pixd); |
276 | 0 | d = pixGetDepth(pixs1); |
277 | 0 | if (d != 8 && d != 16 && d != 32) |
278 | 0 | return (PIX *)ERROR_PTR("pix are not 8, 16 or 32 bpp", __func__, pixd); |
279 | 0 | if (pixGetDepth(pixs2) != d) |
280 | 0 | return (PIX *)ERROR_PTR("depths differ (pixs1, pixs2)", __func__, pixd); |
281 | 0 | if (pixd && (pixGetDepth(pixd) != d)) |
282 | 0 | return (PIX *)ERROR_PTR("depths differ (pixs1, pixd)", __func__, pixd); |
283 | | |
284 | 0 | if (!pixSizesEqual(pixs1, pixs2)) |
285 | 0 | L_WARNING("pixs1 and pixs2 not equal in size\n", __func__); |
286 | 0 | if (pixd && !pixSizesEqual(pixs1, pixd)) |
287 | 0 | L_WARNING("pixs1 and pixd not equal in size\n", __func__); |
288 | |
|
289 | 0 | if (pixs1 != pixd) |
290 | 0 | pixd = pixCopy(pixd, pixs1); |
291 | | |
292 | | /* pixd + pixs2 ==> pixd */ |
293 | 0 | datas = pixGetData(pixs2); |
294 | 0 | datad = pixGetData(pixd); |
295 | 0 | wpls = pixGetWpl(pixs2); |
296 | 0 | wpld = pixGetWpl(pixd); |
297 | 0 | pixGetDimensions(pixs2, &ws, &hs, NULL); |
298 | 0 | pixGetDimensions(pixd, &w, &h, NULL); |
299 | 0 | w = L_MIN(ws, w); |
300 | 0 | h = L_MIN(hs, h); |
301 | 0 | for (i = 0; i < h; i++) { |
302 | 0 | lined = datad + i * wpld; |
303 | 0 | lines = datas + i * wpls; |
304 | 0 | if (d == 8) { |
305 | 0 | for (j = 0; j < w; j++) { |
306 | 0 | sum = GET_DATA_BYTE(lines, j) + GET_DATA_BYTE(lined, j); |
307 | 0 | val = L_MIN(sum, 255); |
308 | 0 | SET_DATA_BYTE(lined, j, val); |
309 | 0 | } |
310 | 0 | } else if (d == 16) { |
311 | 0 | for (j = 0; j < w; j++) { |
312 | 0 | sum = GET_DATA_TWO_BYTES(lines, j) |
313 | 0 | + GET_DATA_TWO_BYTES(lined, j); |
314 | 0 | val = L_MIN(sum, 0xffff); |
315 | 0 | SET_DATA_TWO_BYTES(lined, j, val); |
316 | 0 | } |
317 | 0 | } else { /* d == 32; no clipping */ |
318 | 0 | for (j = 0; j < w; j++) |
319 | 0 | *(lined + j) += *(lines + j); |
320 | 0 | } |
321 | 0 | } |
322 | |
|
323 | 0 | return pixd; |
324 | 0 | } |
325 | | |
326 | | |
327 | | /*! |
328 | | * \brief pixSubtractGray() |
329 | | * |
330 | | * \param[in] pixd [optional]; this can be null, equal to pixs1, or |
331 | | * different from pixs1 |
332 | | * \param[in] pixs1 can be equal to pixd |
333 | | * \param[in] pixs2 |
334 | | * \return pixd always |
335 | | * |
336 | | * <pre> |
337 | | * Notes: |
338 | | * (1) Arithmetic subtraction of two 8, 16 or 32 bpp images. |
339 | | * (2) Source pixs2 is always subtracted from source pixs1. |
340 | | * (3) Do explicit clipping to 0. |
341 | | * (4) Alignment is to UL corner. |
342 | | * (5) There are 3 cases. The result can go to a new dest, |
343 | | * in-place to pixs1, or to an existing input dest: |
344 | | * (a) pixd == null (src1 - src2) --> new pixd |
345 | | * (b) pixd == pixs1 (src1 - src2) --> src1 (in-place) |
346 | | * (d) pixd != pixs1 (src1 - src2) --> input pixd |
347 | | * (6) pixs2 must be different from both pixd and pixs1. |
348 | | * </pre> |
349 | | */ |
350 | | PIX * |
351 | | pixSubtractGray(PIX *pixd, |
352 | | PIX *pixs1, |
353 | | PIX *pixs2) |
354 | 0 | { |
355 | 0 | l_int32 i, j, w, h, ws, hs, d, wpls, wpld, val, diff; |
356 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
357 | |
|
358 | 0 | if (!pixs1) |
359 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
360 | 0 | if (!pixs2) |
361 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
362 | 0 | if (pixs2 == pixs1) |
363 | 0 | return (PIX *)ERROR_PTR("pixs2 and pixs1 must differ", __func__, pixd); |
364 | 0 | if (pixs2 == pixd) |
365 | 0 | return (PIX *)ERROR_PTR("pixs2 and pixd must differ", __func__, pixd); |
366 | 0 | d = pixGetDepth(pixs1); |
367 | 0 | if (d != 8 && d != 16 && d != 32) |
368 | 0 | return (PIX *)ERROR_PTR("pix are not 8, 16 or 32 bpp", __func__, pixd); |
369 | 0 | if (pixGetDepth(pixs2) != d) |
370 | 0 | return (PIX *)ERROR_PTR("depths differ (pixs1, pixs2)", __func__, pixd); |
371 | 0 | if (pixd && (pixGetDepth(pixd) != d)) |
372 | 0 | return (PIX *)ERROR_PTR("depths differ (pixs1, pixd)", __func__, pixd); |
373 | | |
374 | 0 | if (!pixSizesEqual(pixs1, pixs2)) |
375 | 0 | L_WARNING("pixs1 and pixs2 not equal in size\n", __func__); |
376 | 0 | if (pixd && !pixSizesEqual(pixs1, pixd)) |
377 | 0 | L_WARNING("pixs1 and pixd not equal in size\n", __func__); |
378 | |
|
379 | 0 | if (pixs1 != pixd) |
380 | 0 | pixd = pixCopy(pixd, pixs1); |
381 | | |
382 | | /* pixd - pixs2 ==> pixd */ |
383 | 0 | datas = pixGetData(pixs2); |
384 | 0 | datad = pixGetData(pixd); |
385 | 0 | wpls = pixGetWpl(pixs2); |
386 | 0 | wpld = pixGetWpl(pixd); |
387 | 0 | pixGetDimensions(pixs2, &ws, &hs, NULL); |
388 | 0 | pixGetDimensions(pixd, &w, &h, NULL); |
389 | 0 | w = L_MIN(ws, w); |
390 | 0 | h = L_MIN(hs, h); |
391 | 0 | for (i = 0; i < h; i++) { |
392 | 0 | lined = datad + i * wpld; |
393 | 0 | lines = datas + i * wpls; |
394 | 0 | if (d == 8) { |
395 | 0 | for (j = 0; j < w; j++) { |
396 | 0 | diff = GET_DATA_BYTE(lined, j) - GET_DATA_BYTE(lines, j); |
397 | 0 | val = L_MAX(diff, 0); |
398 | 0 | SET_DATA_BYTE(lined, j, val); |
399 | 0 | } |
400 | 0 | } else if (d == 16) { |
401 | 0 | for (j = 0; j < w; j++) { |
402 | 0 | diff = GET_DATA_TWO_BYTES(lined, j) |
403 | 0 | - GET_DATA_TWO_BYTES(lines, j); |
404 | 0 | val = L_MAX(diff, 0); |
405 | 0 | SET_DATA_TWO_BYTES(lined, j, val); |
406 | 0 | } |
407 | 0 | } else { /* d == 32; no clipping */ |
408 | 0 | for (j = 0; j < w; j++) |
409 | 0 | *(lined + j) -= *(lines + j); |
410 | 0 | } |
411 | 0 | } |
412 | |
|
413 | 0 | return pixd; |
414 | 0 | } |
415 | | |
416 | | |
417 | | /*! |
418 | | * \brief pixMultiplyGray() |
419 | | * |
420 | | * \param[in] pixs 32 bpp rgb or 8 bpp gray |
421 | | * \param[in] pixg 8 bpp gray |
422 | | * \param[in] norm multiplicative factor to avoid overflow; 0 for default |
423 | | * \return pixd, or null on error |
424 | | * |
425 | | * <pre> |
426 | | * Notes: |
427 | | * (1) This function can be used for correcting a scanned image |
428 | | * under non-uniform illumination. For that application, |
429 | | * %pixs is the scanned image, %pixg is an image whose values |
430 | | * are inversely related to light from a uniform (say, white) |
431 | | * target, and %norm is typically the inverse of the maximum |
432 | | * pixel value in %pixg. |
433 | | * (2) Set norm = 0 to get the default value, which is the inverse |
