/src/leptonica/src/morph.c
Line | Count | Source |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | /*! |
28 | | * \file morph.c |
29 | | * <pre> |
30 | | * |
31 | | * Generic binary morphological ops implemented with rasterop |
32 | | * PIX *pixDilate() |
33 | | * PIX *pixErode() |
34 | | * PIX *pixHMT() |
35 | | * PIX *pixOpen() |
36 | | * PIX *pixClose() |
37 | | * PIX *pixCloseSafe() |
38 | | * PIX *pixOpenGeneralized() |
39 | | * PIX *pixCloseGeneralized() |
40 | | * |
41 | | * Binary morphological (raster) ops with brick Sels |
42 | | * PIX *pixDilateBrick() |
43 | | * PIX *pixErodeBrick() |
44 | | * PIX *pixOpenBrick() |
45 | | * PIX *pixCloseBrick() |
46 | | * PIX *pixCloseSafeBrick() |
47 | | * |
48 | | * Binary composed morphological (raster) ops with brick Sels |
49 | | * l_int32 selectComposableSels() |
50 | | * l_int32 selectComposableSizes() |
51 | | * PIX *pixDilateCompBrick() |
52 | | * PIX *pixErodeCompBrick() |
53 | | * PIX *pixOpenCompBrick() |
54 | | * PIX *pixCloseCompBrick() |
55 | | * PIX *pixCloseSafeCompBrick() |
56 | | * |
57 | | * Functions associated with boundary conditions |
58 | | * void resetMorphBoundaryCondition() |
59 | | * l_int32 getMorphBorderPixelColor() |
60 | | * |
61 | | * Static helpers for arg processing |
62 | | * static PIX *processMorphArgs1() |
63 | | * static PIX *processMorphArgs2() |
64 | | * |
65 | | * You are provided with many simple ways to do binary morphology. |
66 | | * In particular, if you are using brick Sels, there are six |
67 | | * convenient methods, all specially tailored for separable operations |
68 | | * on brick Sels. A "brick" Sel is a Sel that is a rectangle |
69 | | * of solid SEL_HITs with the origin at or near the center. |
70 | | * Note that a brick Sel can have one dimension of size 1. |
71 | | * This is very common. All the brick Sel operations are |
72 | | * separable, meaning the operation is done first in the horizontal |
73 | | * direction and then in the vertical direction. If one of the |
74 | | * dimensions is 1, this is a special case where the operation is |
75 | | * only performed in the other direction. |
76 | | * |
77 | | * These six brick Sel methods are enumerated as follows: |
78 | | * |
79 | | * (1) Brick Sels: pix*Brick(), where * = {Dilate, Erode, Open, Close}. |
80 | | * These are separable rasterop implementations. The Sels are |
81 | | * automatically generated, used, and destroyed at the end. |
82 | | * You can get the result as a new Pix, in-place back into the src Pix, |
83 | | * or written to another existing Pix. |
84 | | * |
85 | | * (2) Brick Sels: pix*CompBrick(), where * = {Dilate, Erode, Open, Close}. |
86 | | * These are separable, 2-way composite, rasterop implementations. |
87 | | * The Sels are automatically generated, used, and destroyed at the end. |
88 | | * You can get the result as a new Pix, in-place back into the src Pix, |
89 | | * or written to another existing Pix. For large Sels, these are |
90 | | * considerably faster than the corresponding pix*Brick() functions. |
91 | | * N.B.: The size of the Sels that are actually used are typically |
92 | | * close to, but not exactly equal to, the size input to the function. |
