Coverage Report

Created: 2025-07-23 07:12

/src/tesseract/src/arch/intsimdmatrixsse.cpp
Line
Count
Source (jump to first uncovered line)
1
///////////////////////////////////////////////////////////////////////
2
// File:        intsindmatrixsse.cpp
3
// Description: SSE implementation of 8-bit int SIMD matrix multiply.
4
// Author:      Ray Smith
5
//
6
// (C) Copyright 2017, Google Inc.
7
// Licensed under the Apache License, Version 2.0 (the "License");
8
// you may not use this file except in compliance with the License.
9
// You may obtain a copy of the License at
10
// http://www.apache.org/licenses/LICENSE-2.0
11
// Unless required by applicable law or agreed to in writing, software
12
// distributed under the License is distributed on an "AS IS" BASIS,
13
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
// See the License for the specific language governing permissions and
15
// limitations under the License.
16
///////////////////////////////////////////////////////////////////////
17
18
#if !defined(__SSE4_1__)
19
#  if defined(__i686__) || defined(__x86_64__)
20
#    error Implementation only for SSE 4.1 capable architectures
21
#  endif
22
#else
23
24
#  include "intsimdmatrix.h"
25
26
#  include <emmintrin.h>
27
#  include <smmintrin.h>
28
#  include <cstdint>
29
30
namespace tesseract {
31
32
// Computes and returns the dot product of the n-vectors u and v.
33
// Uses Intel SSE intrinsics to access the SIMD instruction set.
34
0
static int32_t IntDotProductSSE(const int8_t *u, const int8_t *v, int n) {
35
0
  int max_offset = n - 8;
36
0
  int offset = 0;
37
  // Accumulate a set of 4 32-bit sums in sum, by loading 8 pairs of 8-bit
38
  // values, extending to 16 bit, multiplying to make 32 bit results.
39
0
  int32_t result = 0;
40
0
  if (offset <= max_offset) {
41
0
    offset = 8;
42
0
    __m128i packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(u));
43
0
    __m128i packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(v));
44
0
    __m128i sum = _mm_cvtepi8_epi16(packed1);
45
0
    packed2 = _mm_cvtepi8_epi16(packed2);
46
    // The magic _mm_add_epi16 is perfect here. It multiplies 8 pairs of 16 bit
47
    // ints to make 32 bit results, which are then horizontally added in pairs
48
    // to make 4 32 bit results that still fit in a 128 bit register.
49
0
    sum = _mm_madd_epi16(sum, packed2);
50
0
    while (offset <= max_offset) {
51
0
      packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(u + offset));
52
0
      packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(v + offset));
53
0
      offset += 8;
54
0
      packed1 = _mm_cvtepi8_epi16(packed1);
55
0
      packed2 = _mm_cvtepi8_epi16(packed2);
56
0
      packed1 = _mm_madd_epi16(packed1, packed2);
57
0
      sum = _mm_add_epi32(sum, packed1);
58
0
    }
59
    // Sum the 4 packed 32 bit sums and extract the low result.
60
0
    sum = _mm_hadd_epi32(sum, sum);
61
0
    sum = _mm_hadd_epi32(sum, sum);
62
0
    result = _mm_cvtsi128_si32(sum);
63
0
  }
64
0
  while (offset < n) {
65
0
    result += u[offset] * v[offset];
66
0
    ++offset;
67
0
  }
68
0
  return result;
69
0
}
70
71
// Computes part of matrix.vector v = Wu. Computes 1 result.
72
static void PartialMatrixDotVector1(const int8_t *wi, const TFloat *scales, const int8_t *u,
73
0
                                    int num_in, TFloat *v) {
74
0
  TFloat total = IntDotProductSSE(u, wi, num_in);
75
  // Add in the bias and correct for integer values.
76
0
  *v = (total + wi[num_in] * INT8_MAX) * *scales;
77
0
}
78
79
static void matrixDotVector(int dim1, int dim2, const int8_t *wi, const TFloat *scales,
80
0
                            const int8_t *u, TFloat *v) {
81
0
  const int num_out = dim1;
82
0
  const int num_in = dim2 - 1;
83
0
  int output = 0;
84
85
0
  for (; output < num_out; output++) {
86
0
    PartialMatrixDotVector1(wi, scales, u, num_in, v);
87
0
    wi += dim2;
88
0
    scales++;
89
0
    v++;
90
0
  }
91
0
}
92
93
const IntSimdMatrix IntSimdMatrix::intSimdMatrixSSE = {
94
    matrixDotVector,
95
    // Number of 32 bit outputs held in each register.
96
    1,
97
    // Maximum number of registers that we will use to hold outputs.
98
    1,
99
    // Number of 8 bit inputs in the inputs register.
100
    1,
101
    // Number of inputs in each weight group.
102
    1
103
};
104
105
} // namespace tesseract.
106
107
#endif