/src/leptonica/src/projective.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*====================================================================*  | 
2  |  |  -  Copyright (C) 2001 Leptonica.  All rights reserved.  | 
3  |  |  -  | 
4  |  |  -  Redistribution and use in source and binary forms, with or without  | 
5  |  |  -  modification, are permitted provided that the following conditions  | 
6  |  |  -  are met:  | 
7  |  |  -  1. Redistributions of source code must retain the above copyright  | 
8  |  |  -     notice, this list of conditions and the following disclaimer.  | 
9  |  |  -  2. Redistributions in binary form must reproduce the above  | 
10  |  |  -     copyright notice, this list of conditions and the following  | 
11  |  |  -     disclaimer in the documentation and/or other materials  | 
12  |  |  -     provided with the distribution.  | 
13  |  |  -  | 
14  |  |  -  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
15  |  |  -  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
16  |  |  -  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
17  |  |  -  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ANY  | 
18  |  |  -  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,  | 
19  |  |  -  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,  | 
20  |  |  -  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR  | 
21  |  |  -  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY  | 
22  |  |  -  OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING  | 
23  |  |  -  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS  | 
24  |  |  -  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
25  |  |  *====================================================================*/  | 
26  |  |  | 
27  |  | /*!  | 
28  |  |  * \file projective.c  | 
29  |  |  * <pre>  | 
30  |  |  *  | 
31  |  |  *      Projective (4 pt) image transformation using a sampled  | 
32  |  |  *      (to nearest integer) transform on each dest point  | 
33  |  |  *           PIX      *pixProjectiveSampledPta()  | 
34  |  |  *           PIX      *pixProjectiveSampled()  | 
35  |  |  *  | 
36  |  |  *      Projective (4 pt) image transformation using interpolation  | 
37  |  |  *      (or area mapping) for anti-aliasing images that are  | 
38  |  |  *      2, 4, or 8 bpp gray, or colormapped, or 32 bpp RGB  | 
39  |  |  *           PIX      *pixProjectivePta()  | 
40  |  |  *           PIX      *pixProjective()  | 
41  |  |  *           PIX      *pixProjectivePtaColor()  | 
42  |  |  *           PIX      *pixProjectiveColor()  | 
43  |  |  *           PIX      *pixProjectivePtaGray()  | 
44  |  |  *           PIX      *pixProjectiveGray()  | 
45  |  |  *  | 
46  |  |  *      Projective transform including alpha (blend) component  | 
47  |  |  *           PIX      *pixProjectivePtaWithAlpha()  | 
48  |  |  *  | 
49  |  |  *      Projective coordinate transformation  | 
50  |  |  *           l_int32   getProjectiveXformCoeffs()  | 
51  |  |  *           l_int32   projectiveXformSampledPt()  | 
52  |  |  *           l_int32   projectiveXformPt()  | 
53  |  |  *  | 
54  |  |  *      A projective transform can be specified as a specific functional  | 
55  |  |  *      mapping between 4 points in the source and 4 points in the dest.  | 
56  |  |  *      It preserves straight lines, but is less stable than a bilinear  | 
57  |  |  *      transform, because it contains a division by a quantity that  | 
58  |  |  *      can get arbitrarily small.)  | 
59  |  |  *  | 
60  |  |  *      We give both a projective coordinate transformation and  | 
61  |  |  *      two projective image transformations.  | 
62  |  |  *  | 
63  |  |  *      For the former, we ask for the coordinate value (x',y')  | 
64  |  |  *      in the transformed space for any point (x,y) in the original  | 
65  |  |  *      space.  The coefficients of the transformation are found by  | 
66  |  |  *      solving 8 simultaneous equations for the 8 coordinates of  | 
67  |  |  *      the 4 points in src and dest.  The transformation can then  | 
68  |  |  *      be used to compute the associated image transform, by  | 
69  |  |  *      computing, for each dest pixel, the relevant pixel(s) in  | 
70  |  |  *      the source.  This can be done either by taking the closest  | 
71  |  |  *      src pixel to each transformed dest pixel ("sampling") or | 
72  |  |  *      by doing an interpolation and averaging over 4 source  | 
73  |  |  *      pixels with appropriate weightings ("interpolated"). | 
74  |  |  *  | 
75  |  |  *      A typical application would be to remove keystoning  | 
76  |  |  *      due to a projective transform in the imaging system.  | 
77  |  |  *  | 
78  |  |  *      The projective transform is given by specifying two equations:  | 
79  |  |  *  | 
80  |  |  *          x' = (ax + by + c) / (gx + hy + 1)  | 
81  |  |  *          y' = (dx + ey + f) / (gx + hy + 1)  | 
82  |  |  *  | 
83  |  |  *      where the eight coefficients have been computed from four  | 
84  |  |  *      sets of these equations, each for two corresponding data pts.  | 
85  |  |  *      In practice, once the coefficients are known, we use the  | 
86  |  |  *      equations "backwards": for each point (x,y) in the dest image,  | 
87  |  |  *      these two equations are used to compute the corresponding point  | 
88  |  |  *      (x',y') in the src.  That computed point in the src is then used  | 
89  |  |  *      to determine the corresponding dest pixel value in one of two ways:  | 
90  |  |  *  | 
