/src/tesseract/src/lstm/plumbing.h
Line | Count | Source (jump to first uncovered line) |
1 | | /////////////////////////////////////////////////////////////////////// |
2 | | // File: plumbing.h |
3 | | // Description: Base class for networks that organize other networks |
4 | | // eg series or parallel. |
5 | | // Author: Ray Smith |
6 | | // |
7 | | // (C) Copyright 2014, Google Inc. |
8 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
9 | | // you may not use this file except in compliance with the License. |
10 | | // You may obtain a copy of the License at |
11 | | // http://www.apache.org/licenses/LICENSE-2.0 |
12 | | // Unless required by applicable law or agreed to in writing, software |
13 | | // distributed under the License is distributed on an "AS IS" BASIS, |
14 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
15 | | // See the License for the specific language governing permissions and |
16 | | // limitations under the License. |
17 | | /////////////////////////////////////////////////////////////////////// |
18 | | |
19 | | #ifndef TESSERACT_LSTM_PLUMBING_H_ |
20 | | #define TESSERACT_LSTM_PLUMBING_H_ |
21 | | |
22 | | #include "matrix.h" |
23 | | #include "network.h" |
24 | | |
25 | | namespace tesseract { |
26 | | |
27 | | // Holds a collection of other networks and forwards calls to each of them. |
28 | | class TESS_API Plumbing : public Network { |
29 | | public: |
30 | | // ni_ and no_ will be set by AddToStack. |
31 | | explicit Plumbing(const std::string &name); |
32 | 0 | ~Plumbing() override { |
33 | 0 | for (auto data : stack_) { |
34 | 0 | delete data; |
35 | 0 | } |
36 | 0 | } |
37 | | |
38 | | // Returns the required shape input to the network. |
39 | 282k | StaticShape InputShape() const override { |
40 | 282k | return stack_[0]->InputShape(); |
41 | 282k | } |
42 | 0 | std::string spec() const override { |
43 | 0 | return "Sub-classes of Plumbing must implement spec()!"; |
44 | 0 | } |
45 | | |
46 | | // Returns true if the given type is derived from Plumbing, and thus contains |
47 | | // multiple sub-networks that can have their own learning rate. |
48 | 0 | bool IsPlumbingType() const override { |
49 | 0 | return true; |
50 | 0 | } |
51 | | |
52 | | // Suspends/Enables training by setting the training_ flag. Serialize and |
53 | | // DeSerialize only operate on the run-time data if state is false. |
54 | | void SetEnableTraining(TrainingState state) override; |
55 | | |
56 | | // Sets flags that control the action of the network. See NetworkFlags enum |
57 | | // for bit values. |
58 | | void SetNetworkFlags(uint32_t flags) override; |
59 | | |
60 | | // Sets up the network for training. Initializes weights using weights of |
61 | | // scale `range` picked according to the random number generator `randomizer`. |
62 | | // Note that randomizer is a borrowed pointer that should outlive the network |
63 | | // and should not be deleted by any of the networks. |
64 | | // Returns the number of weights initialized. |
65 | | int InitWeights(float range, TRand *randomizer) override; |
66 | | // Recursively searches the network for softmaxes with old_no outputs, |
67 | | // and remaps their outputs according to code_map. See network.h for details. |
68 | | int RemapOutputs(int old_no, const std::vector<int> &code_map) override; |
69 | | |
70 | | // Converts a float network to an int network. |
71 | | void ConvertToInt() override; |
72 | | |
73 | | // Provides a pointer to a TRand for any networks that care to use it. |
74 | | // Note that randomizer is a borrowed pointer that should outlive the network |
75 | | // and should not be deleted by any of the networks. |
76 | | void SetRandomizer(TRand *randomizer) override; |
77 | | |
78 | | // Adds the given network to the stack. |
79 | | virtual void AddToStack(Network *network); |