93 | | * |
94 | | * (3) Brick Sels: pix*BrickDwa(), where * = {Dilate, Erode, Open, Close}. |
95 | | * These are separable dwa (destination word accumulation) |
96 | | * implementations. They use auto-gen'd dwa code. You can get |
97 | | * the result as a new Pix, in-place back into the src Pix, |
98 | | * or written to another existing Pix. This is typically |
99 | | * about 3x faster than the analogous rasterop pix*Brick() |
100 | | * function, but it has the limitation that the Sel size must |
101 | | * be less than 63. This is pre-set to work on a number |
102 | | * of pre-generated Sels. If you want to use other Sels, the |
103 | | * code can be auto-gen'd for them; see the instructions in morphdwa.c. |
104 | | * |
105 | | * (4) Same as (1), but you run it through pixMorphSequence(), with |
106 | | * the sequence string either compiled in or generated using snprintf. |
107 | | * All intermediate images and Sels are created, used and destroyed. |
108 | | * You always get the result as a new Pix. For example, you can |
109 | | * specify a separable 11 x 17 brick opening as "o11.17", |
110 | | * or you can specify the horizontal and vertical operations |
111 | | * explicitly as "o11.1 + o1.11". See morphseq.c for details. |
112 | | * |
113 | | * (5) Same as (2), but you run it through pixMorphCompSequence(), with |
114 | | * the sequence string either compiled in or generated using snprintf. |
115 | | * All intermediate images and Sels are created, used and destroyed. |
116 | | * You always get the result as a new Pix. See morphseq.c for details. |
117 | | * |
118 | | * (6) Same as (3), but you run it through pixMorphSequenceDwa(), with |
119 | | * the sequence string either compiled in or generated using snprintf. |
120 | | * All intermediate images and Sels are created, used and destroyed. |
121 | | * You always get the result as a new Pix. See morphseq.c for details. |
122 | | * |
123 | | * If you are using Sels that are not bricks, you have two choices: |
124 | | * (a) simplest: use the basic rasterop implementations (pixDilate(), ...) |
125 | | * (b) fastest: generate the destination word accumumlation (dwa) |
126 | | * code for your Sels and compile it with the library. |
127 | | * |
128 | | * For an example, see flipdetect.c, which gives implementations |
129 | | * using hit-miss Sels with both the rasterop and dwa versions. |
130 | | * For the latter, the dwa code resides in fliphmtgen.c, and it |
131 | | * was generated by prog/flipselgen.c. Both the rasterop and dwa |
132 | | * implementations are tested by prog/fliptest.c. |
133 | | * |
134 | | * A global constant MORPH_BC is used to set the boundary conditions |
135 | | * for rasterop-based binary morphology. MORPH_BC, in morph.c, |
136 | | * is set by default to ASYMMETRIC_MORPH_BC for a non-symmetric |
137 | | * convention for boundary pixels in dilation and erosion: |
138 | | * All pixels outside the image are assumed to be OFF |
139 | | * for both dilation and erosion. |
140 | | * To use a symmetric definition, see comments in pixErode() |
141 | | * and reset MORPH_BC to SYMMETRIC_MORPH_BC, using |
142 | | * resetMorphBoundaryCondition(). |
143 | | * |