91  |  |  *       ~ sampling: simply take the value of the src pixel in which this  | 
92  |  |  *                   point falls  | 
93  |  |  *       ~ interpolation: take appropriate linear combinations of the  | 
94  |  |  *                        four src pixels that this dest pixel would  | 
95  |  |  *                        overlap, with the coefficients proportional  | 
96  |  |  *                        to the amount of overlap  | 
97  |  |  *  | 
98  |  |  *      For small warp where there is little scale change, (e.g.,  | 
99  |  |  *      for rotation) area mapping is nearly equivalent to interpolation.  | 
100  |  |  *  | 
101  |  |  *      Typical relative timing of pointwise transforms (sampled = 1.0):  | 
102  |  |  *      8 bpp:   sampled        1.0  | 
103  |  |  *               interpolated   1.5  | 
104  |  |  *      32 bpp:  sampled        1.0  | 
105  |  |  *               interpolated   1.6  | 
106  |  |  *      Additionally, the computation time/pixel is nearly the same  | 
107  |  |  *      for 8 bpp and 32 bpp, for both sampled and interpolated.  | 
108  |  |  * </pre>  | 
109  |  |  */  | 
110  |  |  | 
111  |  | #ifdef HAVE_CONFIG_H  | 
112  |  | #include <config_auto.h>  | 
113  |  | #endif  /* HAVE_CONFIG_H */  | 
114  |  |  | 
115  |  | #include <string.h>  | 
116  |  | #include <math.h>  | 
117  |  | #include "allheaders.h"  | 
118  |  |  | 
119  |  | extern l_float32  AlphaMaskBorderVals[2];  | 
120  |  |  | 
121  |  | /*------------------------------------------------------------n  | 
122  |  |  *            Sampled projective image transformation          *  | 
123  |  |  *-------------------------------------------------------------*/  | 
124  |  | /*!  | 
125  |  |  * \brief   pixProjectiveSampledPta()  | 
126  |  |  *  | 
127  |  |  * \param[in]    pixs      all depths  | 
128  |  |  * \param[in]    ptad      4 pts of final coordinate space  | 
129  |  |  * \param[in]    ptas      4 pts of initial coordinate space  | 
130  |  |  * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK  | 
131  |  |  * \return  pixd, or NULL on error  | 
132  |  |  *  | 
133  |  |  * <pre>  | 
134  |  |  * Notes:  | 
135  |  |  *      (1) Brings in either black or white pixels from the boundary.  | 
136  |  |  *      (2) Retains colormap, which you can do for a sampled transform..  | 
137  |  |  *      (3) No 3 of the 4 points may be collinear.  | 
138  |  |  *      (4) For 8 and 32 bpp pix, better quality is obtained by the  | 
139  |  |  *          somewhat slower pixProjectivePta().  See that  | 
140  |  |  *          function for relative timings between sampled and interpolated.  | 
141  |  |  * </pre>  | 
142  |  |  */  | 
143  |  | PIX *  | 
144  |  | pixProjectiveSampledPta(PIX     *pixs,  | 
145  |  |                         PTA     *ptad,  | 
146  |  |                         PTA     *ptas,  | 
147  |  |                         l_int32  incolor)  | 
148  | 0  | { | 
149  | 0  | l_float32  *vc;  | 
150  | 0  | PIX        *pixd;  | 
151  |  | 
  | 
152  | 0  |     if (!pixs)  | 
153  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
154  | 0  |     if (!ptas)  | 
155  | 0  |         return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL); | 
156  | 0  |     if (!ptad)  | 
157  | 0  |         return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL); | 
158  | 0  |     if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)  | 
159  | 0  |         return (PIX *)ERROR_PTR("invalid incolor", __func__, NULL); | 
160  | 0  |     if (ptaGetCount(ptas) != 4)  | 
161  | 0  |         return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL); | 
162  | 0  |     if (ptaGetCount(ptad) != 4)  | 
163  | 0  |         return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL); | 
164  |  |  | 
165  |  |         /* Get backwards transform from dest to src, and apply it */  | 
166  | 0  |     getProjectiveXformCoeffs(ptad, ptas, &vc);  | 
167  | 0  |     pixd = pixProjectiveSampled(pixs, vc, incolor);  | 
168  | 0  |     LEPT_FREE(vc);  | 
169  |  | 
  | 
170  | 0  |     return pixd;  | 
171  | 0  | }  | 
172  |  |  | 
173  |  |  | 
174  |  | /*!  | 
175  |  |  * \brief   pixProjectiveSampled()  | 
176  |  |  *  | 
177  |  |  * \param[in]    pixs      all depths  | 
178  |  |  * \param[in]    vc        vector of 8 coefficients for projective transform  | 
179  |  |  * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK  | 
180  |  |  * \return  pixd, or NULL on error  | 
181  |  |  *  | 
182  |  |  * <pre>  | 
183  |  |  * Notes:  | 
184  |  |  *      (1) Brings in either black or white pixels from the boundary.  | 
185  |  |  *      (2) Retains colormap, which you can do for a sampled transform..  | 
186  |  |  *      (3) For 8 or 32 bpp, much better quality is obtained by the  | 
187  |  |  *          somewhat slower pixProjective().  See that function  | 
188  |  |  *          for relative timings between sampled and interpolated.  | 
189  |  |  * </pre>  | 
190  |  |  */  | 
191  |  | PIX *  | 
192  |  | pixProjectiveSampled(PIX        *pixs,  | 
193  |  |                      l_float32  *vc,  | 
194  |  |                      l_int32     incolor)  | 
195  | 0  | { | 
196  | 0  | l_int32     i, j, w, h, d, x, y, wpls, wpld, color, cmapindex;  | 
197  | 0  | l_uint32    val;  | 
198  | 0  | l_uint32   *datas, *datad, *lines, *lined;  | 
199  | 0  | PIX        *pixd;  | 
200  | 0  | PIXCMAP    *cmap;  | 
201  |  | 
  | 
202  | 0  |     if (!pixs)  | 
203  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
204  | 0  |     if (!vc)  | 