80 | | |
81 | | // Sets needs_to_backprop_ to needs_backprop and returns true if |
82 | | // needs_backprop || any weights in this network so the next layer forward |
83 | | // can be told to produce backprop for this layer if needed. |
84 | | bool SetupNeedsBackprop(bool needs_backprop) override; |
85 | | |
86 | | // Returns an integer reduction factor that the network applies to the |
87 | | // time sequence. Assumes that any 2-d is already eliminated. Used for |
88 | | // scaling bounding boxes of truth data. |
89 | | // WARNING: if GlobalMinimax is used to vary the scale, this will return |
90 | | // the last used scale factor. Call it before any forward, and it will return |
91 | | // the minimum scale factor of the paths through the GlobalMinimax. |
92 | | int XScaleFactor() const override; |
93 | | |
94 | | // Provides the (minimum) x scale factor to the network (of interest only to |
95 | | // input units) so they can determine how to scale bounding boxes. |
96 | | void CacheXScaleFactor(int factor) override; |
97 | | |
98 | | // Provides debug output on the weights. |
99 | | void DebugWeights() override; |
100 | | |
101 | | // Returns the current stack. |
102 | 0 | const std::vector<Network *> &stack() const { |
103 | 0 | return stack_; |
104 | 0 | } |
105 | | // Returns a set of strings representing the layer-ids of all layers below. |
106 | | void EnumerateLayers(const std::string *prefix, std::vector<std::string> &layers) const; |
107 | | // Returns a pointer to the network layer corresponding to the given id. |
108 | | Network *GetLayer(const char *id) const; |
109 | | // Returns the learning rate for a specific layer of the stack. |
110 | 0 | float LayerLearningRate(const char *id) { |
111 | 0 | const float *lr_ptr = LayerLearningRatePtr(id); |
112 | 0 | ASSERT_HOST(lr_ptr != nullptr); |
113 | 0 | return *lr_ptr; |
114 | 0 | } |
115 | | // Scales the learning rate for a specific layer of the stack. |
116 | 0 | void ScaleLayerLearningRate(const char *id, double factor) { |
117 | 0 | float *lr_ptr = LayerLearningRatePtr(id); |
118 | 0 | ASSERT_HOST(lr_ptr != nullptr); |
119 | 0 | *lr_ptr *= factor; |
120 | 0 | } |
121 | | |
122 | | // Set the learning rate for a specific layer of the stack to the given value. |
123 | 0 | void SetLayerLearningRate(const char *id, float learning_rate) { |
124 | 0 | float *lr_ptr = LayerLearningRatePtr(id); |
125 | 0 | ASSERT_HOST(lr_ptr != nullptr); |
126 | 0 | *lr_ptr = learning_rate; |
127 | 0 | } |
128 | | |
129 | | // Returns a pointer to the learning rate for the given layer id. |
130 | | float *LayerLearningRatePtr(const char *id); |
131 | | |
132 | | // Writes to the given file. Returns false in case of error. |
133 | | bool Serialize(TFile *fp) const override; |
134 | | // Reads from the given file. Returns false in case of error. |
135 | | bool DeSerialize(TFile *fp) override; |
136 | | |
137 | | // Updates the weights using the given learning rate, momentum and adam_beta. |
138 | | // num_samples is used in the adam computation iff use_adam_ is true. |
139 | | void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override; |
140 | | // Sums the products of weight updates in *this and other, splitting into |
141 | | // positive (same direction) in *same and negative (different direction) in |
142 | | // *changed. |
143 | | void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override; |
144 | | |
145 | | protected: |
146 | | // The networks. |
147 | | std::vector<Network *> stack_; |
148 | | // Layer-specific learning rate iff network_flags_ & NF_LAYER_SPECIFIC_LR. |
149 | | // One element for each element of stack_. |
150 | | std::vector<float> learning_rates_; |
151 | | }; |
152 | | |
153 | | } // namespace tesseract. |
154 | | |
155 | | #endif // TESSERACT_LSTM_PLUMBING_H_ |