434 | | * of the max value in %pixg. This avoids overflow in the product. |
435 | | * (3) For 32 bpp %pixs, all 3 components are multiplied by the |
436 | | * same number. |
437 | | * (4) Alignment is to UL corner. |
438 | | * </pre> |
439 | | */ |
440 | | PIX * |
441 | | pixMultiplyGray(PIX *pixs, |
442 | | PIX *pixg, |
443 | | l_float32 norm) |
444 | 0 | { |
445 | 0 | l_int32 i, j, w, h, d, ws, hs, ds, wpls, wplg, wpld; |
446 | 0 | l_int32 rval, gval, bval, rval2, gval2, bval2, vals, valg, val, maxgray; |
447 | 0 | l_uint32 val32; |
448 | 0 | l_uint32 *datas, *datag, *datad, *lines, *lineg, *lined; |
449 | 0 | PIX *pixd; |
450 | |
|
451 | 0 | if (!pixs) |
452 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
453 | 0 | pixGetDimensions(pixs, &ws, &hs, &ds); |
454 | 0 | if (ds != 8 && ds != 32) |
455 | 0 | return (PIX *)ERROR_PTR("pixs not 8 or 32 bpp", __func__, NULL); |
456 | 0 | if (!pixg) |
457 | 0 | return (PIX *)ERROR_PTR("pixg not defined", __func__, NULL); |
458 | 0 | pixGetDimensions(pixg, &w, &h, &d); |
459 | 0 | if (d != 8) |
460 | 0 | return (PIX *)ERROR_PTR("pixg not 8 bpp", __func__, NULL); |
461 | | |
462 | 0 | if (norm <= 0.0) { |
463 | 0 | pixGetExtremeValue(pixg, 1, L_SELECT_MAX, NULL, NULL, NULL, &maxgray); |
464 | 0 | norm = (maxgray > 0) ? 1.0f / (l_float32)maxgray : 1.0f; |
465 | 0 | } |
466 | |
|
467 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
468 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
469 | 0 | datas = pixGetData(pixs); |
470 | 0 | datag = pixGetData(pixg); |
471 | 0 | datad = pixGetData(pixd); |
472 | 0 | wpls = pixGetWpl(pixs); |
473 | 0 | wplg = pixGetWpl(pixg); |
474 | 0 | wpld = pixGetWpl(pixd); |
475 | 0 | w = L_MIN(ws, w); |
476 | 0 | h = L_MIN(hs, h); |
477 | 0 | for (i = 0; i < h; i++) { |
478 | 0 | lines = datas + i * wpls; |
479 | 0 | lineg = datag + i * wplg; |
480 | 0 | lined = datad + i * wpld; |
481 | 0 | if (ds == 8) { |
482 | 0 | for (j = 0; j < w; j++) { |
483 | 0 | vals = GET_DATA_BYTE(lines, j); |
484 | 0 | valg = GET_DATA_BYTE(lineg, j); |
485 | 0 | val = (l_int32)(vals * valg * norm + 0.5); |
486 | 0 | val = L_MIN(255, val); |
487 | 0 | SET_DATA_BYTE(lined, j, val); |
488 | 0 | } |
489 | 0 | } else { /* ds == 32 */ |
490 | 0 | for (j = 0; j < w; j++) { |
491 | 0 | val32 = *(lines + j); |
492 | 0 | extractRGBValues(val32, &rval, &gval, &bval); |
493 | 0 | valg = GET_DATA_BYTE(lineg, j); |
494 | 0 | rval2 = (l_int32)(rval * valg * norm + 0.5); |
495 | 0 | rval2 = L_MIN(255, rval2); |
496 | 0 | gval2 = (l_int32)(gval * valg * norm + 0.5); |
497 | 0 | gval2 = L_MIN(255, gval2); |
498 | 0 | bval2 = (l_int32)(bval * valg * norm + 0.5); |
499 | 0 | bval2 = L_MIN(255, bval2); |
500 | 0 | composeRGBPixel(rval2, gval2, bval2, lined + j); |
501 | 0 | } |
502 | 0 | } |
503 | 0 | } |
504 | |
|
505 | 0 | return pixd; |
506 | 0 | } |
507 | | |
508 | | |
509 | | /*-------------------------------------------------------------* |
510 | | * Grayscale threshold operation * |
511 | | *-------------------------------------------------------------*/ |
512 | | /*! |
513 | | * \brief pixThresholdToValue() |
514 | | * |
515 | | * \param[in] pixd [optional]; if not null, must be equal to pixs |
516 | | * \param[in] pixs 8, 16, 32 bpp |
517 | | * \param[in] threshval |
518 | | * \param[in] setval |
519 | | * \return pixd always |
520 | | * |
521 | | * <pre> |
522 | | * Notes: |
523 | | * ~ operation can be in-place (pixs == pixd) or to a new pixd |
524 | | * ~ if %setval > %threshval, sets pixels with a value >= threshval to setval |
525 | | * ~ if %setval < %threshval, sets pixels with a value <= threshval to setval |
526 | | * ~ if %setval == %threshval, no-op |
527 | | * </pre> |
528 | | */ |
529 | | PIX * |
530 | | pixThresholdToValue(PIX *pixd, |
531 | | PIX *pixs, |
532 | | l_int32 threshval, |
533 | | l_int32 setval) |
534 | 0 | { |
535 | 0 | l_int32 i, j, w, h, d, wpld, setabove; |
536 | 0 | l_uint32 *datad, *lined; |
537 | |
|
538 | 0 | if (!pixs) |
539 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
540 | 0 | d = pixGetDepth(pixs); |
541 | 0 | if (d != 8 && d != 16 && d != 32) |
542 | 0 | return (PIX *)ERROR_PTR("pixs not 8, 16 or 32 bpp", __func__, pixd); |
543 | 0 | if (pixd && (pixs != pixd)) |
544 | 0 | return (PIX *)ERROR_PTR("pixd exists and is not pixs", __func__, pixd); |
545 | 0 | if (threshval < 0 || setval < 0) |
546 | 0 | return (PIX *)ERROR_PTR("threshval & setval not < 0", __func__, pixd); |
547 | 0 | if (d == 8 && setval > 255) |
548 | 0 | return (PIX *)ERROR_PTR("setval > 255 for 8 bpp", __func__, pixd); |
549 | 0 | if (d == 16 && setval > 0xffff) |
550 | 0 | return (PIX *)ERROR_PTR("setval > 0xffff for 16 bpp", __func__, pixd); |
551 | | |
552 | 0 | if (!pixd) |
553 | 0 | pixd = pixCopy(NULL, pixs); |
554 | 0 | if (setval == threshval) { |
555 | 0 | L_WARNING("setval == threshval; no operation\n", __func__); |
556 | 0 | return pixd; |
557 | 0 | } |
558 | | |
559 | 0 | datad = pixGetData(pixd); |
560 | 0 | pixGetDimensions(pixd, &w, &h, NULL); |
561 | 0 | wpld = pixGetWpl(pixd); |
562 | 0 | if (setval > threshval) |
563 | 0 | setabove = TRUE; |
564 | 0 | else |
565 | 0 | setabove = FALSE; |
566 | |
|
567 | 0 | for (i = 0; i < h; i++) { |
568 | 0 | lined = datad + i * wpld; |
569 | 0 | if (setabove == TRUE) { |
570 | 0 | if (d == 8) { |
571 | 0 | for (j = 0; j < w; j++) { |
572 | 0 | if (GET_DATA_BYTE(lined, j) - threshval >= 0) |
573 | 0 | SET_DATA_BYTE(lined, j, setval); |
574 | 0 | } |
575 | 0 | } else if (d == 16) { |
576 | 0 | for (j = 0; j < w; j++) { |
577 | 0 | if (GET_DATA_TWO_BYTES(lined, j) - threshval >= 0) |
578 | 0 | SET_DATA_TWO_BYTES(lined, j, setval); |
579 | 0 | } |
580 | 0 | } else { /* d == 32 */ |
581 | 0 | for (j = 0; j < w; j++) { |
582 | 0 | if (*(lined + j) >= threshval) |
583 | 0 | *(lined + j) = setval; |
584 | 0 | } |
585 | 0 | } |
586 | 0 | } else { /* set if below or at threshold */ |
587 | 0 | if (d == 8) { |
588 | 0 | for (j = 0; j < w; j++) { |
589 | 0 | if (GET_DATA_BYTE(lined, j) - threshval <= 0) |
590 | 0 | SET_DATA_BYTE(lined, j, setval); |
591 | 0 | } |
592 | 0 | } else if (d == 16) { |
593 | 0 | for (j = 0; j < w; j++) { |
594 | 0 | if (GET_DATA_TWO_BYTES(lined, j) - threshval <= 0) |
595 | 0 | SET_DATA_TWO_BYTES(lined, j, setval); |