205  | 0  |         return (PIX *)ERROR_PTR("vc not defined", __func__, NULL); | 
206  | 0  |     if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)  | 
207  | 0  |         return (PIX *)ERROR_PTR("invalid incolor", __func__, NULL); | 
208  | 0  |     pixGetDimensions(pixs, &w, &h, &d);  | 
209  | 0  |     if (d != 1 && d != 2 && d != 4 && d != 8 && d != 32)  | 
210  | 0  |         return (PIX *)ERROR_PTR("depth not 1, 2, 4, 8 or 16", __func__, NULL); | 
211  |  |  | 
212  |  |         /* Init all dest pixels to color to be brought in from outside */  | 
213  | 0  |     pixd = pixCreateTemplate(pixs);  | 
214  | 0  |     if ((cmap = pixGetColormap(pixs)) != NULL) { | 
215  | 0  |         if (incolor == L_BRING_IN_WHITE)  | 
216  | 0  |             color = 1;  | 
217  | 0  |         else  | 
218  | 0  |             color = 0;  | 
219  | 0  |         pixcmapAddBlackOrWhite(cmap, color, &cmapindex);  | 
220  | 0  |         pixSetAllArbitrary(pixd, cmapindex);  | 
221  | 0  |     } else { | 
222  | 0  |         if ((d == 1 && incolor == L_BRING_IN_WHITE) ||  | 
223  | 0  |             (d > 1 && incolor == L_BRING_IN_BLACK)) { | 
224  | 0  |             pixClearAll(pixd);  | 
225  | 0  |         } else { | 
226  | 0  |             pixSetAll(pixd);  | 
227  | 0  |         }  | 
228  | 0  |     }  | 
229  |  |  | 
230  |  |         /* Scan over the dest pixels */  | 
231  | 0  |     datas = pixGetData(pixs);  | 
232  | 0  |     wpls = pixGetWpl(pixs);  | 
233  | 0  |     datad = pixGetData(pixd);  | 
234  | 0  |     wpld = pixGetWpl(pixd);  | 
235  | 0  |     for (i = 0; i < h; i++) { | 
236  | 0  |         lined = datad + i * wpld;  | 
237  | 0  |         for (j = 0; j < w; j++) { | 
238  | 0  |             projectiveXformSampledPt(vc, j, i, &x, &y);  | 
239  | 0  |             if (x < 0 || y < 0 || x >=w || y >= h)  | 
240  | 0  |                 continue;  | 
241  | 0  |             lines = datas + y * wpls;  | 
242  | 0  |             if (d == 1) { | 
243  | 0  |                 val = GET_DATA_BIT(lines, x);  | 
244  | 0  |                 SET_DATA_BIT_VAL(lined, j, val);  | 
245  | 0  |             } else if (d == 8) { | 
246  | 0  |                 val = GET_DATA_BYTE(lines, x);  | 
247  | 0  |                 SET_DATA_BYTE(lined, j, val);  | 
248  | 0  |             } else if (d == 32) { | 
249  | 0  |                 lined[j] = lines[x];  | 
250  | 0  |             } else if (d == 2) { | 
251  | 0  |                 val = GET_DATA_DIBIT(lines, x);  | 
252  | 0  |                 SET_DATA_DIBIT(lined, j, val);  | 
253  | 0  |             } else if (d == 4) { | 
254  | 0  |                 val = GET_DATA_QBIT(lines, x);  | 
255  | 0  |                 SET_DATA_QBIT(lined, j, val);  | 
256  | 0  |             }  | 
257  | 0  |         }  | 
258  | 0  |     }  | 
259  |  | 
  | 
260  | 0  |     return pixd;  | 
261  | 0  | }  | 
262  |  |  | 
263  |  |  | 
264  |  | /*---------------------------------------------------------------------*  | 
265  |  |  *            Interpolated projective image transformation             *  | 
266  |  |  *---------------------------------------------------------------------*/  | 
267  |  | /*!  | 
268  |  |  * \brief   pixProjectivePta()  | 
269  |  |  *  | 
270  |  |  * \param[in]    pixs      all depths; colormap ok  | 
271  |  |  * \param[in]    ptad      4 pts of final coordinate space  | 
272  |  |  * \param[in]    ptas      4 pts of initial coordinate space  | 
273  |  |  * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK  | 
274  |  |  * \return  pixd, or NULL on error  | 
275  |  |  *  | 
276  |  |  * <pre>  | 
277  |  |  * Notes:  | 
278  |  |  *      (1) Brings in either black or white pixels from the boundary  | 
279  |  |  *      (2) Removes any existing colormap, if necessary, before transforming  | 
280  |  |  * </pre>  | 
281  |  |  */  | 
282  |  | PIX *  | 
283  |  | pixProjectivePta(PIX     *pixs,  | 
284  |  |                  PTA     *ptad,  | 
285  |  |                  PTA     *ptas,  | 
286  |  |                  l_int32  incolor)  | 
287  | 0  | { | 
288  | 0  | l_int32   d;  | 
289  | 0  | l_uint32  colorval;  | 
290  | 0  | PIX      *pixt1, *pixt2, *pixd;  | 
291  |  | 
  | 
292  | 0  |     if (!pixs)  | 
293  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
294  | 0  |     if (!ptas)  | 
295  | 0  |         return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL); | 
296  | 0  |     if (!ptad)  | 
297  | 0  |         return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL); | 
298  | 0  |     if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)  | 
299  | 0  |         return (PIX *)ERROR_PTR("invalid incolor", __func__, NULL); | 
300  | 0  |     if (ptaGetCount(ptas) != 4)  | 
301  | 0  |         return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL); | 
302  | 0  |     if (ptaGetCount(ptad) != 4)  | 
303  | 0  |         return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL); | 
304  |  |  | 
305  | 0  |     if (pixGetDepth(pixs) == 1)  | 
306  | 0  |         return pixProjectiveSampledPta(pixs, ptad, ptas, incolor);  | 
307  |  |  | 
308  |  |         /* Remove cmap if it exists, and unpack to 8 bpp if necessary */  | 
309  | 0  |     pixt1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);  | 
310  | 0  |     d = pixGetDepth(pixt1);  | 
311  | 0  |     if (d < 8)  | 
312  | 0  |         pixt2 = pixConvertTo8(pixt1, FALSE);  | 
313  | 0  |     else  | 
314  | 0  |         pixt2 = pixClone(pixt1);  | 
315  | 0  |     d = pixGetDepth(pixt2);  | 
316  |  |  | 
