Coverage Report

Created: 2025-07-23 07:12

/src/tesseract/src/arch/intsimdmatrix.cpp
Line
Count
Source (jump to first uncovered line)
1
///////////////////////////////////////////////////////////////////////
2
// File:        intsimdmatrix.cpp
3
// Description: Base class for 8-bit int SIMD matrix multipliers.
4
// Author:      Ray Smith
5
//
6
// (C) Copyright 2017, Google Inc.
7
// Licensed under the Apache License, Version 2.0 (the "License");
8
// you may not use this file except in compliance with the License.
9
// You may obtain a copy of the License at
10
// http://www.apache.org/licenses/LICENSE-2.0
11
// Unless required by applicable law or agreed to in writing, software
12
// distributed under the License is distributed on an "AS IS" BASIS,
13
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
// See the License for the specific language governing permissions and
15
// limitations under the License.
16
///////////////////////////////////////////////////////////////////////
17
18
#include "intsimdmatrix.h"
19
#include "matrix.h"     // for GENERIC_2D_ARRAY
20
#include "simddetect.h" // for SIMDDetect
21
22
namespace tesseract {
23
24
const IntSimdMatrix *IntSimdMatrix::intSimdMatrix = nullptr;
25
26
// Computes a reshaped copy of the weight matrix w.
27
void IntSimdMatrix::Init(const GENERIC_2D_ARRAY<int8_t> &w, std::vector<int8_t> &shaped_w,
28
72
                         int32_t &rounded_num_out) const {
29
72
  const int num_out = w.dim1();
30
72
  const int num_in = w.dim2() - 1;
31
  // The rounded-up sizes of the reshaped weight matrix, excluding biases.
32
72
  int rounded_num_in = Roundup(num_in, num_inputs_per_group_);
33
72
  rounded_num_out = RoundOutputs(num_out);
34
  // Add the bias and compute the required size.
35
72
  shaped_w.resize((rounded_num_in + 1) * rounded_num_out, 0);
36
72
  int shaped_index = 0;
37
72
  int output = 0;
38
  // Each number of registers needs a different format! Iterates over the
39
  // different numbers of registers (each a power of 2).
40
360
  for (int num_registers = max_output_registers_; num_registers >= 1; num_registers /= 2) {
41
    // The number of outputs that we will generate with this many registers.
42
288
    int num_outputs_per_register_set = num_registers * num_outputs_per_register_;
43
    // Use the max number of registers until we have to go fewer.
44
512
    while (output + num_outputs_per_register_set <= rounded_num_out) {
45
      // Accumulating outputs in registers saves iterating over the inputs, so
46
      // we only have to do it once per output register set.
47
24.3k
      for (int input = 0; input < num_in; input += num_inputs_per_group_) {
48
        // Iterate over the number of outputs in a register set.
49
1.48M
        for (int j = 0; j < num_outputs_per_register_set; ++j) {
50
          // Inner-most loop corresponds to the number of inputs in an input
51
          // group.
52
7.29M
          for (int i = 0; i < num_inputs_per_group_; ++i) {
53
5.83M
            int8_t weight = 0;
54
5.83M
            if (output + j < num_out && input + i < num_in) {
55
5.83M
              weight = w(output + j, input + i);
56
5.83M
            }
57
5.83M
            shaped_w[shaped_index++] = weight;
58
5.83M
          }
59
1.45M
        }
60
24.1k
      }
61
      // Append the bias weights for the register set.
62
13.0k
      for (int j = 0; j < num_outputs_per_register_set; ++j) {
63
12.8k
        int8_t weight = 0;
64
12.8k
        if (output + j < num_out) {
65
12.7k
          weight = w(output + j, num_in);
66
12.7k
        }
67
12.8k
        shaped_w[shaped_index++] = weight;
68
12.8k
      }
69
224
      output += num_outputs_per_register_set;
70
224
    }
71
288
  }
72
72
}
73
74
// Computes matrix.vector v = Wu.
75
// u is of size W.dim2() - 1 and the output v is of size W.dim1().
76
// u is imagined to have an extra element at the end with value 1, to
77
// implement the bias, but it doesn't actually have it.
78
void IntSimdMatrix::MatrixDotVector(const GENERIC_2D_ARRAY<int8_t> &w,
79
0
                                    const std::vector<TFloat> &scales, const int8_t *u, TFloat *v) {
80
0
  int num_out = w.dim1();
81
0
  int num_in = w.dim2() - 1;
82
  // Base implementation.
83
0
  int i;
84
  // Break up into chunks of four to facilitate vectorization
85
0
  for (i = 0; i < (num_out / 4) * 4; i += 4) {
86
0
    const int8_t *wi0 = w[i + 0];
87
0
    const int8_t *wi1 = w[i + 1];
88
0
    const int8_t *wi2 = w[i + 2];
89
0
    const int8_t *wi3 = w[i + 3];
90
0
    int total0 = 0;
91
0
    int total1 = 0;
92
0
    int total2 = 0;
93
0
    int total3 = 0;
94
0
    for (int j = 0; j < num_in; ++j) {
95
0
      total0 += wi0[j] * u[j];
96
0
      total1 += wi1[j] * u[j];
97
0
      total2 += wi2[j] * u[j];
98
0
      total3 += wi3[j] * u[j];
99
0
    }
100
    // Add in the bias and correct for integer values.
101
0
    v[i + 0] = (total0 + wi0[num_in] * INT8_MAX) * scales[i + 0];
102
0
    v[i + 1] = (total1 + wi1[num_in] * INT8_MAX) * scales[i + 1];
103
0
    v[i + 2] = (total2 + wi2[num_in] * INT8_MAX) * scales[i + 2];
104
0
    v[i + 3] = (total3 + wi3[num_in] * INT8_MAX) * scales[i + 3];
105
0
  }
106
107
  // Capture the remainder mod four
108
0
  for (; i < num_out; ++i) {
109
0
    const int8_t *wi = w[i];
110
0
    int total = 0;
111
0
    for (int j = 0; j < num_in; ++j) {
112
0
      total += wi[j] * u[j];
113
0
    }
114
    // Add in the bias and correct for integer values.
115
0
    v[i] = (total + wi[num_in] * INT8_MAX) * scales[i];
116
0
  }
117
0
}
118
119
} // namespace tesseract