144 | | * Boundary artifacts are possible in closing when the non-symmetric |
145 | | * boundary conditions are used, because foreground pixels very close |
146 | | * to the edge can be removed. This can be avoided by using either |
147 | | * the symmetric boundary conditions or the function pixCloseSafe(), |
148 | | * which adds a border before the operation and removes it afterwards. |
149 | | * |
150 | | * The hit-miss transform (HMT) is the bit-and of 2 erosions: |
151 | | * (erosion of the src by the hits) & (erosion of the bit-inverted |
152 | | * src by the misses) |
153 | | * |
154 | | * The 'generalized opening' is an HMT followed by a dilation that uses |
155 | | * only the hits of the hit-miss Sel. |
156 | | * The 'generalized closing' is a dilation (again, with the hits |
157 | | * of a hit-miss Sel), followed by the HMT. |
158 | | * Both of these 'generalized' functions are idempotent. |
159 | | * |
160 | | * These functions are extensively tested in prog/binmorph1_reg.c, |
161 | | * prog/binmorph2_reg.c, and prog/binmorph3_reg.c. |
162 | | * </pre> |
163 | | */ |
164 | | |
165 | | #ifdef HAVE_CONFIG_H |
166 | | #include <config_auto.h> |
167 | | #endif /* HAVE_CONFIG_H */ |
168 | | |
169 | | #include <math.h> |
170 | | #include "allheaders.h" |
171 | | |
172 | | /* Global constant; initialized here; must be declared extern |
173 | | * in other files to access it directly. However, in most |
174 | | * cases that is not necessary, because it can be reset |
175 | | * using resetMorphBoundaryCondition(). */ |
176 | | LEPT_DLL l_int32 MORPH_BC = ASYMMETRIC_MORPH_BC; |
177 | | |
178 | | /* We accept this cost in extra rasterops for decomposing exactly. */ |
179 | | static const l_int32 ACCEPTABLE_COST = 5; |
180 | | |
181 | | /* Static helpers for arg processing */ |
182 | | static PIX * processMorphArgs1(PIX *pixd, PIX *pixs, SEL *sel, PIX **ppixt); |
183 | | static PIX * processMorphArgs2(PIX *pixd, PIX *pixs, SEL *sel); |
184 | | |
185 | | |
186 | | /*-----------------------------------------------------------------* |
187 | | * Generic binary morphological ops implemented with rasterop * |
188 | | *-----------------------------------------------------------------*/ |
189 | | /*! |
190 | | * \brief pixDilate() |
191 | | * |
192 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
193 | | * or different from pixs |
194 | | * \param[in] pixs 1 bpp |
195 | | * \param[in] sel |
196 | | * \return pixd |
197 | | * |
198 | | * <pre> |
199 | | * Notes: |
200 | | * (1) This dilates src using hits in Sel. |
201 | | * (2) There are three cases: |
202 | | * (a) pixd == null (result into new pixd) |
203 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
204 | | * (c) pixd != pixs (puts result into existing pixd) |
205 | | * (3) For clarity, if the case is known, use these patterns: |
206 | | * (a) pixd = pixDilate(NULL, pixs, ...); |
207 | | * (b) pixDilate(pixs, pixs, ...); |
208 | | * (c) pixDilate(pixd, pixs, ...); |
209 | | * (4) The size of the result is determined by pixs. |
210 | | * </pre> |
211 | | */ |
212 | | PIX * |
213 | | pixDilate(PIX *pixd, |
214 | | PIX *pixs, |
215 | | SEL *sel) |
216 | 12 | { |
217 | 12 | l_int32 i, j, w, h, sx, sy, cx, cy, seldata; |
