/src/tesseract/src/ccstruct/points.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /**********************************************************************  | 
2  |  |  * File:        points.cpp  (Formerly coords.c)  | 
3  |  |  * Description: Member functions for coordinate classes.  | 
4  |  |  * Author:      Ray Smith  | 
5  |  |  *  | 
6  |  |  * (C) Copyright 1991, Hewlett-Packard Ltd.  | 
7  |  |  ** Licensed under the Apache License, Version 2.0 (the "License");  | 
8  |  |  ** you may not use this file except in compliance with the License.  | 
9  |  |  ** You may obtain a copy of the License at  | 
10  |  |  ** http://www.apache.org/licenses/LICENSE-2.0  | 
11  |  |  ** Unless required by applicable law or agreed to in writing, software  | 
12  |  |  ** distributed under the License is distributed on an "AS IS" BASIS,  | 
13  |  |  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
14  |  |  ** See the License for the specific language governing permissions and  | 
15  |  |  ** limitations under the License.  | 
16  |  |  *  | 
17  |  |  **********************************************************************/  | 
18  |  |  | 
19  |  | #define _USE_MATH_DEFINES // for M_PI  | 
20  |  |  | 
21  |  | #include "points.h"  | 
22  |  |  | 
23  |  | #include "helpers.h"  | 
24  |  | #include "serialis.h"  | 
25  |  |  | 
26  |  | #include <algorithm>  | 
27  |  | #include <cmath> // for M_PI  | 
28  |  | #include <cstdlib>  | 
29  |  |  | 
30  |  | namespace tesseract { | 
31  |  |  | 
32  | 0  | bool FCOORD::normalise() { // Convert to unit vec | 
33  | 0  |   float len = length();  | 
34  |  | 
  | 
35  | 0  |   if (len < 0.0000000001) { | 
36  | 0  |     return false;  | 
37  | 0  |   }  | 
38  | 0  |   xcoord /= len;  | 
39  | 0  |   ycoord /= len;  | 
40  | 0  |   return true;  | 
41  | 0  | }  | 
42  |  |  | 
43  | 0  | bool ICOORD::DeSerialize(TFile *f) { | 
44  | 0  |   return f->DeSerialize(&xcoord) && f->DeSerialize(&ycoord);  | 
45  | 0  | }  | 
46  |  |  | 
47  | 0  | bool ICOORD::Serialize(TFile *f) const { | 
48  | 0  |   return f->Serialize(&xcoord) && f->Serialize(&ycoord);  | 
49  | 0  | }  | 
50  |  |  | 
51  |  | // Set from the given x,y, shrinking the vector to fit if needed.  | 
52  | 0  | void ICOORD::set_with_shrink(int x, int y) { | 
53  |  |   // Fit the vector into an ICOORD, which is 16 bit.  | 
54  | 0  |   int factor = 1;  | 
55  | 0  |   int max_extent = std::max(abs(x), abs(y));  | 
56  | 0  |   if (max_extent > INT16_MAX) { | 
57  | 0  |     factor = max_extent / INT16_MAX + 1;  | 
58  | 0  |   }  | 
59  | 0  |   xcoord = x / factor;  | 
60  | 0  |   ycoord = y / factor;  | 
61  | 0  | }  | 
62  |  |  | 
63  |  | // The fortran/basic sgn function returns -1, 0, 1 if x < 0, x == 0, x > 0  | 
64  |  | // respectively.  | 
65  | 0  | static int sign(int x) { | 
66  | 0  |   if (x < 0) { | 
67  | 0  |     return -1;  | 
68  | 0  |   } else { | 
69  | 0  |     return x > 0 ? 1 : 0;  | 
70  | 0  |   }  | 
71  | 0  | }  | 
72  |  |  | 
73  |  | // Writes to the given file. Returns false in case of error.  | 
74  | 0  | bool ICOORD::Serialize(FILE *fp) const { | 
75  | 0  |   return tesseract::Serialize(fp, &xcoord) && tesseract::Serialize(fp, &ycoord);  | 
76  | 0  | }  | 
77  |  | // Reads from the given file. Returns false in case of error.  | 
78  |  | // If swap is true, assumes a big/little-endian swap is needed.  | 
79  | 0  | bool ICOORD::DeSerialize(bool swap, FILE *fp) { | 
80  | 0  |   if (!tesseract::DeSerialize(fp, &xcoord)) { | 
81  | 0  |     return false;  | 
82  | 0  |   }  | 
83  | 0  |   if (!tesseract::DeSerialize(fp, &ycoord)) { | 
84  | 0  |     return false;  | 
85  | 0  |   }  | 
86  | 0  |   if (swap) { | 