317  |  |         /* Compute actual color to bring in from edges */  | 
318  | 0  |     colorval = 0;  | 
319  | 0  |     if (incolor == L_BRING_IN_WHITE) { | 
320  | 0  |         if (d == 8)  | 
321  | 0  |             colorval = 255;  | 
322  | 0  |         else  /* d == 32 */  | 
323  | 0  |             colorval = 0xffffff00;  | 
324  | 0  |     }  | 
325  |  | 
  | 
326  | 0  |     if (d == 8)  | 
327  | 0  |         pixd = pixProjectivePtaGray(pixt2, ptad, ptas, colorval);  | 
328  | 0  |     else  /* d == 32 */  | 
329  | 0  |         pixd = pixProjectivePtaColor(pixt2, ptad, ptas, colorval);  | 
330  | 0  |     pixDestroy(&pixt1);  | 
331  | 0  |     pixDestroy(&pixt2);  | 
332  | 0  |     return pixd;  | 
333  | 0  | }  | 
334  |  |  | 
335  |  |  | 
336  |  | /*!  | 
337  |  |  * \brief   pixProjective()  | 
338  |  |  *  | 
339  |  |  * \param[in]    pixs      all depths; colormap ok  | 
340  |  |  * \param[in]    vc        vector of 8 coefficients for projective transform  | 
341  |  |  * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK  | 
342  |  |  * \return  pixd, or NULL on error  | 
343  |  |  *  | 
344  |  |  * <pre>  | 
345  |  |  * Notes:  | 
346  |  |  *      (1) Brings in either black or white pixels from the boundary  | 
347  |  |  *      (2) Removes any existing colormap, if necessary, before transforming  | 
348  |  |  * </pre>  | 
349  |  |  */  | 
350  |  | PIX *  | 
351  |  | pixProjective(PIX        *pixs,  | 
352  |  |               l_float32  *vc,  | 
353  |  |               l_int32     incolor)  | 
354  | 0  | { | 
355  | 0  | l_int32   d;  | 
356  | 0  | l_uint32  colorval;  | 
357  | 0  | PIX      *pixt1, *pixt2, *pixd;  | 
358  |  | 
  | 
359  | 0  |     if (!pixs)  | 
360  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
361  | 0  |     if (!vc)  | 
362  | 0  |         return (PIX *)ERROR_PTR("vc not defined", __func__, NULL); | 
363  |  |  | 
364  | 0  |     if (pixGetDepth(pixs) == 1)  | 
365  | 0  |         return pixProjectiveSampled(pixs, vc, incolor);  | 
366  |  |  | 
367  |  |         /* Remove cmap if it exists, and unpack to 8 bpp if necessary */  | 
368  | 0  |     pixt1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);  | 
369  | 0  |     d = pixGetDepth(pixt1);  | 
370  | 0  |     if (d < 8)  | 
371  | 0  |         pixt2 = pixConvertTo8(pixt1, FALSE);  | 
372  | 0  |     else  | 
373  | 0  |         pixt2 = pixClone(pixt1);  | 
374  | 0  |     d = pixGetDepth(pixt2);  | 
375  |  |  | 
376  |  |         /* Compute actual color to bring in from edges */  | 
377  | 0  |     colorval = 0;  | 
378  | 0  |     if (incolor == L_BRING_IN_WHITE) { | 
379  | 0  |         if (d == 8)  | 
380  | 0  |             colorval = 255;  | 
381  | 0  |         else  /* d == 32 */  | 
382  | 0  |             colorval = 0xffffff00;  | 
383  | 0  |     }  | 
384  |  | 
  | 
385  | 0  |     if (d == 8)  | 
386  | 0  |         pixd = pixProjectiveGray(pixt2, vc, colorval);  | 
387  | 0  |     else  /* d == 32 */  | 
388  | 0  |         pixd = pixProjectiveColor(pixt2, vc, colorval);  | 
389  | 0  |     pixDestroy(&pixt1);  | 
390  | 0  |     pixDestroy(&pixt2);  | 
391  | 0  |     return pixd;  | 
392  | 0  | }  | 
393  |  |  | 
394  |  |  | 
395  |  | /*!  | 
396  |  |  * \brief   pixProjectivePtaColor()  | 
397  |  |  *  | 
398  |  |  * \param[in]    pixs 32 bpp  | 
399  |  |  * \param[in]    ptad  4 pts of final coordinate space  | 
400  |  |  * \param[in]    ptas  4 pts of initial coordinate space  | 
401  |  |  * \param[in]    colorval e.g., 0 to bring in BLACK, 0xffffff00 for WHITE  | 
402  |  |  * \return  pixd, or NULL on error  | 
403  |  |  */  | 
404  |  | PIX *  | 
405  |  | pixProjectivePtaColor(PIX      *pixs,  | 
406  |  |                       PTA      *ptad,  | 
407  |  |                       PTA      *ptas,  | 
408  |  |                       l_uint32  colorval)  | 
409  | 0  | { | 
410  | 0  | l_float32  *vc;  | 
411  | 0  | PIX        *pixd;  | 
412  |  | 
  | 
413  | 0  |     if (!pixs)  | 
414  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
415  | 0  |     if (!ptas)  | 
416  | 0  |         return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL); | 
417  | 0  |     if (!ptad)  | 
418  | 0  |         return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL); | 
419  | 0  |     if (pixGetDepth(pixs) != 32)  | 
420  | 0  |         return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL); | 
421  | 0  |     if (ptaGetCount(ptas) != 4)  | 
422  | 0  |         return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL); | 
423  | 0  |     if (ptaGetCount(ptad) != 4)  | 
424  | 0  |         return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL); | 
425  |  |  | 
426  |  |         /* Get backwards transform from dest to src, and apply it */  | 
427  | 0  |     getProjectiveXformCoeffs(ptad, ptas, &vc);  | 
428  | 0  |     pixd = pixProjectiveColor(pixs, vc, colorval);  | 
429  | 0  |     LEPT_FREE(vc);  | 
430  |  | 
  | 
431  | 0  |     return pixd;  | 
432  | 0  | }  | 
433  |  |  | 
434  |  |  | 
435  |  | /*!  | 
436  |  |  * \brief   pixProjectiveColor()  | 
437  |  |  *  | 
438  |  |  * \param[in]    pixs       32 bpp  | 
439  |  |  * \param[in]    vc         vector of 8 coefficients for projective transform  | 
440  |  |  * \param[in]    colorval   e.g., 0 to bring in BLACK, 0xffffff00 for WHITE  | 
441  |  |  * \return  pixd, or NULL on error  | 
442  |  |  */  | 
443  |  | PIX *  | 
444  |  | pixProjectiveColor(PIX        *pixs,  | 
445  |  |                    l_float32  *vc,  | 