218 | 12 | PIX *pixt; |
219 | | |
220 | 12 | if ((pixd = processMorphArgs1(pixd, pixs, sel, &pixt)) == NULL) |
221 | 0 | return (PIX *)ERROR_PTR("processMorphArgs1 failed", __func__, pixd); |
222 | | |
223 | 12 | pixGetDimensions(pixs, &w, &h, NULL); |
224 | 12 | selGetParameters(sel, &sy, &sx, &cy, &cx); |
225 | 12 | pixClearAll(pixd); |
226 | 432 | for (i = 0; i < sy; i++) { |
227 | 840 | for (j = 0; j < sx; j++) { |
228 | 420 | seldata = sel->data[i][j]; |
229 | 420 | if (seldata == 1) { /* src | dst */ |
230 | 420 | pixRasterop(pixd, j - cx, i - cy, w, h, PIX_SRC | PIX_DST, |
231 | 420 | pixt, 0, 0); |
232 | 420 | } |
233 | 420 | } |
234 | 420 | } |
235 | | |
236 | 12 | pixDestroy(&pixt); |
237 | 12 | return pixd; |
238 | 12 | } |
239 | | |
240 | | |
241 | | /*! |
242 | | * \brief pixErode() |
243 | | * |
244 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
245 | | * or different from pixs |
246 | | * \param[in] pixs 1 bpp |
247 | | * \param[in] sel |
248 | | * \return pixd |
249 | | * |
250 | | * <pre> |
251 | | * Notes: |
252 | | * (1) This erodes src using hits in Sel. |
253 | | * (2) There are three cases: |
254 | | * (a) pixd == null (result into new pixd) |
255 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
256 | | * (c) pixd != pixs (puts result into existing pixd) |
257 | | * (3) For clarity, if the case is known, use these patterns: |
258 | | * (a) pixd = pixErode(NULL, pixs, ...); |
259 | | * (b) pixErode(pixs, pixs, ...); |
260 | | * (c) pixErode(pixd, pixs, ...); |
261 | | * (4) The size of the result is determined by pixs. |
262 | | * </pre> |
263 | | */ |
264 | | PIX * |
265 | | pixErode(PIX *pixd, |
266 | | PIX *pixs, |
267 | | SEL *sel) |
268 | 12 | { |
269 | 12 | l_int32 i, j, w, h, sx, sy, cx, cy, seldata; |
270 | 12 | l_int32 xp, yp, xn, yn; |
271 | 12 | PIX *pixt; |
272 | | |
273 | 12 | if ((pixd = processMorphArgs1(pixd, pixs, sel, &pixt)) == NULL) |
274 | 0 | return (PIX *)ERROR_PTR("processMorphArgs1 failed", __func__, pixd); |
275 | | |
276 | 12 | pixGetDimensions(pixs, &w, &h, NULL); |
277 | 12 | selGetParameters(sel, &sy, &sx, &cy, &cx); |
278 | 12 | pixSetAll(pixd); |
279 | 432 | for (i = 0; i < sy; i++) { |
280 | 840 | for (j = 0; j < sx; j++) { |
281 | 420 | seldata = sel->data[i][j]; |
282 | 420 | if (seldata == 1) { /* src & dst */ |
283 | 420 | pixRasterop(pixd, cx - j, cy - i, w, h, PIX_SRC & PIX_DST, |
284 | 420 | pixt, 0, 0); |
285 | 420 | } |
286 | 420 | } |
287 | 420 | } |
288 | | |
289 | | /* Clear near edges. We do this for the asymmetric boundary |
290 | | * condition convention that implements erosion assuming all |
291 | | * pixels surrounding the image are OFF. If you use a |
292 | | * use a symmetric b.c. convention, where the erosion is |
293 | | * implemented assuming pixels surrounding the image |
294 | | * are ON, these operations are omitted. */ |
295 | 12 | if (MORPH_BC == ASYMMETRIC_MORPH_BC) { |
296 | 12 | selFindMaxTranslations(sel, &xp, &yp, &xn, &yn); |
297 | 12 | if (xp > 0) |
298 | 0 | pixRasterop(pixd, 0, 0, xp, h, PIX_CLR, NULL, 0, 0); |
299 | 12 | if (xn > 0) |
300 | 0 | pixRasterop(pixd, w - xn, 0, xn, h, PIX_CLR, NULL, 0, 0); |
301 | 12 | if (yp > 0) |