596 | 0 | } |
597 | 0 | } else { /* d == 32 */ |
598 | 0 | for (j = 0; j < w; j++) { |
599 | 0 | if (*(lined + j) <= threshval) |
600 | 0 | *(lined + j) = setval; |
601 | 0 | } |
602 | 0 | } |
603 | 0 | } |
604 | 0 | } |
605 | |
|
606 | 0 | return pixd; |
607 | 0 | } |
608 | | |
609 | | |
610 | | /*-------------------------------------------------------------* |
611 | | * Image accumulator arithmetic operations * |
612 | | *-------------------------------------------------------------*/ |
613 | | /*! |
614 | | * \brief pixInitAccumulate() |
615 | | * |
616 | | * \param[in] w, h of accumulate array |
617 | | * \param[in] offset initialize the 32 bpp to have this |
618 | | * value; not more than 0x40000000 |
619 | | * \return pixd 32 bpp, or NULL on error |
620 | | * |
621 | | * <pre> |
622 | | * Notes: |
623 | | * (1) %offset must be >= 0. |
624 | | * (2) %offset is used so that we can do arithmetic |
625 | | * with negative number results on l_uint32 data; it |
626 | | * prevents the l_uint32 data from going negative. |
627 | | * (3) Because we use l_int32 intermediate data results, |
628 | | * these should never exceed the max of l_int32 (0x7fffffff). |
629 | | * We do not permit the offset to be above 0x40000000, |
630 | | * which is half way between 0 and the max of l_int32. |
631 | | * (4) The same offset should be used for initialization, |
632 | | * multiplication by a constant, and final extraction! |
633 | | * (5) If you're only adding positive values, %offset can be 0. |
634 | | * </pre> |
635 | | */ |
636 | | PIX * |
637 | | pixInitAccumulate(l_int32 w, |
638 | | l_int32 h, |
639 | | l_uint32 offset) |
640 | 0 | { |
641 | 0 | PIX *pixd; |
642 | |
|
643 | 0 | if ((pixd = pixCreate(w, h, 32)) == NULL) |
644 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
645 | 0 | if (offset > 0x40000000) |
646 | 0 | offset = 0x40000000; |
647 | 0 | pixSetAllArbitrary(pixd, offset); |
648 | 0 | return pixd; |
649 | 0 | } |
650 | | |
651 | | |
652 | | /*! |
653 | | * \brief pixFinalAccumulate() |
654 | | * |
655 | | * \param[in] pixs 32 bpp |
656 | | * \param[in] offset same as used for initialization |
657 | | * \param[in] depth 8, 16 or 32 bpp, of destination |
658 | | * \return pixd 8, 16 or 32 bpp, or NULL on error |
659 | | * |
660 | | * <pre> |
661 | | * Notes: |
662 | | * (1) %offset must be >= 0 and should not exceed 0x40000000. |
663 | | * (2) %offset is subtracted from the src 32 bpp image |
664 | | * (3) For 8 bpp dest, the result is clipped to [0, 0xff] |
665 | | * (4) For 16 bpp dest, the result is clipped to [0, 0xffff] |
666 | | * </pre> |
667 | | */ |
668 | | PIX * |
669 | | pixFinalAccumulate(PIX *pixs, |
670 | | l_uint32 offset, |
671 | | l_int32 depth) |
672 | 0 | { |
673 | 0 | l_int32 i, j, w, h, wpls, wpld, val; |
674 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
675 | 0 | PIX *pixd; |
676 | |
|
677 | 0 | if (!pixs) |
678 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
679 | 0 | if (pixGetDepth(pixs) != 32) |
680 | 0 | return (PIX *)ERROR_PTR("pixs not 32 bpp", __func__, NULL); |
681 | 0 | if (depth != 8 && depth != 16 && depth != 32) |
682 | 0 | return (PIX *)ERROR_PTR("dest depth not 8, 16, 32 bpp", __func__, NULL); |
683 | 0 | if (offset > 0x40000000) |
684 | 0 | offset = 0x40000000; |
685 | |
|
686 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
687 | 0 | if ((pixd = pixCreate(w, h, depth)) == NULL) |
688 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
689 | 0 | pixCopyResolution(pixd, pixs); /* but how did pixs get it initially? */ |
690 | 0 | datas = pixGetData(pixs); |
691 | 0 | datad = pixGetData(pixd); |
692 | 0 | wpls = pixGetWpl(pixs); |
693 | 0 | wpld = pixGetWpl(pixd); |
694 | 0 | if (depth == 8) { |
695 | 0 | for (i = 0; i < h; i++) { |
696 | 0 | lines = datas + i * wpls; |
697 | 0 | lined = datad + i * wpld; |
698 | 0 | for (j = 0; j < w; j++) { |
699 | 0 | val = lines[j] - offset; |
700 | 0 | val = L_MAX(0, val); |
701 | 0 | val = L_MIN(255, val); |
702 | 0 | SET_DATA_BYTE(lined, j, (l_uint8)val); |
703 | 0 | } |
704 | 0 | } |
705 | 0 | } else if (depth == 16) { |
706 | 0 | for (i = 0; i < h; i++) { |
707 | 0 | lines = datas + i * wpls; |
708 | 0 | lined = datad + i * wpld; |
709 | 0 | for (j = 0; j < w; j++) { |
710 | 0 | val = lines[j] - offset; |
711 | 0 | val = L_MAX(0, val); |
712 | 0 | val = L_MIN(0xffff, val); |
713 | 0 | SET_DATA_TWO_BYTES(lined, j, (l_uint16)val); |
714 | 0 | } |
715 | 0 | } |
716 | 0 | } else { /* depth == 32 */ |
717 | 0 | for (i = 0; i < h; i++) { |
718 | 0 | lines = datas + i * wpls; |
719 | 0 | lined = datad + i * wpld; |
720 | 0 | for (j = 0; j < w; j++) |
721 | 0 | lined[j] = lines[j] - offset; |
722 | 0 | } |
723 | 0 | } |
724 | |
|
725 | 0 | return pixd; |
726 | 0 | } |
727 | | |
728 | | |
729 | | /*! |
730 | | * \brief pixFinalAccumulateThreshold() |
731 | | * |
732 | | * \param[in] pixs 32 bpp |
733 | | * \param[in] offset same as used for initialization |
734 | | * \param[in] threshold values less than this are set in the destination |
735 | | * \return pixd 1 bpp, or NULL on error |
736 | | * |
737 | | * <pre> |
738 | | * Notes: |
739 | | * (1) %offset must be >= 0 and should not exceed 0x40000000. |
740 | | * (2) %offset is subtracted from the src 32 bpp image |
741 | | * </pre> |
742 | | */ |
743 | | PIX * |
744 | | pixFinalAccumulateThreshold(PIX *pixs, |
745 | | l_uint32 offset, |
746 | | l_uint32 threshold) |
747 | 0 | { |
748 | 0 | l_int32 i, j, w, h, wpls, wpld, val; |
749 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
750 | 0 | PIX *pixd; |
751 | |
|
752 | 0 | if (!pixs) |
753 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
754 | 0 | if (pixGetDepth(pixs) != 32) |
755 | 0 | return (PIX *)ERROR_PTR("pixs not 32 bpp", __func__, NULL); |
756 | 0 | if (offset > 0x40000000) |
757 | 0 | offset = 0x40000000; |
758 | |
|
759 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
760 | 0 | if ((pixd = pixCreate(w, h, 1)) == NULL) |
761 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
762 | 0 | pixCopyResolution(pixd, pixs); /* but how did pixs get it initially? */ |
763 | 0 | datas = pixGetData(pixs); |
764 | 0 | datad = pixGetData(pixd); |
765 | 0 | wpls = pixGetWpl(pixs); |
766 | 0 | wpld = pixGetWpl(pixd); |
767 | 0 | for (i = 0; i < h; i++) { |