446  |  |                    l_uint32    colorval)  | 
447  | 0  | { | 
448  | 0  | l_int32    i, j, w, h, d, wpls, wpld;  | 
449  | 0  | l_uint32   val;  | 
450  | 0  | l_uint32  *datas, *datad, *lined;  | 
451  | 0  | l_float32  x, y;  | 
452  | 0  | PIX       *pix1, *pix2, *pixd;  | 
453  |  | 
  | 
454  | 0  |     if (!pixs)  | 
455  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
456  | 0  |     pixGetDimensions(pixs, &w, &h, &d);  | 
457  | 0  |     if (d != 32)  | 
458  | 0  |         return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL); | 
459  | 0  |     if (!vc)  | 
460  | 0  |         return (PIX *)ERROR_PTR("vc not defined", __func__, NULL); | 
461  |  |  | 
462  | 0  |     datas = pixGetData(pixs);  | 
463  | 0  |     wpls = pixGetWpl(pixs);  | 
464  | 0  |     pixd = pixCreateTemplate(pixs);  | 
465  | 0  |     pixSetAllArbitrary(pixd, colorval);  | 
466  | 0  |     datad = pixGetData(pixd);  | 
467  | 0  |     wpld = pixGetWpl(pixd);  | 
468  |  |  | 
469  |  |         /* Iterate over destination pixels */  | 
470  | 0  |     for (i = 0; i < h; i++) { | 
471  | 0  |         lined = datad + i * wpld;  | 
472  | 0  |         for (j = 0; j < w; j++) { | 
473  |  |                 /* Compute float src pixel location corresponding to (i,j) */  | 
474  | 0  |             projectiveXformPt(vc, j, i, &x, &y);  | 
475  | 0  |             linearInterpolatePixelColor(datas, wpls, w, h, x, y, colorval,  | 
476  | 0  |                                         &val);  | 
477  | 0  |             *(lined + j) = val;  | 
478  | 0  |         }  | 
479  | 0  |     }  | 
480  |  |  | 
481  |  |         /* If rgba, transform the pixs alpha channel and insert in pixd */  | 
482  | 0  |     if (pixGetSpp(pixs) == 4) { | 
483  | 0  |         pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL);  | 
484  | 0  |         pix2 = pixProjectiveGray(pix1, vc, 255);  /* bring in opaque */  | 
485  | 0  |         pixSetRGBComponent(pixd, pix2, L_ALPHA_CHANNEL);  | 
486  | 0  |         pixDestroy(&pix1);  | 
487  | 0  |         pixDestroy(&pix2);  | 
488  | 0  |     }  | 
489  |  | 
  | 
490  | 0  |     return pixd;  | 
491  | 0  | }  | 
492  |  |  | 
493  |  |  | 
494  |  | /*!  | 
495  |  |  * \brief   pixProjectivePtaGray()  | 
496  |  |  *  | 
497  |  |  * \param[in]    pixs      8 bpp  | 
498  |  |  * \param[in]    ptad      4 pts of final coordinate space  | 
499  |  |  * \param[in]    ptas      4 pts of initial coordinate space  | 
500  |  |  * \param[in]    grayval   0 to bring in BLACK, 255 for WHITE  | 
501  |  |  * \return  pixd, or NULL on error  | 
502  |  |  */  | 
503  |  | PIX *  | 
504  |  | pixProjectivePtaGray(PIX     *pixs,  | 
505  |  |                      PTA     *ptad,  | 
506  |  |                      PTA     *ptas,  | 
507  |  |                      l_uint8  grayval)  | 
508  | 0  | { | 
509  | 0  | l_float32  *vc;  | 
510  | 0  | PIX        *pixd;  | 
511  |  | 
  | 
512  | 0  |     if (!pixs)  | 
513  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
514  | 0  |     if (!ptas)  | 
515  | 0  |         return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL); | 
516  | 0  |     if (!ptad)  | 
517  | 0  |         return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL); | 
518  | 0  |     if (pixGetDepth(pixs) != 8)  | 
519  | 0  |         return (PIX *)ERROR_PTR("pixs must be 8 bpp", __func__, NULL); | 
520  | 0  |     if (ptaGetCount(ptas) != 4)  | 
521  | 0  |         return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL); | 
522  | 0  |     if (ptaGetCount(ptad) != 4)  | 
523  | 0  |         return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL); | 
524  |  |  | 
525  |  |         /* Get backwards transform from dest to src, and apply it */  | 
526  | 0  |     getProjectiveXformCoeffs(ptad, ptas, &vc);  | 
527  | 0  |     pixd = pixProjectiveGray(pixs, vc, grayval);  | 
528  | 0  |     LEPT_FREE(vc);  | 
529  |  | 
  | 
530  | 0  |     return pixd;  | 
531  | 0  | }  | 
532  |  |  | 
533  |  |  | 
534  |  |  | 
535  |  | /*!  | 
536  |  |  * \brief   pixProjectiveGray()  | 
537  |  |  *  | 
538  |  |  * \param[in]    pixs      8 bpp  | 
539  |  |  * \param[in]    vc        vector of 8 coefficients for projective transform  | 
540  |  |  * \param[in]    grayval   0 to bring in BLACK, 255 for WHITE  | 
541  |  |  * \return  pixd, or NULL on error  | 
542  |  |  */  | 
543  |  | PIX *  | 
544  |  | pixProjectiveGray(PIX        *pixs,  | 
545  |  |                   l_float32  *vc,  | 
546  |  |                   l_uint8     grayval)  | 
547  | 0  | { | 
548  | 0  | l_int32    i, j, w, h, wpls, wpld, val;  | 
549  | 0  | l_uint32  *datas, *datad, *lined;  | 
550  | 0  | l_float32  x, y;  | 
551  | 0  | PIX       *pixd;  | 
552  |  | 
  | 
553  | 0  |     if (!pixs)  | 
554  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
555  | 0  |     pixGetDimensions(pixs, &w, &h, NULL);  | 
556  | 0  |     if (pixGetDepth(pixs) != 8)  | 
557  | 0  |         return (PIX *)ERROR_PTR("pixs must be 8 bpp", __func__, NULL); | 
558  | 0  |     if (!vc)  | 
559  | 0  |         return (PIX *)ERROR_PTR("vc not defined", __func__, NULL); | 
560  |  |  | 
561  | 0  |     datas = pixGetData(pixs);  | 
562  | 0  |     wpls = pixGetWpl(pixs);  | 
563  | 0  |     pixd = pixCreateTemplate(pixs);  | 
564  | 0  |     pixSetAllArbitrary(pixd, grayval);  | 
565  | 0  |     datad = pixGetData(pixd);  | 
566  | 0  |     wpld = pixGetWpl(pixd);  | 
567  |  |  | 
568  |  |         /* Iterate over destination pixels */  | 