302 | 12 | pixRasterop(pixd, 0, 0, w, yp, PIX_CLR, NULL, 0, 0); |
303 | 12 | if (yn > 0) |
304 | 12 | pixRasterop(pixd, 0, h - yn, w, yn, PIX_CLR, NULL, 0, 0); |
305 | 12 | } |
306 | | |
307 | 12 | pixDestroy(&pixt); |
308 | 12 | return pixd; |
309 | 12 | } |
310 | | |
311 | | |
312 | | /*! |
313 | | * \brief pixHMT() |
314 | | * |
315 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
316 | | * or different from pixs |
317 | | * \param[in] pixs 1 bpp |
318 | | * \param[in] sel |
319 | | * \return pixd |
320 | | * |
321 | | * <pre> |
322 | | * Notes: |
323 | | * (1) The hit-miss transform erodes the src, using both hits |
324 | | * and misses in the Sel. It ANDs the shifted src for hits |
325 | | * and ANDs the inverted shifted src for misses. |
326 | | * (2) There are three cases: |
327 | | * (a) pixd == null (result into new pixd) |
328 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
329 | | * (c) pixd != pixs (puts result into existing pixd) |
330 | | * (3) For clarity, if the case is known, use these patterns: |
331 | | * (a) pixd = pixHMT(NULL, pixs, ...); |
332 | | * (b) pixHMT(pixs, pixs, ...); |
333 | | * (c) pixHMT(pixd, pixs, ...); |
334 | | * (4) The size of the result is determined by pixs. |
335 | | * </pre> |
336 | | */ |
337 | | PIX * |
338 | | pixHMT(PIX *pixd, |
339 | | PIX *pixs, |
340 | | SEL *sel) |
341 | 0 | { |
342 | 0 | l_int32 i, j, w, h, sx, sy, cx, cy, firstrasterop, seldata; |
343 | 0 | l_int32 xp, yp, xn, yn; |
344 | 0 | PIX *pixt; |
345 | |
|
346 | 0 | if ((pixd = processMorphArgs1(pixd, pixs, sel, &pixt)) == NULL) |
347 | 0 | return (PIX *)ERROR_PTR("processMorphArgs1 failed", __func__, pixd); |
348 | | |
349 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
350 | 0 | selGetParameters(sel, &sy, &sx, &cy, &cx); |
351 | 0 | firstrasterop = TRUE; |
352 | 0 | for (i = 0; i < sy; i++) { |
353 | 0 | for (j = 0; j < sx; j++) { |
354 | 0 | seldata = sel->data[i][j]; |
355 | 0 | if (seldata == 1) { /* hit */ |
356 | 0 | if (firstrasterop == TRUE) { /* src only */ |
357 | 0 | pixClearAll(pixd); |
358 | 0 | pixRasterop(pixd, cx - j, cy - i, w, h, PIX_SRC, |
359 | 0 | pixt, 0, 0); |
360 | 0 | firstrasterop = FALSE; |
361 | 0 | } else { /* src & dst */ |
362 | 0 | pixRasterop(pixd, cx - j, cy - i, w, h, PIX_SRC & PIX_DST, |
363 | 0 | pixt, 0, 0); |
364 | 0 | } |
365 | 0 | } else if (seldata == 2) { /* miss */ |
366 | 0 | if (firstrasterop == TRUE) { /* ~src only */ |
367 | 0 | pixSetAll(pixd); |
368 | 0 | pixRasterop(pixd, cx - j, cy - i, w, h, PIX_NOT(PIX_SRC), |
369 | 0 | pixt, 0, 0); |
370 | 0 | firstrasterop = FALSE; |
371 | 0 | } else { /* ~src & dst */ |
372 | 0 | pixRasterop(pixd, cx - j, cy - i, w, h, |
373 | 0 | PIX_NOT(PIX_SRC) & PIX_DST, |
374 | 0 | pixt, 0, 0); |
375 | 0 | } |
376 | 0 | } |
377 | 0 | } |
378 | 0 | } |
379 | | |
380 | | /* Clear near edges */ |
381 | 0 | selFindMaxTranslations(sel, &xp, &yp, &xn, &yn); |
382 | 0 | if (xp > 0) |
383 | 0 | pixRasterop(pixd, 0, 0, xp, h, PIX_CLR, NULL, 0, 0); |
384 | 0 | if (xn > 0) |
385 | 0 | pixRasterop(pixd, w - xn, 0, xn, h, PIX_CLR, NULL, 0, 0); |
386 | 0 | if (yp > 0) |
387 | 0 | pixRasterop(pixd, 0, 0, w, yp, PIX_CLR, NULL, 0, 0); |
388 | 0 | if (yn > 0) |