768 | 0 | lines = datas + i * wpls; |
769 | 0 | lined = datad + i * wpld; |
770 | 0 | for (j = 0; j < w; j++) { |
771 | 0 | val = lines[j] - offset; |
772 | 0 | if (val >= threshold) { |
773 | 0 | SET_DATA_BIT(lined, j); |
774 | 0 | } |
775 | 0 | } |
776 | 0 | } |
777 | |
|
778 | 0 | return pixd; |
779 | 0 | } |
780 | | |
781 | | |
782 | | /*! |
783 | | * \brief pixAccumulate() |
784 | | * |
785 | | * \param[in] pixd 32 bpp |
786 | | * \param[in] pixs 1, 8, 16 or 32 bpp |
787 | | * \param[in] op L_ARITH_ADD or L_ARITH_SUBTRACT |
788 | | * \return 0 if OK; 1 on error |
789 | | * |
790 | | * <pre> |
791 | | * Notes: |
792 | | * (1) This adds or subtracts each pixs value from pixd. |
793 | | * (2) This clips to the minimum of pixs and pixd, so they |
794 | | * do not need to be the same size. |
795 | | * (3) The alignment is to the origin [UL corner] of pixs & pixd. |
796 | | * </pre> |
797 | | */ |
798 | | l_ok |
799 | | pixAccumulate(PIX *pixd, |
800 | | PIX *pixs, |
801 | | l_int32 op) |
802 | 0 | { |
803 | 0 | l_int32 i, j, w, h, d, wd, hd, wpls, wpld; |
804 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
805 | | |
806 | |
|
807 | 0 | if (!pixd || (pixGetDepth(pixd) != 32)) |
808 | 0 | return ERROR_INT("pixd not defined or not 32 bpp", __func__, 1); |
809 | 0 | if (!pixs) |
810 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
811 | 0 | d = pixGetDepth(pixs); |
812 | 0 | if (d != 1 && d != 8 && d != 16 && d != 32) |
813 | 0 | return ERROR_INT("pixs not 1, 8, 16 or 32 bpp", __func__, 1); |
814 | 0 | if (op != L_ARITH_ADD && op != L_ARITH_SUBTRACT) |
815 | 0 | return ERROR_INT("op must be in {L_ARITH_ADD, L_ARITH_SUBTRACT}", |
816 | 0 | __func__, 1); |
817 | | |
818 | 0 | datas = pixGetData(pixs); |
819 | 0 | datad = pixGetData(pixd); |
820 | 0 | wpls = pixGetWpl(pixs); |
821 | 0 | wpld = pixGetWpl(pixd); |
822 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
823 | 0 | pixGetDimensions(pixd, &wd, &hd, NULL); |
824 | 0 | w = L_MIN(w, wd); |
825 | 0 | h = L_MIN(h, hd); |
826 | 0 | if (d == 1) { |
827 | 0 | for (i = 0; i < h; i++) { |
828 | 0 | lines = datas + i * wpls; |
829 | 0 | lined = datad + i * wpld; |
830 | 0 | if (op == L_ARITH_ADD) { |
831 | 0 | for (j = 0; j < w; j++) |
832 | 0 | lined[j] += GET_DATA_BIT(lines, j); |
833 | 0 | } else { /* op == L_ARITH_SUBTRACT */ |
834 | 0 | for (j = 0; j < w; j++) |
835 | 0 | lined[j] -= GET_DATA_BIT(lines, j); |
836 | 0 | } |
837 | 0 | } |
838 | 0 | } else if (d == 8) { |
839 | 0 | for (i = 0; i < h; i++) { |
840 | 0 | lines = datas + i * wpls; |
841 | 0 | lined = datad + i * wpld; |
842 | 0 | if (op == L_ARITH_ADD) { |
843 | 0 | for (j = 0; j < w; j++) |
844 | 0 | lined[j] += GET_DATA_BYTE(lines, j); |
845 | 0 | } else { /* op == L_ARITH_SUBTRACT */ |
846 | 0 | for (j = 0; j < w; j++) |
847 | 0 | lined[j] -= GET_DATA_BYTE(lines, j); |
848 | 0 | } |
849 | 0 | } |
850 | 0 | } else if (d == 16) { |
851 | 0 | for (i = 0; i < h; i++) { |
852 | 0 | lines = datas + i * wpls; |
853 | 0 | lined = datad + i * wpld; |
854 | 0 | if (op == L_ARITH_ADD) { |
855 | 0 | for (j = 0; j < w; j++) |
856 | 0 | lined[j] += GET_DATA_TWO_BYTES(lines, j); |
857 | 0 | } else { /* op == L_ARITH_SUBTRACT */ |
858 | 0 | for (j = 0; j < w; j++) |
859 | 0 | lined[j] -= GET_DATA_TWO_BYTES(lines, j); |
860 | 0 | } |
861 | 0 | } |
862 | 0 | } else { /* d == 32 */ |
863 | 0 | for (i = 0; i < h; i++) { |
864 | 0 | lines = datas + i * wpls; |
865 | 0 | lined = datad + i * wpld; |
866 | 0 | if (op == L_ARITH_ADD) { |
867 | 0 | for (j = 0; j < w; j++) |
868 | 0 | lined[j] += lines[j]; |
869 | 0 | } else { /* op == L_ARITH_SUBTRACT */ |
870 | 0 | for (j = 0; j < w; j++) |
871 | 0 | lined[j] -= lines[j]; |
872 | 0 | } |
873 | 0 | } |
874 | 0 | } |
875 | |
|
876 | 0 | return 0; |
877 | 0 | } |
878 | | |
879 | | |
880 | | /*! |
881 | | * \brief pixMultConstAccumulate() |
882 | | * |
883 | | * \param[in] pixs 32 bpp |
884 | | * \param[in] factor |
885 | | * \param[in] offset same as used for initialization |
886 | | * \return 0 if OK; 1 on error |
887 | | * |
888 | | * <pre> |
889 | | * Notes: |
890 | | * (1) %offset must be >= 0 and should not exceed 0x40000000. |
891 | | * (2) This multiplies each pixel, relative to offset, by %factor. |
892 | | * (3) The result is returned with %offset back in place. |
893 | | * </pre> |
894 | | */ |
895 | | l_ok |
896 | | pixMultConstAccumulate(PIX *pixs, |
897 | | l_float32 factor, |
898 | | l_uint32 offset) |
899 | 0 | { |
900 | 0 | l_int32 i, j, w, h, wpl, val; |
901 | 0 | l_uint32 *data, *line; |
902 | |
|
903 | 0 | if (!pixs) |
904 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
905 | 0 | if (pixGetDepth(pixs) != 32) |
906 | 0 | return ERROR_INT("pixs not 32 bpp", __func__, 1); |
907 | 0 | if (offset > 0x40000000) |
908 | 0 | offset = 0x40000000; |
909 | |
|
910 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
911 | 0 | data = pixGetData(pixs); |
912 | 0 | wpl = pixGetWpl(pixs); |
913 | 0 | for (i = 0; i < h; i++) { |
914 | 0 | line = data + i * wpl; |
915 | 0 | for (j = 0; j < w; j++) { |
916 | 0 | val = line[j] - offset; |
917 | 0 | val = (l_int32)(val * factor); |
918 | 0 | val += offset; |
919 | 0 | line[j] = (l_uint32)val; |
920 | 0 | } |
921 | 0 | } |
922 | |
|
923 | 0 | return 0; |
924 | 0 | } |
925 | | |
926 | | |
927 | | /*-----------------------------------------------------------------------* |
928 | | * Absolute value of difference * |
929 | | *-----------------------------------------------------------------------*/ |
930 | | /*! |
931 | | * \brief pixAbsDifference() |
932 | | * |
933 | | * \param[in] pixs1, pixs2 both either 8 or 16 bpp gray, or 32 bpp RGB |
934 | | * \return pixd, or NULL on error |
935 | | * |
936 | | * <pre> |
937 | | * Notes: |
938 | | * (1) The depth of pixs1 and pixs2 must be equal. |
939 | | * (2) Clips computation to the min size, aligning the UL corners |
940 | | * (3) For 8 and 16 bpp, assumes one gray component. |
941 | | * (4) For 32 bpp, assumes 3 color components, and ignores the |
942 | | * LSB of each word (the alpha channel) |
943 | | * (5) Computes the absolute value of the difference between |
944 | | * each component value. |
945 | | * </pre> |
946 | | */ |
947 | | PIX * |
948 | | pixAbsDifference(PIX *pixs1, |