87  | 0  |     ReverseN(&xcoord, sizeof(xcoord));  | 
88  | 0  |     ReverseN(&ycoord, sizeof(ycoord));  | 
89  | 0  |   }  | 
90  | 0  |   return true;  | 
91  | 0  | }  | 
92  |  |  | 
93  |  | // Setup for iterating over the pixels in a vector by the well-known  | 
94  |  | // Bresenham rendering algorithm.  | 
95  |  | // Starting with major/2 in the accumulator, on each step add major_step,  | 
96  |  | // and then add minor to the accumulator. When the accumulator >= major  | 
97  |  | // subtract major and step a minor step.  | 
98  |  |  | 
99  | 0  | void ICOORD::setup_render(ICOORD *major_step, ICOORD *minor_step, int *major, int *minor) const { | 
100  | 0  |   int abs_x = abs(xcoord);  | 
101  | 0  |   int abs_y = abs(ycoord);  | 
102  | 0  |   if (abs_x >= abs_y) { | 
103  |  |     // X-direction is major.  | 
104  | 0  |     major_step->xcoord = sign(xcoord);  | 
105  | 0  |     major_step->ycoord = 0;  | 
106  | 0  |     minor_step->xcoord = 0;  | 
107  | 0  |     minor_step->ycoord = sign(ycoord);  | 
108  | 0  |     *major = abs_x;  | 
109  | 0  |     *minor = abs_y;  | 
110  | 0  |   } else { | 
111  |  |     // Y-direction is major.  | 
112  | 0  |     major_step->xcoord = 0;  | 
113  | 0  |     major_step->ycoord = sign(ycoord);  | 
114  | 0  |     minor_step->xcoord = sign(xcoord);  | 
115  | 0  |     minor_step->ycoord = 0;  | 
116  | 0  |     *major = abs_y;  | 
117  | 0  |     *minor = abs_x;  | 
118  | 0  |   }  | 
119  | 0  | }  | 
120  |  |  | 
121  |  | // Returns the standard feature direction corresponding to this.  | 
122  |  | // See binary_angle_plus_pi below for a description of the direction.  | 
123  | 125M  | uint8_t FCOORD::to_direction() const { | 
124  | 125M  |   return binary_angle_plus_pi(angle());  | 
125  | 125M  | }  | 
126  |  | // Sets this with a unit vector in the given standard feature direction.  | 
127  | 0  | void FCOORD::from_direction(uint8_t direction) { | 
128  | 0  |   double radians = angle_from_direction(direction);  | 
129  | 0  |   xcoord = cos(radians);  | 
130  | 0  |   ycoord = sin(radians);  | 
131  | 0  | }  | 
132  |  |  | 
133  |  | // Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a  | 
134  |  | // standard feature direction as an unsigned angle in 256ths of a circle  | 
135  |  | // measured anticlockwise from (-1, 0).  | 
136  | 125M  | uint8_t FCOORD::binary_angle_plus_pi(double radians) { | 
137  | 125M  |   return Modulo(IntCastRounded((radians + M_PI) * 128.0 / M_PI), 256);  | 
138  | 125M  | }  | 
139  |  | // Inverse of binary_angle_plus_pi returns an angle in radians for the  | 
140  |  | // given standard feature direction.  | 
141  | 0  | double FCOORD::angle_from_direction(uint8_t direction) { | 
142  | 0  |   return direction * M_PI / 128.0 - M_PI;  | 
143  | 0  | }  | 
144  |  |  | 
145  |  | // Returns the point on the given line nearest to this, ie the point such  | 
146  |  | // that the vector point->this is perpendicular to the line.  | 
147  |  | // The line is defined as a line_point and a dir_vector for its direction.  | 
148  | 0  | FCOORD FCOORD::nearest_pt_on_line(const FCOORD &line_point, const FCOORD &dir_vector) const { | 
149  | 0  |   FCOORD point_vector(*this - line_point);  | 
150  |  |   // The dot product (%) is |dir_vector||point_vector|cos theta, so dividing by  | 
151  |  |   // the square of the length of dir_vector gives us the fraction of dir_vector  | 
152  |  |   // to add to line1 to get the appropriate point, so  | 
153  |  |   // result = line1 + lambda dir_vector.  | 
154  | 0  |   double lambda = point_vector % dir_vector / dir_vector.sqlength();  | 
155  | 0  |   return line_point + (dir_vector * lambda);  | 
156  | 0  | }  | 
157  |  |  | 
158  |  | } // namespace tesseract  |