389 | 0 | pixRasterop(pixd, 0, h - yn, w, yn, PIX_CLR, NULL, 0, 0); |
390 | |
|
391 | 0 | pixDestroy(&pixt); |
392 | 0 | return pixd; |
393 | 0 | } |
394 | | |
395 | | |
396 | | /*! |
397 | | * \brief pixOpen() |
398 | | * |
399 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
400 | | * or different from pixs |
401 | | * \param[in] pixs 1 bpp |
402 | | * \param[in] sel |
403 | | * \return pixd |
404 | | * |
405 | | * <pre> |
406 | | * Notes: |
407 | | * (1) Generic morphological opening, using hits in the Sel. |
408 | | * (2) There are three cases: |
409 | | * (a) pixd == null (result into new pixd) |
410 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
411 | | * (c) pixd != pixs (puts result into existing pixd) |
412 | | * (3) For clarity, if the case is known, use these patterns: |
413 | | * (a) pixd = pixOpen(NULL, pixs, ...); |
414 | | * (b) pixOpen(pixs, pixs, ...); |
415 | | * (c) pixOpen(pixd, pixs, ...); |
416 | | * (4) The size of the result is determined by pixs. |
417 | | * </pre> |
418 | | */ |
419 | | PIX * |
420 | | pixOpen(PIX *pixd, |
421 | | PIX *pixs, |
422 | | SEL *sel) |
423 | 0 | { |
424 | 0 | PIX *pixt; |
425 | |
|
426 | 0 | if ((pixd = processMorphArgs2(pixd, pixs, sel)) == NULL) |
427 | 0 | return (PIX *)ERROR_PTR("pixd not returned", __func__, pixd); |
428 | | |
429 | 0 | if ((pixt = pixErode(NULL, pixs, sel)) == NULL) |
430 | 0 | return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); |
431 | 0 | pixDilate(pixd, pixt, sel); |
432 | 0 | pixDestroy(&pixt); |
433 | |
|
434 | 0 | return pixd; |
435 | 0 | } |
436 | | |
437 | | |
438 | | /*! |
439 | | * \brief pixClose() |
440 | | * |
441 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
442 | | * or different from pixs |
443 | | * \param[in] pixs 1 bpp |
444 | | * \param[in] sel |
445 | | * \return pixd |
446 | | * |
447 | | * <pre> |
448 | | * Notes: |
449 | | * (1) Generic morphological closing, using hits in the Sel. |
450 | | * (2) This implementation is a strict dual of the opening if |
451 | | * symmetric boundary conditions are used (see notes at top |
452 | | * of this file). |
453 | | * (3) There are three cases: |
454 | | * (a) pixd == null (result into new pixd) |
455 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
456 | | * (c) pixd != pixs (puts result into existing pixd) |
457 | | * (4) For clarity, if the case is known, use these patterns: |
458 | | * (a) pixd = pixClose(NULL, pixs, ...); |
459 | | * (b) pixClose(pixs, pixs, ...); |
460 | | * (c) pixClose(pixd, pixs, ...); |
461 | | * (5) The size of the result is determined by pixs. |
462 | | * </pre> |
463 | | */ |
464 | | PIX * |
465 | | pixClose(PIX *pixd, |
466 | | PIX *pixs, |
467 | | SEL *sel) |
468 | 12 | { |
469 | 12 | PIX *pixt; |
470 | | |
471 | 12 | if ((pixd = processMorphArgs2(pixd, pixs, sel)) == NULL) |
472 | 0 | return (PIX *)ERROR_PTR("pixd not returned", __func__, pixd); |
473 | | |
474 | 12 | if ((pixt = pixDilate(NULL, pixs, sel)) == NULL) |
475 | 0 | return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); |
476 | 12 | pixErode(pixd, pixt, sel); |
477 | 12 | pixDestroy(&pixt); |
478 | | |
479 | 12 | return pixd; |
480 | 12 | } |
481 | | |
482 | | |
483 | | /*! |
484 | | * \brief pixCloseSafe() |