949 | | PIX *pixs2) |
950 | 0 | { |
951 | 0 | l_int32 i, j, w, h, w2, h2, d, wpls1, wpls2, wpld, val1, val2, diff; |
952 | 0 | l_int32 rval1, gval1, bval1, rval2, gval2, bval2, rdiff, gdiff, bdiff; |
953 | 0 | l_uint32 *datas1, *datas2, *datad, *lines1, *lines2, *lined; |
954 | 0 | PIX *pixd; |
955 | |
|
956 | 0 | if (!pixs1) |
957 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, NULL); |
958 | 0 | if (!pixs2) |
959 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, NULL); |
960 | 0 | d = pixGetDepth(pixs1); |
961 | 0 | if (d != pixGetDepth(pixs2)) |
962 | 0 | return (PIX *)ERROR_PTR("src1 and src2 depths unequal", __func__, NULL); |
963 | 0 | if (d != 8 && d != 16 && d != 32) |
964 | 0 | return (PIX *)ERROR_PTR("depths not in {8, 16, 32}", __func__, NULL); |
965 | | |
966 | 0 | pixGetDimensions(pixs1, &w, &h, NULL); |
967 | 0 | pixGetDimensions(pixs2, &w2, &h2, NULL); |
968 | 0 | w = L_MIN(w, w2); |
969 | 0 | h = L_MIN(h, h2); |
970 | 0 | if ((pixd = pixCreate(w, h, d)) == NULL) |
971 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
972 | 0 | pixCopyResolution(pixd, pixs1); |
973 | 0 | datas1 = pixGetData(pixs1); |
974 | 0 | datas2 = pixGetData(pixs2); |
975 | 0 | datad = pixGetData(pixd); |
976 | 0 | wpls1 = pixGetWpl(pixs1); |
977 | 0 | wpls2 = pixGetWpl(pixs2); |
978 | 0 | wpld = pixGetWpl(pixd); |
979 | 0 | if (d == 8) { |
980 | 0 | for (i = 0; i < h; i++) { |
981 | 0 | lines1 = datas1 + i * wpls1; |
982 | 0 | lines2 = datas2 + i * wpls2; |
983 | 0 | lined = datad + i * wpld; |
984 | 0 | for (j = 0; j < w; j++) { |
985 | 0 | val1 = GET_DATA_BYTE(lines1, j); |
986 | 0 | val2 = GET_DATA_BYTE(lines2, j); |
987 | 0 | diff = L_ABS(val1 - val2); |
988 | 0 | SET_DATA_BYTE(lined, j, diff); |
989 | 0 | } |
990 | 0 | } |
991 | 0 | } else if (d == 16) { |
992 | 0 | for (i = 0; i < h; i++) { |
993 | 0 | lines1 = datas1 + i * wpls1; |
994 | 0 | lines2 = datas2 + i * wpls2; |
995 | 0 | lined = datad + i * wpld; |
996 | 0 | for (j = 0; j < w; j++) { |
997 | 0 | val1 = GET_DATA_TWO_BYTES(lines1, j); |
998 | 0 | val2 = GET_DATA_TWO_BYTES(lines2, j); |
999 | 0 | diff = L_ABS(val1 - val2); |
1000 | 0 | SET_DATA_TWO_BYTES(lined, j, diff); |
1001 | 0 | } |
1002 | 0 | } |
1003 | 0 | } else { /* d == 32 */ |
1004 | 0 | for (i = 0; i < h; i++) { |
1005 | 0 | lines1 = datas1 + i * wpls1; |
1006 | 0 | lines2 = datas2 + i * wpls2; |
1007 | 0 | lined = datad + i * wpld; |
1008 | 0 | for (j = 0; j < w; j++) { |
1009 | 0 | extractRGBValues(lines1[j], &rval1, &gval1, &bval1); |
1010 | 0 | extractRGBValues(lines2[j], &rval2, &gval2, &bval2); |
1011 | 0 | rdiff = L_ABS(rval1 - rval2); |
1012 | 0 | gdiff = L_ABS(gval1 - gval2); |
1013 | 0 | bdiff = L_ABS(bval1 - bval2); |
1014 | 0 | composeRGBPixel(rdiff, gdiff, bdiff, lined + j); |
1015 | 0 | } |
1016 | 0 | } |
1017 | 0 | } |
1018 | |
|
1019 | 0 | return pixd; |
1020 | 0 | } |
1021 | | |
1022 | | |
1023 | | /*-----------------------------------------------------------------------* |
1024 | | * Sum of color images * |
1025 | | *-----------------------------------------------------------------------*/ |
1026 | | /*! |
1027 | | * \brief pixAddRGB() |
1028 | | * |
1029 | | * \param[in] pixs1, pixs2 32 bpp RGB, or colormapped |
1030 | | * \return pixd, or NULL on error |
1031 | | * |
1032 | | * <pre> |
1033 | | * Notes: |
1034 | | * (1) Clips computation to the minimum size, aligning the UL corners. |
1035 | | * (2) Removes any colormap to RGB, and ignores the LSB of each |
1036 | | * pixel word (the alpha channel). |
1037 | | * (3) Adds each component value, pixelwise, clipping to 255. |
1038 | | * (4) This is useful to combine two images where most of the |
1039 | | * pixels are essentially black, such as in pixPerceptualDiff(). |
1040 | | * </pre> |
1041 | | */ |
1042 | | PIX * |
1043 | | pixAddRGB(PIX *pixs1, |
1044 | | PIX *pixs2) |
1045 | 0 | { |
1046 | 0 | l_int32 i, j, w, h, d, w2, h2, d2, wplc1, wplc2, wpld; |
1047 | 0 | l_int32 rval1, gval1, bval1, rval2, gval2, bval2, rval, gval, bval; |
1048 | 0 | l_uint32 *datac1, *datac2, *datad, *linec1, *linec2, *lined; |
1049 | 0 | PIX *pixc1, *pixc2, *pixd; |
1050 | |
|
1051 | 0 | if (!pixs1) |
1052 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, NULL); |
1053 | 0 | if (!pixs2) |
1054 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, NULL); |
1055 | 0 | pixGetDimensions(pixs1, &w, &h, &d); |
1056 | 0 | pixGetDimensions(pixs2, &w2, &h2, &d2); |
1057 | 0 | if (!pixGetColormap(pixs1) && d != 32) |
1058 | 0 | return (PIX *)ERROR_PTR("pixs1 not cmapped or rgb", __func__, NULL); |
1059 | 0 | if (!pixGetColormap(pixs2) && d2 != 32) |
1060 | 0 | return (PIX *)ERROR_PTR("pixs2 not cmapped or rgb", __func__, NULL); |
1061 | 0 | if (pixGetColormap(pixs1)) |
1062 | 0 | pixc1 = pixRemoveColormap(pixs1, REMOVE_CMAP_TO_FULL_COLOR); |
1063 | 0 | else |
1064 | 0 | pixc1 = pixClone(pixs1); |
1065 | 0 | if (pixGetColormap(pixs2)) |
1066 | 0 | pixc2 = pixRemoveColormap(pixs2, REMOVE_CMAP_TO_FULL_COLOR); |
1067 | 0 | else |
1068 | 0 | pixc2 = pixClone(pixs2); |
1069 | |
|
1070 | 0 | w = L_MIN(w, w2); |
1071 | 0 | h = L_MIN(h, h2); |
1072 | 0 | pixd = pixCreate(w, h, 32); |
1073 | 0 | pixCopyResolution(pixd, pixs1); |
1074 | 0 | datac1 = pixGetData(pixc1); |
1075 | 0 | datac2 = pixGetData(pixc2); |
1076 | 0 | datad = pixGetData(pixd); |
1077 | 0 | wplc1 = pixGetWpl(pixc1); |
1078 | 0 | wplc2 = pixGetWpl(pixc2); |
1079 | 0 | wpld = pixGetWpl(pixd); |
1080 | 0 | for (i = 0; i < h; i++) { |
1081 | 0 | linec1 = datac1 + i * wplc1; |
1082 | 0 | linec2 = datac2 + i * wplc2; |
1083 | 0 | lined = datad + i * wpld; |
1084 | 0 | for (j = 0; j < w; j++) { |
1085 | 0 | extractRGBValues(linec1[j], &rval1, &gval1, &bval1); |
1086 | 0 | extractRGBValues(linec2[j], &rval2, &gval2, &bval2); |
1087 | 0 | rval = L_MIN(255, rval1 + rval2); |
1088 | 0 | gval = L_MIN(255, gval1 + gval2); |
1089 | 0 | bval = L_MIN(255, bval1 + bval2); |
1090 | 0 | composeRGBPixel(rval, gval, bval, lined + j); |
1091 | 0 | } |
1092 | 0 | } |
1093 | |
|
1094 | 0 | pixDestroy(&pixc1); |
1095 | 0 | pixDestroy(&pixc2); |
1096 | 0 | return pixd; |
1097 | 0 | } |
1098 | | |
1099 | | |
1100 | | /*-----------------------------------------------------------------------* |
1101 | | * Two-image min and max operations (8 and 16 bpp) * |