569  | 0  |     for (i = 0; i < h; i++) { | 
570  | 0  |         lined = datad + i * wpld;  | 
571  | 0  |         for (j = 0; j < w; j++) { | 
572  |  |                 /* Compute float src pixel location corresponding to (i,j) */  | 
573  | 0  |             projectiveXformPt(vc, j, i, &x, &y);  | 
574  | 0  |             linearInterpolatePixelGray(datas, wpls, w, h, x, y, grayval, &val);  | 
575  | 0  |             SET_DATA_BYTE(lined, j, val);  | 
576  | 0  |         }  | 
577  | 0  |     }  | 
578  |  | 
  | 
579  | 0  |     return pixd;  | 
580  | 0  | }  | 
581  |  |  | 
582  |  |  | 
583  |  | /*---------------------------------------------------------------------------*  | 
584  |  |  *            Projective transform including alpha (blend) component         *  | 
585  |  |  *---------------------------------------------------------------------------*/  | 
586  |  | /*!  | 
587  |  |  * \brief   pixProjectivePtaWithAlpha()  | 
588  |  |  *  | 
589  |  |  * \param[in]    pixs     32 bpp rgb  | 
590  |  |  * \param[in]    ptad     4 pts of final coordinate space  | 
591  |  |  * \param[in]    ptas     4 pts of initial coordinate space  | 
592  |  |  * \param[in]    pixg     [optional] 8 bpp, for alpha channel, can be null  | 
593  |  |  * \param[in]    fract    between 0.0 and 1.0, with 0.0 fully transparent  | 
594  |  |  *                        and 1.0 fully opaque  | 
595  |  |  * \param[in]    border   of pixels added to capture transformed source pixels  | 
596  |  |  * \return  pixd, or NULL on error  | 
597  |  |  *  | 
598  |  |  * <pre>  | 
599  |  |  * Notes:  | 
600  |  |  *      (1) The alpha channel is transformed separately from pixs,  | 
601  |  |  *          and aligns with it, being fully transparent outside the  | 
602  |  |  *          boundary of the transformed pixs.  For pixels that are fully  | 
603  |  |  *          transparent, a blending function like pixBlendWithGrayMask()  | 
604  |  |  *          will give zero weight to corresponding pixels in pixs.  | 
605  |  |  *      (2) If pixg is NULL, it is generated as an alpha layer that is  | 
606  |  |  *          partially opaque, using %fract.  Otherwise, it is cropped  | 
607  |  |  *          to pixs if required and %fract is ignored.  The alpha channel  | 
608  |  |  *          in pixs is never used.  | 
609  |  |  *      (3) Colormaps are removed.  | 
610  |  |  *      (4) When pixs is transformed, it doesn't matter what color is brought  | 
611  |  |  *          in because the alpha channel will be transparent (0) there.  | 
612  |  |  *      (5) To avoid losing source pixels in the destination, it may be  | 
613  |  |  *          necessary to add a border to the source pix before doing  | 
614  |  |  *          the projective transformation.  This can be any non-negative  | 
615  |  |  *          number.  | 
616  |  |  *      (6) The input %ptad and %ptas are in a coordinate space before  | 
617  |  |  *          the border is added.  Internally, we compensate for this  | 
618  |  |  *          before doing the projective transform on the image after  | 
619  |  |  *          the border is added.  | 
620  |  |  *      (7) The default setting for the border values in the alpha channel  | 
621  |  |  *          is 0 (transparent) for the outermost ring of pixels and  | 
622  |  |  *          (0.5 * fract * 255) for the second ring.  When blended over  | 
623  |  |  *          a second image, this  | 
624  |  |  *          (a) shrinks the visible image to make a clean overlap edge  | 
625  |  |  *              with an image below, and  | 
626  |  |  *          (b) softens the edges by weakening the aliasing there.  | 
627  |  |  *          Use l_setAlphaMaskBorder() to change these values.  | 
628  |  |  * </pre>  | 
629  |  |  */  | 
630  |  | PIX *  | 
631  |  | pixProjectivePtaWithAlpha(PIX       *pixs,  | 
632  |  |                           PTA       *ptad,  | 
633  |  |                           PTA       *ptas,  | 
634  |  |                           PIX       *pixg,  | 
635  |  |                           l_float32  fract,  | 
636  |  |                           l_int32    border)  | 
637  | 0  | { | 
638  | 0  | l_int32  ws, hs, d;  | 
639  | 0  | PIX     *pixd, *pixb1, *pixb2, *pixg2, *pixga;  | 
640  | 0  | PTA     *ptad2, *ptas2;  | 
641  |  | 
  | 
642  | 0  |     if (!pixs)  | 
643  | 0  |         return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | 
644  | 0  |     pixGetDimensions(pixs, &ws, &hs, &d);  | 
645  | 0  |     if (d != 32 && pixGetColormap(pixs) == NULL)  | 
646  | 0  |         return (PIX *)ERROR_PTR("pixs not cmapped or 32 bpp", __func__, NULL); | 
647  | 0  |     if (pixg && pixGetDepth(pixg) != 8) { | 
648  | 0  |         L_WARNING("pixg not 8 bpp; using 'fract' transparent alpha\n", | 
649  | 0  |                   __func__);  | 
650  | 0  |         pixg = NULL;  | 
651  | 0  |     }  | 
652  | 0  |     if (!pixg && (fract < 0.0 || fract > 1.0)) { | 
653  | 0  |         L_WARNING("invalid fract; using 1.0 (fully transparent)\n", __func__); | 
654  | 0  |         fract = 1.0;  | 
655  | 0  |     }  | 
656  | 0  |     if (!pixg && fract == 0.0)  | 
657  | 0  |         L_WARNING("fully opaque alpha; image will not be blended\n", __func__); | 
658  | 0  |     if (!ptad)  | 
659  | 0  |         return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL); | 
660  | 0  |     if (!ptas)  | 
661  | 0  |         return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL); | 
662  |  |  | 
663  |  |         /* Add border; the color doesn't matter */  | 