485 | | * |
486 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
487 | | * or different from pixs |
488 | | * \param[in] pixs 1 bpp |
489 | | * \param[in] sel |
490 | | * \return pixd |
491 | | * |
492 | | * <pre> |
493 | | * Notes: |
494 | | * (1) Generic morphological closing, using hits in the Sel. |
495 | | * (2) If non-symmetric boundary conditions are used, this |
496 | | * function adds a border of OFF pixels that is of |
497 | | * sufficient size to avoid losing pixels from the dilation, |
498 | | * and it removes the border after the operation is finished. |
499 | | * It thus enforces a correct extensive result for closing. |
500 | | * (3) If symmetric b.c. are used, it is not necessary to add |
501 | | * and remove this border. |
502 | | * (4) There are three cases: |
503 | | * (a) pixd == null (result into new pixd) |
504 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
505 | | * (c) pixd != pixs (puts result into existing pixd) |
506 | | * (5) For clarity, if the case is known, use these patterns: |
507 | | * (a) pixd = pixCloseSafe(NULL, pixs, ...); |
508 | | * (b) pixCloseSafe(pixs, pixs, ...); |
509 | | * (c) pixCloseSafe(pixd, pixs, ...); |
510 | | * (6) The size of the result is determined by pixs. |
511 | | * </pre> |
512 | | */ |
513 | | PIX * |
514 | | pixCloseSafe(PIX *pixd, |
515 | | PIX *pixs, |
516 | | SEL *sel) |
517 | 0 | { |
518 | 0 | l_int32 xp, yp, xn, yn, xmax, xbord; |
519 | 0 | PIX *pixt1, *pixt2; |
520 | |
|
521 | 0 | if (!pixs) |
522 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
523 | 0 | if (!sel) |
524 | 0 | return (PIX *)ERROR_PTR("sel not defined", __func__, pixd); |
525 | 0 | if (pixGetDepth(pixs) != 1) |
526 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
527 | | |
528 | | /* Symmetric b.c. handles correctly without added pixels */ |
529 | 0 | if (MORPH_BC == SYMMETRIC_MORPH_BC) |
530 | 0 | return pixClose(pixd, pixs, sel); |
531 | | |
532 | 0 | selFindMaxTranslations(sel, &xp, &yp, &xn, &yn); |
533 | 0 | xmax = L_MAX(xp, xn); |
534 | 0 | xbord = 32 * ((xmax + 31) / 32); /* full 32 bit words */ |
535 | |
|
536 | 0 | if ((pixt1 = pixAddBorderGeneral(pixs, xbord, xbord, yp, yn, 0)) == NULL) |
537 | 0 | return (PIX *)ERROR_PTR("pixt1 not made", __func__, pixd); |
538 | 0 | pixClose(pixt1, pixt1, sel); |
539 | 0 | if ((pixt2 = pixRemoveBorderGeneral(pixt1, xbord, xbord, yp, yn)) == NULL) |
540 | 0 | return (PIX *)ERROR_PTR("pixt2 not made", __func__, pixd); |
541 | 0 | pixDestroy(&pixt1); |
542 | |
|
543 | 0 | if (!pixd) |
544 | 0 | return pixt2; |
545 | | |
546 | 0 | pixCopy(pixd, pixt2); |
547 | 0 | pixDestroy(&pixt2); |
548 | 0 | return pixd; |
549 | 0 | } |
550 | | |
551 | | |
552 | | /*! |
553 | | * \brief pixOpenGeneralized() |
554 | | * |
555 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
556 | | * or different from pixs |
557 | | * \param[in] pixs 1 bpp |
558 | | * \param[in] sel |
559 | | * \return pixd |
560 | | * |
561 | | * <pre> |
562 | | * Notes: |
563 | | * (1) Generalized morphological opening, using both hits and |
564 | | * misses in the Sel. |
565 | | * (2) This does a hit-miss transform, followed by a dilation |
566 | | * using the hits. |