1102 | | *-----------------------------------------------------------------------*/ |
1103 | | /*! |
1104 | | * \brief pixMinOrMax() |
1105 | | * |
1106 | | * \param[in] pixd [optional] destination: this can be null, |
1107 | | * equal to pixs1, or different from pixs1 |
1108 | | * \param[in] pixs1 can be equal to pixd |
1109 | | * \param[in] pixs2 |
1110 | | * \param[in] type L_CHOOSE_MIN, L_CHOOSE_MAX |
1111 | | * \return pixd always |
1112 | | * |
1113 | | * <pre> |
1114 | | * Notes: |
1115 | | * (1) This gives the min or max of two images, component-wise. |
1116 | | * (2) The depth can be 8 or 16 bpp for 1 component, and 32 bpp |
1117 | | * for a 3 component image. For 32 bpp, ignore the LSB |
1118 | | * of each word (the alpha channel) |
1119 | | * (3) There are 3 cases: |
1120 | | * ~ if pixd == null, MinOrMax(src1, src2) --> new pixd |
1121 | | * ~ if pixd == pixs1, MinOrMax(src1, src2) --> src1 (in-place) |
1122 | | * ~ if pixd != pixs1, MinOrMax(src1, src2) --> input pixd |
1123 | | * </pre> |
1124 | | */ |
1125 | | PIX * |
1126 | | pixMinOrMax(PIX *pixd, |
1127 | | PIX *pixs1, |
1128 | | PIX *pixs2, |
1129 | | l_int32 type) |
1130 | 0 | { |
1131 | 0 | l_int32 d, ws, hs, w, h, wpls, wpld, i, j, vals, vald, val; |
1132 | 0 | l_int32 rval1, gval1, bval1, rval2, gval2, bval2, rval, gval, bval; |
1133 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
1134 | |
|
1135 | 0 | if (!pixs1) |
1136 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
1137 | 0 | if (!pixs2) |
1138 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
1139 | 0 | if (pixs1 == pixs2) |
1140 | 0 | return (PIX *)ERROR_PTR("pixs1 and pixs2 must differ", __func__, pixd); |
1141 | 0 | if (type != L_CHOOSE_MIN && type != L_CHOOSE_MAX) |
1142 | 0 | return (PIX *)ERROR_PTR("invalid type", __func__, pixd); |
1143 | 0 | d = pixGetDepth(pixs1); |
1144 | 0 | if (pixGetDepth(pixs2) != d) |
1145 | 0 | return (PIX *)ERROR_PTR("depths unequal", __func__, pixd); |
1146 | 0 | if (d != 8 && d != 16 && d != 32) |
1147 | 0 | return (PIX *)ERROR_PTR("depth not 8, 16 or 32 bpp", __func__, pixd); |
1148 | | |
1149 | 0 | if (pixs1 != pixd) |
1150 | 0 | pixd = pixCopy(pixd, pixs1); |
1151 | |
|
1152 | 0 | pixGetDimensions(pixs2, &ws, &hs, NULL); |
1153 | 0 | pixGetDimensions(pixd, &w, &h, NULL); |
1154 | 0 | w = L_MIN(w, ws); |
1155 | 0 | h = L_MIN(h, hs); |
1156 | 0 | datas = pixGetData(pixs2); |
1157 | 0 | datad = pixGetData(pixd); |
1158 | 0 | wpls = pixGetWpl(pixs2); |
1159 | 0 | wpld = pixGetWpl(pixd); |
1160 | 0 | for (i = 0; i < h; i++) { |
1161 | 0 | lines = datas + i * wpls; |
1162 | 0 | lined = datad + i * wpld; |
1163 | 0 | if (d == 8) { |
1164 | 0 | for (j = 0; j < w; j++) { |
1165 | 0 | vals = GET_DATA_BYTE(lines, j); |
1166 | 0 | vald = GET_DATA_BYTE(lined, j); |
1167 | 0 | if (type == L_CHOOSE_MIN) |
1168 | 0 | val = L_MIN(vals, vald); |
1169 | 0 | else /* type == L_CHOOSE_MAX */ |
1170 | 0 | val = L_MAX(vals, vald); |
1171 | 0 | SET_DATA_BYTE(lined, j, val); |
1172 | 0 | } |
1173 | 0 | } else if (d == 16) { |
1174 | 0 | for (j = 0; j < w; j++) { |
1175 | 0 | vals = GET_DATA_TWO_BYTES(lines, j); |
1176 | 0 | vald = GET_DATA_TWO_BYTES(lined, j); |
1177 | 0 | if (type == L_CHOOSE_MIN) |
1178 | 0 | val = L_MIN(vals, vald); |
1179 | 0 | else /* type == L_CHOOSE_MAX */ |
1180 | 0 | val = L_MAX(vals, vald); |
1181 | 0 | SET_DATA_TWO_BYTES(lined, j, val); |
1182 | 0 | } |
1183 | 0 | } else { /* d == 32 */ |
1184 | 0 | for (j = 0; j < w; j++) { |
1185 | 0 | extractRGBValues(lines[j], &rval1, &gval1, &bval1); |
1186 | 0 | extractRGBValues(lined[j], &rval2, &gval2, &bval2); |
1187 | 0 | if (type == L_CHOOSE_MIN) { |
1188 | 0 | rval = L_MIN(rval1, rval2); |
1189 | 0 | gval = L_MIN(gval1, gval2); |
1190 | 0 | bval = L_MIN(bval1, bval2); |
1191 | 0 | } else { /* type == L_CHOOSE_MAX */ |
1192 | 0 | rval = L_MAX(rval1, rval2); |
1193 | 0 | gval = L_MAX(gval1, gval2); |
1194 | 0 | bval = L_MAX(bval1, bval2); |
1195 | 0 | } |
1196 | 0 | composeRGBPixel(rval, gval, bval, lined + j); |
1197 | 0 | } |
1198 | 0 | } |
1199 | 0 | } |
1200 | |
|
1201 | 0 | return pixd; |
1202 | 0 | } |
1203 | | |
1204 | | |
1205 | | /*-----------------------------------------------------------------------* |
1206 | | * Scale for maximum dynamic range * |
1207 | | *-----------------------------------------------------------------------*/ |
1208 | | /*! |
1209 | | * \brief pixMaxDynamicRange() |
1210 | | * |
1211 | | * \param[in] pixs 4, 8, 16 or 32 bpp source |
1212 | | * \param[in] type L_LINEAR_SCALE or L_LOG_SCALE |
1213 | | * \return pixd 8 bpp, or NULL on error |
1214 | | * |
1215 | | * <pre> |
1216 | | * Notes: |
1217 | | * (1) Scales pixel values to fit maximally within the dest 8 bpp pixd |
1218 | | * (2) Assumes the source 'pixels' are a 1-component scalar. For |
1219 | | * a 32 bpp source, each pixel is treated as a single number -- |
1220 | | * not as a 3-component rgb pixel value. |
1221 | | * (3) Uses a LUT for log scaling. |
1222 | | * </pre> |
1223 | | */ |
1224 | | PIX * |
1225 | | pixMaxDynamicRange(PIX *pixs, |
1226 | | l_int32 type) |
1227 | 0 | { |
1228 | 0 | l_uint8 dval; |
1229 | 0 | l_int32 i, j, w, h, d, wpls, wpld, max; |
1230 | 0 | l_uint32 *datas, *datad; |
1231 | 0 | l_uint32 word, sval; |
1232 | 0 | l_uint32 *lines, *lined; |
1233 | 0 | l_float32 factor; |
1234 | 0 | l_float32 *tab; |
1235 | 0 | PIX *pixd; |
1236 | |
|
1237 | 0 | if (!pixs) |
1238 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1239 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
1240 | 0 | if (d != 4 && d != 8 && d != 16 && d != 32) |
1241 | 0 | return (PIX *)ERROR_PTR("pixs not in {4,8,16,32} bpp", __func__, NULL); |
1242 | 0 | if (type != L_LINEAR_SCALE && type != L_LOG_SCALE) |
1243 | 0 | return (PIX *)ERROR_PTR("invalid type", __func__, NULL); |
1244 | | |
1245 | 0 | if ((pixd = pixCreate(w, h, 8)) == NULL) |
1246 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
1247 | 0 | pixCopyResolution(pixd, pixs); |
1248 | 0 | datas = pixGetData(pixs); |
1249 | 0 | datad = pixGetData(pixd); |
1250 | 0 | wpls = pixGetWpl(pixs); |
1251 | 0 | wpld = pixGetWpl(pixd); |
1252 | | |
1253 | | /* Get max */ |
1254 | 0 | max = 0; |
1255 | 0 | for (i = 0; i < h; i++) { |
1256 | 0 | lines = datas + i * wpls; |
1257 | 0 | for (j = 0; j < wpls; j++) { |