664  | 0  |     pixb1 = pixAddBorder(pixs, border, 0);  | 
665  |  |  | 
666  |  |         /* Transform the ptr arrays to work on the bordered image */  | 
667  | 0  |     ptad2 = ptaTransform(ptad, border, border, 1.0, 1.0);  | 
668  | 0  |     ptas2 = ptaTransform(ptas, border, border, 1.0, 1.0);  | 
669  |  |  | 
670  |  |         /* Do separate projective transform of rgb channels of pixs  | 
671  |  |          * and of pixg */  | 
672  | 0  |     pixd = pixProjectivePtaColor(pixb1, ptad2, ptas2, 0);  | 
673  | 0  |     if (!pixg) { | 
674  | 0  |         pixg2 = pixCreate(ws, hs, 8);  | 
675  | 0  |         if (fract == 1.0)  | 
676  | 0  |             pixSetAll(pixg2);  | 
677  | 0  |         else  | 
678  | 0  |             pixSetAllArbitrary(pixg2, (l_int32)(255.0 * fract));  | 
679  | 0  |     } else { | 
680  | 0  |         pixg2 = pixResizeToMatch(pixg, NULL, ws, hs);  | 
681  | 0  |     }  | 
682  | 0  |     if (ws > 10 && hs > 10) {  /* see note 7 */ | 
683  | 0  |         pixSetBorderRingVal(pixg2, 1,  | 
684  | 0  |                             (l_int32)(255.0 * fract * AlphaMaskBorderVals[0]));  | 
685  | 0  |         pixSetBorderRingVal(pixg2, 2,  | 
686  | 0  |                             (l_int32)(255.0 * fract * AlphaMaskBorderVals[1]));  | 
687  |  | 
  | 
688  | 0  |     }  | 
689  | 0  |     pixb2 = pixAddBorder(pixg2, border, 0);  /* must be black border */  | 
690  | 0  |     pixga = pixProjectivePtaGray(pixb2, ptad2, ptas2, 0);  | 
691  | 0  |     pixSetRGBComponent(pixd, pixga, L_ALPHA_CHANNEL);  | 
692  | 0  |     pixSetSpp(pixd, 4);  | 
693  |  | 
  | 
694  | 0  |     pixDestroy(&pixg2);  | 
695  | 0  |     pixDestroy(&pixb1);  | 
696  | 0  |     pixDestroy(&pixb2);  | 
697  | 0  |     pixDestroy(&pixga);  | 
698  | 0  |     ptaDestroy(&ptad2);  | 
699  | 0  |     ptaDestroy(&ptas2);  | 
700  | 0  |     return pixd;  | 
701  | 0  | }  | 
702  |  |  | 
703  |  |  | 
704  |  | /*-------------------------------------------------------------*  | 
705  |  |  *                Projective coordinate transformation         *  | 
706  |  |  *-------------------------------------------------------------*/  | 
707  |  | /*!  | 
708  |  |  * \brief   getProjectiveXformCoeffs()  | 
709  |  |  *  | 
710  |  |  * \param[in]    ptas   source 4 points; unprimed  | 
711  |  |  * \param[in]    ptad   transformed 4 points; primed  | 
712  |  |  * \param[out]   pvc    vector of coefficients of transform  | 
713  |  |  * \return  0 if OK; 1 on error  | 
714  |  |  *  | 
715  |  |  *  We have a set of 8 equations, describing the projective  | 
716  |  |  *  transformation that takes 4 points ptas into 4 other  | 
717  |  |  *  points ptad.  These equations are:  | 
718  |  |  *  | 
719  |  |  *          x1' = c[0]*x1 + c[1]*y1 + c[2]) / (c[6]*x1 + c[7]*y1 + 1  | 
720  |  |  *          y1' = c[3]*x1 + c[4]*y1 + c[5]) / (c[6]*x1 + c[7]*y1 + 1  | 
721  |  |  *          x2' = c[0]*x2 + c[1]*y2 + c[2]) / (c[6]*x2 + c[7]*y2 + 1  | 
722  |  |  *          y2' = c[3]*x2 + c[4]*y2 + c[5]) / (c[6]*x2 + c[7]*y2 + 1  | 
723  |  |  *          x3' = c[0]*x3 + c[1]*y3 + c[2]) / (c[6]*x3 + c[7]*y3 + 1  | 
724  |  |  *          y3' = c[3]*x3 + c[4]*y3 + c[5]) / (c[6]*x3 + c[7]*y3 + 1  | 
725  |  |  *          x4' = c[0]*x4 + c[1]*y4 + c[2]) / (c[6]*x4 + c[7]*y4 + 1  | 
726  |  |  *          y4' = c[3]*x4 + c[4]*y4 + c[5]) / (c[6]*x4 + c[7]*y4 + 1  | 
727  |  |  *  | 
728  |  |  *  Multiplying both sides of each eqn by the denominator, we get  | 
729  |  |  *  | 
730  |  |  *           AC = B  | 
731  |  |  *  | 
732  |  |  *  where B and C are column vectors  | 
733  |  |  *  | 
734  |  |  *         B = [ x1' y1' x2' y2' x3' y3' x4' y4' ]  | 
735  |  |  *         C = [ c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] ]  | 
736  |  |  *  | 
737  |  |  *  and A is the 8x8 matrix  | 
738  |  |  *  | 
739  |  |  *             x1   y1     1     0   0    0   -x1*x1'  -y1*x1'  | 
740  |  |  *              0    0     0    x1   y1   1   -x1*y1'  -y1*y1'  | 
741  |  |  *             x2   y2     1     0   0    0   -x2*x2'  -y2*x2'  | 
742  |  |  *              0    0     0    x2   y2   1   -x2*y2'  -y2*y2'  | 
743  |  |  *             x3   y3     1     0   0    0   -x3*x3'  -y3*x3'  | 
744  |  |  *              0    0     0    x3   y3   1   -x3*y3'  -y3*y3'  | 
745  |  |  *             x4   y4     1     0   0    0   -x4*x4'  -y4*x4'  | 
746  |  |  *              0    0     0    x4   y4   1   -x4*y4'  -y4*y4'  | 
747  |  |  *  | 
748  |  |  *  These eight equations are solved here for the coefficients C.  | 
749  |  |  *  | 
750  |  |  *  These eight coefficients can then be used to find the mapping  | 
751  |  |  *  x,y) --> (x',y':  | 
752  |  |  *  | 
753  |  |  *           x' = c[0]x + c[1]y + c[2]) / (c[6]x + c[7]y + 1  | 
754  |  |  *           y' = c[3]x + c[4]y + c[5]) / (c[6]x + c[7]y + 1  | 
755  |  |  *  | 
756  |  |  *  that is implemented in projectiveXformSampled and  | 
757  |  |  *  projectiveXFormInterpolated.  | 
758  |  |  */  | 
759  |  | l_ok  | 
760  |  | getProjectiveXformCoeffs(PTA         *ptas,  | 
761  |  |                          PTA         *ptad,  | 
762  |  |                          l_float32  **pvc)  | 
763  | 0  | { | 
764  | 0  | l_int32     i;  | 
765  | 0  | l_float32   x1, y1, x2, y2, x3, y3, x4, y4;  | 
766  | 0  | l_float32  *b;   /* rhs vector of primed coords X'; coeffs returned in *pvc */  | 
767  | 0  | l_float32  *a[8];  /* 8x8 matrix A  */  | 
768  |  | 
  | 
769  | 0  |     if (!ptas)  | 
770  | 0  |         return ERROR_INT("ptas not defined", __func__, 1); | 