1258 | 0 | word = *(lines + j); |
1259 | 0 | if (d == 4) { |
1260 | 0 | max = L_MAX(max, word >> 28); |
1261 | 0 | max = L_MAX(max, (word >> 24) & 0xf); |
1262 | 0 | max = L_MAX(max, (word >> 20) & 0xf); |
1263 | 0 | max = L_MAX(max, (word >> 16) & 0xf); |
1264 | 0 | max = L_MAX(max, (word >> 12) & 0xf); |
1265 | 0 | max = L_MAX(max, (word >> 8) & 0xf); |
1266 | 0 | max = L_MAX(max, (word >> 4) & 0xf); |
1267 | 0 | max = L_MAX(max, word & 0xf); |
1268 | 0 | } else if (d == 8) { |
1269 | 0 | max = L_MAX(max, word >> 24); |
1270 | 0 | max = L_MAX(max, (word >> 16) & 0xff); |
1271 | 0 | max = L_MAX(max, (word >> 8) & 0xff); |
1272 | 0 | max = L_MAX(max, word & 0xff); |
1273 | 0 | } else if (d == 16) { |
1274 | 0 | max = L_MAX(max, word >> 16); |
1275 | 0 | max = L_MAX(max, word & 0xffff); |
1276 | 0 | } else { /* d == 32 (rgb) */ |
1277 | 0 | max = L_MAX(max, word); |
1278 | 0 | } |
1279 | 0 | } |
1280 | 0 | } |
1281 | | |
1282 | | /* Map to the full dynamic range */ |
1283 | 0 | if (d == 4) { |
1284 | 0 | if (type == L_LINEAR_SCALE) { |
1285 | 0 | factor = 255.f / (l_float32)max; |
1286 | 0 | for (i = 0; i < h; i++) { |
1287 | 0 | lines = datas + i * wpls; |
1288 | 0 | lined = datad + i * wpld; |
1289 | 0 | for (j = 0; j < w; j++) { |
1290 | 0 | sval = GET_DATA_QBIT(lines, j); |
1291 | 0 | dval = (l_uint8)(factor * (l_float32)sval + 0.5); |
1292 | 0 | SET_DATA_QBIT(lined, j, dval); |
1293 | 0 | } |
1294 | 0 | } |
1295 | 0 | } else { /* type == L_LOG_SCALE) */ |
1296 | 0 | tab = makeLogBase2Tab(); |
1297 | 0 | factor = 255.f / getLogBase2(max, tab); |
1298 | 0 | for (i = 0; i < h; i++) { |
1299 | 0 | lines = datas + i * wpls; |
1300 | 0 | lined = datad + i * wpld; |
1301 | 0 | for (j = 0; j < w; j++) { |
1302 | 0 | sval = GET_DATA_QBIT(lines, j); |
1303 | 0 | dval = (l_uint8)(factor * getLogBase2(sval, tab) + 0.5); |
1304 | 0 | SET_DATA_BYTE(lined, j, dval); |
1305 | 0 | } |
1306 | 0 | } |
1307 | 0 | LEPT_FREE(tab); |
1308 | 0 | } |
1309 | 0 | } else if (d == 8) { |
1310 | 0 | if (type == L_LINEAR_SCALE) { |
1311 | 0 | factor = 255.f / (l_float32)max; |
1312 | 0 | for (i = 0; i < h; i++) { |
1313 | 0 | lines = datas + i * wpls; |
1314 | 0 | lined = datad + i * wpld; |
1315 | 0 | for (j = 0; j < w; j++) { |
1316 | 0 | sval = GET_DATA_BYTE(lines, j); |
1317 | 0 | dval = (l_uint8)(factor * (l_float32)sval + 0.5); |
1318 | 0 | SET_DATA_BYTE(lined, j, dval); |
1319 | 0 | } |
1320 | 0 | } |
1321 | 0 | } else { /* type == L_LOG_SCALE) */ |
1322 | 0 | tab = makeLogBase2Tab(); |
1323 | 0 | factor = 255.f / getLogBase2(max, tab); |
1324 | 0 | for (i = 0; i < h; i++) { |
1325 | 0 | lines = datas + i * wpls; |
1326 | 0 | lined = datad + i * wpld; |
1327 | 0 | for (j = 0; j < w; j++) { |
1328 | 0 | sval = GET_DATA_BYTE(lines, j); |
1329 | 0 | dval = (l_uint8)(factor * getLogBase2(sval, tab) + 0.5); |
1330 | 0 | SET_DATA_BYTE(lined, j, dval); |
1331 | 0 | } |
1332 | 0 | } |
1333 | 0 | LEPT_FREE(tab); |
1334 | 0 | } |
1335 | 0 | } else if (d == 16) { |
1336 | 0 | if (type == L_LINEAR_SCALE) { |
1337 | 0 | factor = 255.f / (l_float32)max; |
1338 | 0 | for (i = 0; i < h; i++) { |
1339 | 0 | lines = datas + i * wpls; |
1340 | 0 | lined = datad + i * wpld; |
1341 | 0 | for (j = 0; j < w; j++) { |
1342 | 0 | sval = GET_DATA_TWO_BYTES(lines, j); |
1343 | 0 | dval = (l_uint8)(factor * (l_float32)sval + 0.5); |
1344 | 0 | SET_DATA_BYTE(lined, j, dval); |
1345 | 0 | } |
1346 | 0 | } |
1347 | 0 | } else { /* type == L_LOG_SCALE) */ |
1348 | 0 | tab = makeLogBase2Tab(); |
1349 | 0 | factor = 255.f / getLogBase2(max, tab); |
1350 | 0 | for (i = 0; i < h; i++) { |
1351 | 0 | lines = datas + i * wpls; |
1352 | 0 | lined = datad + i * wpld; |
1353 | 0 | for (j = 0; j < w; j++) { |
1354 | 0 | sval = GET_DATA_TWO_BYTES(lines, j); |
1355 | 0 | dval = (l_uint8)(factor * getLogBase2(sval, tab) + 0.5); |
1356 | 0 | SET_DATA_BYTE(lined, j, dval); |
1357 | 0 | } |
1358 | 0 | } |
1359 | 0 | LEPT_FREE(tab); |
1360 | 0 | } |
1361 | 0 | } else { /* d == 32 */ |
1362 | 0 | if (type == L_LINEAR_SCALE) { |
1363 | 0 | factor = 255.f / (l_float32)max; |
1364 | 0 | for (i = 0; i < h; i++) { |
1365 | 0 | lines = datas + i * wpls; |
1366 | 0 | lined = datad + i * wpld; |
1367 | 0 | for (j = 0; j < w; j++) { |
1368 | 0 | sval = lines[j]; |
1369 | 0 | dval = (l_uint8)(factor * (l_float32)sval + 0.5); |
1370 | 0 | SET_DATA_BYTE(lined, j, dval); |
1371 | 0 | } |
1372 | 0 | } |
1373 | 0 | } else { /* type == L_LOG_SCALE) */ |
1374 | 0 | tab = makeLogBase2Tab(); |
1375 | 0 | factor = 255.f / getLogBase2(max, tab); |
1376 | 0 | for (i = 0; i < h; i++) { |
1377 | 0 | lines = datas + i * wpls; |
1378 | 0 | lined = datad + i * wpld; |
1379 | 0 | for (j = 0; j < w; j++) { |
1380 | 0 | sval = lines[j]; |
1381 | 0 | dval = (l_uint8)(factor * getLogBase2(sval, tab) + 0.5); |
1382 | 0 | SET_DATA_BYTE(lined, j, dval); |
1383 | 0 | } |
1384 | 0 | } |
1385 | 0 | LEPT_FREE(tab); |
1386 | 0 | } |
1387 | 0 | } |
1388 | |
|
1389 | 0 | return pixd; |
1390 | 0 | } |
1391 | | |
1392 | | |
1393 | | /*! |
1394 | | * \brief pixMaxDynamicRangeRGB() |
1395 | | * |
1396 | | * \param[in] pixs 32 bpp rgb source |
1397 | | * \param[in] type L_LINEAR_SCALE or L_LOG_SCALE |
1398 | | * \return pixd 32 bpp, or NULL on error |
1399 | | * |
1400 | | * <pre> |
1401 | | * Notes: |
1402 | | * (1) Scales pixel values to fit maximally within a 32 bpp dest pixd |
1403 | | * (2) All color components are scaled with the same factor, based |
1404 | | * on the maximum r, g or b component in the image. This should |
1405 | | * not be used if the 32-bit value is a single number (e.g., a |
1406 | | * count in a histogram generated by pixMakeHistoHS()). |
1407 | | * (3) Uses a LUT for log scaling. |
1408 | | * </pre> |
1409 | | */ |
1410 | | PIX * |
1411 | | pixMaxDynamicRangeRGB(PIX *pixs, |
1412 | | l_int32 type) |
1413 | 0 | { |
1414 | 0 | l_int32 i, j, w, h, wpls, wpld, max; |
1415 | 0 | l_uint32 sval, dval, word; |
1416 | 0 | l_uint32 *datas, *datad; |
1417 | 0 | l_uint32 *lines, *lined; |
1418 | 0 | l_float32 factor; |
1419 | 0 | l_float32 *tab; |
1420 | 0 | PIX *pixd; |
1421 | |
|
1422 | 0 | if (!pixs || pixGetDepth(pixs) != 32) |
1423 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 32 bpp", __func__, NULL); |
1424 | 0 | if (type != L_LINEAR_SCALE && type != L_LOG_SCALE) |
1425 | 0 | return (PIX *)ERROR_PTR("invalid type", __func__, NULL); |
1426 | | |
1427 | | /* Get max */ |
1428 | 0 | pixd = pixCreateTemplate(pixs); |
1429 | 0 | datas = pixGetData(pixs); |
1430 | 0 | datad = pixGetData(pixd); |
1431 | 0 | wpls = pixGetWpl(pixs); |
1432 | 0 | wpld = pixGetWpl(pixd); |
1433 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1434 | 0 | max = 0; |
1435 | 0 | for (i = 0; i < h; i++) { |
1436 | 0 | lines = datas + i * wpls; |
1437 | 0 | for (j = 0; j < wpls; j++) { |
1438 | 0 | word = lines[j]; |
1439 | 0 | max = L_MAX(max, word >> 24); |
1440 | 0 | max = L_MAX(max, (word >> 16) & 0xff); |
1441 | 0 | max = L_MAX(max, (word >> 8) & 0xff); |
1442 | 0 | } |
1443 | 0 | } |
1444 | 0 | if (max == 0) { |
1445 | 0 | L_WARNING("max = 0; setting to 1\n", __func__); |
1446 | 0 | max = 1; |
1447 | 0 | } |
1448 | | |
1449 | | /* Map to the full dynamic range */ |
1450 | 0 | if (type == L_LINEAR_SCALE) { |
1451 | 0 | factor = 255.f / (l_float32)max; |
1452 | 0 | for (i = 0; i < h; i++) { |
1453 | 0 | lines = datas + i * wpls; |
1454 | 0 | lined = datad + i * wpld; |
1455 | 0 | for (j = 0; j < w; j++) { |
1456 | 0 | sval = lines[j]; |
1457 | 0 | dval = linearScaleRGBVal(sval, factor); |
1458 | 0 | lined[j] = dval; |
1459 | 0 | } |
1460 | 0 | } |
1461 | 0 | } else { /* type == L_LOG_SCALE) */ |
1462 | 0 | tab = makeLogBase2Tab(); |
1463 | 0 | factor = 255.f / getLogBase2(max, tab); |
1464 | 0 | for (i = 0; i < h; i++) { |
1465 | 0 | lines = datas + i * wpls; |
1466 | 0 | lined = datad + i * wpld; |
1467 | 0 | for (j = 0; j < w; j++) { |
1468 | 0 | sval = lines[j]; |
1469 | 0 | dval = logScaleRGBVal(sval, tab, factor); |
1470 | 0 | lined[j] = dval; |
1471 | 0 | } |
1472 | 0 | } |
1473 | 0 | LEPT_FREE(tab); |
1474 | 0 | } |
1475 | |
|
1476 | 0 | return pixd; |
1477 | 0 | } |
1478 | | |
1479 | | |
1480 | | /*-----------------------------------------------------------------------* |
1481 | | * RGB pixel value scaling * |
1482 | | *-----------------------------------------------------------------------*/ |
1483 | | /*! |
1484 | | * \brief linearScaleRGBVal() |
1485 | | * |
1486 | | * \param[in] sval 32-bit rgb pixel value |
1487 | | * \param[in] factor multiplication factor on each component |
1488 | | * \return dval linearly scaled version of %sval |
1489 | | * |
1490 | | * <pre> |
1491 | | * Notes: |
1492 | | * (1) %factor must be chosen to be not greater than (255 / maxcomp), |
1493 | | * where maxcomp is the maximum value of the pixel components. |
1494 | | * Otherwise, the product will overflow a uint8. In use, factor |
1495 | | * is the same for all pixels in a pix. |
1496 | | * (2) No scaling is performed on the transparency ("A") component. |
1497 | | * </pre> |
1498 | | */ |
1499 | | l_uint32 |
1500 | | linearScaleRGBVal(l_uint32 sval, |
1501 | | l_float32 factor) |
1502 | 0 | { |
1503 | 0 | l_uint32 dval; |
1504 | |
|
1505 | 0 | dval = ((l_uint8)(factor * (sval >> 24) + 0.5f) << 24) | |
1506 | 0 | ((l_uint8)(factor * ((sval >> 16) & 0xff) + 0.5f) << 16) | |
1507 | 0 | ((l_uint8)(factor * ((sval >> 8) & 0xff) + 0.5f) << 8) | |
1508 | 0 | (sval & 0xff); |
1509 | 0 | return dval; |
1510 | 0 | } |
1511 | | |
1512 | | |
1513 | | /*! |
1514 | | * \brief logScaleRGBVal() |
1515 | | * |
1516 | | * \param[in] sval 32-bit rgb pixel value |
1517 | | * \param[in] tab 256 entry log-base-2 table |
1518 | | * \param[in] factor multiplication factor on each component |
1519 | | * \return dval log scaled version of %sval |
1520 | | * |
1521 | | * <pre> |
1522 | | * Notes: |
1523 | | * (1) %tab is made with makeLogBase2Tab(). |
1524 | | * (2) %factor must be chosen to be not greater than |
1525 | | * 255.0 / log[base2](maxcomp), where maxcomp is the maximum |
1526 | | * value of the pixel components. Otherwise, the product |
1527 | | * will overflow a uint8. In use, factor is the same for |
1528 | | * all pixels in a pix. |
1529 | | * (3) No scaling is performed on the transparency ("A") component. |
1530 | | * </pre> |
1531 | | */ |
1532 | | l_uint32 |
1533 | | logScaleRGBVal(l_uint32 sval, |
1534 | | l_float32 *tab, |
1535 | | l_float32 factor) |
1536 | 0 | { |
1537 | 0 | l_uint32 dval; |
1538 | |
|
1539 | 0 | dval = ((l_uint8)(factor * getLogBase2(sval >> 24, tab) + 0.5f) << 24) | |
1540 | 0 | ((l_uint8)(factor * getLogBase2(((sval >> 16) & 0xff), tab) + 0.5f) |
1541 | 0 | << 16) | |
1542 | 0 | ((l_uint8)(factor * getLogBase2(((sval >> 8) & 0xff), tab) + 0.5f) |
1543 | 0 | << 8) | |
1544 | 0 | (sval & 0xff); |
1545 | 0 | return dval; |
1546 | 0 | } |
1547 | | |
1548 | | |
1549 | | /*-----------------------------------------------------------------------* |
1550 | | * Log base2 lookup * |
1551 | | *-----------------------------------------------------------------------*/ |
1552 | | /* |
1553 | | * \brief makeLogBase2Tab() |
1554 | | * |
1555 | | * \return tab table giving the log[base2] of values from 1 to 255 |
1556 | | */ |
1557 | | l_float32 * |
1558 | | makeLogBase2Tab(void) |
1559 | 0 | { |
1560 | 0 | l_int32 i; |
1561 | 0 | l_float32 log2; |
1562 | 0 | l_float32 *tab; |
1563 | |
|
1564 | 0 | if ((tab = (l_float32 *)LEPT_CALLOC(256, sizeof(l_float32))) == NULL) |
1565 | 0 | return (l_float32 *)ERROR_PTR("tab not made", __func__, NULL); |
1566 | | |
1567 | 0 | log2 = (l_float32)log((l_float32)2); |
1568 | 0 | for (i = 0; i < 256; i++) |
1569 | 0 | tab[i] = (l_float32)log((l_float32)i) / log2; |
1570 | |
|
1571 | 0 | return tab; |
1572 | 0 | } |
1573 | | |
1574 | | |
1575 | | /* |
1576 | | * \brief getLogBase2() |
1577 | | * |
1578 | | * \param[in] val in range [0 ... 255] |
1579 | | * \param[in] logtab 256-entry table of logs |
1580 | | * \return logval log[base2] of %val, or 0 on error |
1581 | | */ |
1582 | | l_float32 |
1583 | | getLogBase2(l_int32 val, |
1584 | | l_float32 *logtab) |
1585 | 0 | { |
1586 | 0 | if (!logtab) |
1587 | 0 | return ERROR_INT("logtab not defined", __func__, 0); |
1588 | | |
1589 | 0 | if (val < 0x100) |
1590 | 0 | return logtab[val]; |
1591 | 0 | else if (val < 0x10000) |
1592 | 0 | return 8.0f + logtab[val >> 8]; |
1593 | 0 | else if (val < 0x1000000) |
1594 | 0 | return 16.0f + logtab[val >> 16]; |
1595 | 0 | else |
1596 | 0 | return 24.0f + logtab[val >> 24]; |
1597 | 0 | } |