771  | 0  |     if (!ptad)  | 
772  | 0  |         return ERROR_INT("ptad not defined", __func__, 1); | 
773  | 0  |     if (!pvc)  | 
774  | 0  |         return ERROR_INT("&vc not defined", __func__, 1); | 
775  |  |  | 
776  | 0  |     b = (l_float32 *)LEPT_CALLOC(8, sizeof(l_float32));  | 
777  | 0  |     *pvc = b;  | 
778  | 0  |     ptaGetPt(ptas, 0, &x1, &y1);  | 
779  | 0  |     ptaGetPt(ptas, 1, &x2, &y2);  | 
780  | 0  |     ptaGetPt(ptas, 2, &x3, &y3);  | 
781  | 0  |     ptaGetPt(ptas, 3, &x4, &y4);  | 
782  | 0  |     ptaGetPt(ptad, 0, &b[0], &b[1]);  | 
783  | 0  |     ptaGetPt(ptad, 1, &b[2], &b[3]);  | 
784  | 0  |     ptaGetPt(ptad, 2, &b[4], &b[5]);  | 
785  | 0  |     ptaGetPt(ptad, 3, &b[6], &b[7]);  | 
786  |  | 
  | 
787  | 0  |     for (i = 0; i < 8; i++)  | 
788  | 0  |         a[i] = (l_float32 *)LEPT_CALLOC(8, sizeof(l_float32));  | 
789  | 0  |     a[0][0] = x1;  | 
790  | 0  |     a[0][1] = y1;  | 
791  | 0  |     a[0][2] = 1.;  | 
792  | 0  |     a[0][6] = -x1 * b[0];  | 
793  | 0  |     a[0][7] = -y1 * b[0];  | 
794  | 0  |     a[1][3] = x1;  | 
795  | 0  |     a[1][4] = y1;  | 
796  | 0  |     a[1][5] = 1;  | 
797  | 0  |     a[1][6] = -x1 * b[1];  | 
798  | 0  |     a[1][7] = -y1 * b[1];  | 
799  | 0  |     a[2][0] = x2;  | 
800  | 0  |     a[2][1] = y2;  | 
801  | 0  |     a[2][2] = 1.;  | 
802  | 0  |     a[2][6] = -x2 * b[2];  | 
803  | 0  |     a[2][7] = -y2 * b[2];  | 
804  | 0  |     a[3][3] = x2;  | 
805  | 0  |     a[3][4] = y2;  | 
806  | 0  |     a[3][5] = 1;  | 
807  | 0  |     a[3][6] = -x2 * b[3];  | 
808  | 0  |     a[3][7] = -y2 * b[3];  | 
809  | 0  |     a[4][0] = x3;  | 
810  | 0  |     a[4][1] = y3;  | 
811  | 0  |     a[4][2] = 1.;  | 
812  | 0  |     a[4][6] = -x3 * b[4];  | 
813  | 0  |     a[4][7] = -y3 * b[4];  | 
814  | 0  |     a[5][3] = x3;  | 
815  | 0  |     a[5][4] = y3;  | 
816  | 0  |     a[5][5] = 1;  | 
817  | 0  |     a[5][6] = -x3 * b[5];  | 
818  | 0  |     a[5][7] = -y3 * b[5];  | 
819  | 0  |     a[6][0] = x4;  | 
820  | 0  |     a[6][1] = y4;  | 
821  | 0  |     a[6][2] = 1.;  | 
822  | 0  |     a[6][6] = -x4 * b[6];  | 
823  | 0  |     a[6][7] = -y4 * b[6];  | 
824  | 0  |     a[7][3] = x4;  | 
825  | 0  |     a[7][4] = y4;  | 
826  | 0  |     a[7][5] = 1;  | 
827  | 0  |     a[7][6] = -x4 * b[7];  | 
828  | 0  |     a[7][7] = -y4 * b[7];  | 
829  |  | 
  | 
830  | 0  |     gaussjordan(a, b, 8);  | 
831  |  | 
  | 
832  | 0  |     for (i = 0; i < 8; i++)  | 
833  | 0  |         LEPT_FREE(a[i]);  | 
834  |  | 
  | 
835  | 0  |     return 0;  | 
836  | 0  | }  | 
837  |  |  | 
838  |  |  | 
839  |  | /*!  | 
840  |  |  * \brief   projectiveXformSampledPt()  | 
841  |  |  *  | 
842  |  |  * \param[in]    vc         vector of 8 coefficients  | 
843  |  |  * \param[in]    x, y       initial point  | 
844  |  |  * \param[out]   pxp, pyp   transformed point  | 
845  |  |  * \return  0 if OK; 1 on error  | 
846  |  |  *  | 
847  |  |  * <pre>  | 
848  |  |  * Notes:  | 
849  |  |  *      (1) This finds the nearest pixel coordinates of the transformed point.  | 
850  |  |  *      (2) It does not check ptrs for returned data!  | 
851  |  |  * </pre>  | 
852  |  |  */  | 
853  |  | l_ok  | 
854  |  | projectiveXformSampledPt(l_float32  *vc,  | 
855  |  |                          l_int32     x,  | 
856  |  |                          l_int32     y,  | 
857  |  |                          l_int32    *pxp,  | 
858  |  |                          l_int32    *pyp)  | 
859  | 0  | { | 
860  | 0  | l_float32  factor;  | 
861  | 0  | l_float64  denom;  | 
862  |  | 
  | 
863  | 0  |     if (!vc)  | 
864  | 0  |         return ERROR_INT("vc not defined", __func__, 1); | 
865  |  |  | 
866  | 0  |     if ((denom = vc[6] * x + vc[7] * y + 1.0f) == 0.0f)  | 
867  | 0  |         return ERROR_INT("denom = 0.0", __func__, 1); | 
868  | 0  |     factor = 1.0f / denom;  | 
869  | 0  |     *pxp = (l_int32)(factor * (vc[0] * x + vc[1] * y + vc[2]) + 0.5f);  | 
870  | 0  |     *pyp = (l_int32)(factor * (vc[3] * x + vc[4] * y + vc[5]) + 0.5f);  | 
871  | 0  |     return 0;  | 
872  | 0  | }  | 
873  |  |  | 
874  |  |  | 
875  |  | /*!  | 
876  |  |  * \brief   projectiveXformPt()  | 
877  |  |  *  | 
878  |  |  * \param[in]    vc         vector of 8 coefficients  | 
879  |  |  * \param[in]    x, y       initial point  | 
880  |  |  * \param[out]   pxp, pyp   transformed point  | 
881  |  |  * \return  0 if OK; 1 on error  | 
882  |  |  *  | 
883  |  |  * <pre>  | 
884  |  |  * Notes:  | 
885  |  |  *      (1) This computes the floating point location of the transformed point.  | 
886  |  |  *      (2) It does not check ptrs for returned data!  | 
887  |  |  * </pre>  | 
888  |  |  */  | 
889  |  | l_ok  | 
890  |  | projectiveXformPt(l_float32  *vc,  | 
891  |  |                   l_int32     x,  | 
892  |  |                   l_int32     y,  | 
893  |  |                   l_float32  *pxp,  | 
894  |  |                   l_float32  *pyp)  | 
895  | 0  | { | 
896  | 0  | l_float32  factor;  | 
897  | 0  | l_float64  denom;  | 
898  |  | 
  | 
899  | 0  |     if (!vc)  | 
900  | 0  |         return ERROR_INT("vc not defined", __func__, 1); | 
901  |  |  | 
902  | 0  |     if ((denom = vc[6] * x + vc[7] * y + 1.0f) == 0.0f)  | 
903  | 0  |         return ERROR_INT("denom = 0.0", __func__, 1); | 
904  | 0  |     factor = 1.0f / denom;  | 
905  | 0  |     *pxp = factor * (vc[0] * x + vc[1] * y + vc[2]);  | 
906  | 0  |     *pyp = factor * (vc[3] * x + vc[4] * y + vc[5]);  | 
907  | 0  |     return 0;  | 
908  | 0  | }  |