567 | | * (3) There are three cases: |
568 | | * (a) pixd == null (result into new pixd) |
569 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
570 | | * (c) pixd != pixs (puts result into existing pixd) |
571 | | * (4) For clarity, if the case is known, use these patterns: |
572 | | * (a) pixd = pixOpenGeneralized(NULL, pixs, ...); |
573 | | * (b) pixOpenGeneralized(pixs, pixs, ...); |
574 | | * (c) pixOpenGeneralized(pixd, pixs, ...); |
575 | | * (5) The size of the result is determined by pixs. |
576 | | * </pre> |
577 | | */ |
578 | | PIX * |
579 | | pixOpenGeneralized(PIX *pixd, |
580 | | PIX *pixs, |
581 | | SEL *sel) |
582 | 0 | { |
583 | 0 | PIX *pixt; |
584 | |
|
585 | 0 | if ((pixd = processMorphArgs2(pixd, pixs, sel)) == NULL) |
586 | 0 | return (PIX *)ERROR_PTR("pixd not returned", __func__, pixd); |
587 | | |
588 | 0 | if ((pixt = pixHMT(NULL, pixs, sel)) == NULL) |
589 | 0 | return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); |
590 | 0 | pixDilate(pixd, pixt, sel); |
591 | 0 | pixDestroy(&pixt); |
592 | 0 | return pixd; |
593 | 0 | } |
594 | | |
595 | | |
596 | | /*! |
597 | | * \brief pixCloseGeneralized() |
598 | | * |
599 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
600 | | * or different from pixs |
601 | | * \param[in] pixs 1 bpp |
602 | | * \param[in] sel |
603 | | * \return pixd |
604 | | * |
605 | | * <pre> |
606 | | * Notes: |
607 | | * (1) Generalized morphological closing, using both hits and |
608 | | * misses in the Sel. |
609 | | * (2) This does a dilation using the hits, followed by a |
610 | | * hit-miss transform. |
611 | | * (3) This operation is a dual of the generalized opening. |
612 | | * (4) There are three cases: |
613 | | * (a) pixd == null (result into new pixd) |
614 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
615 | | * (c) pixd != pixs (puts result into existing pixd) |
616 | | * (5) For clarity, if the case is known, use these patterns: |
617 | | * (a) pixd = pixCloseGeneralized(NULL, pixs, ...); |
618 | | * (b) pixCloseGeneralized(pixs, pixs, ...); |
619 | | * (c) pixCloseGeneralized(pixd, pixs, ...); |
620 | | * (6) The size of the result is determined by pixs. |
621 | | * </pre> |
622 | | */ |
623 | | PIX * |
624 | | pixCloseGeneralized(PIX *pixd, |
625 | | PIX *pixs, |
626 | | SEL *sel) |
627 | 0 | { |
628 | 0 | PIX *pixt; |
629 | |
|
630 | 0 | if ((pixd = processMorphArgs2(pixd, pixs, sel)) == NULL) |
631 | 0 | return (PIX *)ERROR_PTR("pixd not returned", __func__, pixd); |
632 | | |
633 | 0 | if ((pixt = pixDilate(NULL, pixs, sel)) == NULL) |
634 | 0 | return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); |
635 | 0 | pixHMT(pixd, pixt, sel); |
636 | 0 | pixDestroy(&pixt); |
637 | |
|
638 | 0 | return pixd; |
639 | 0 | } |
640 | | |
641 | | |
642 | | /*-----------------------------------------------------------------* |
643 | | * Binary morphological (raster) ops with brick Sels * |
644 | | *-----------------------------------------------------------------*/ |
645 | | /*! |
646 | | * \brief pixDilateBrick() |
647 | | * |
648 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
649 | | * or different from pixs |
650 | | * \param[in] pixs 1 bpp |
651 | | * \param[in] hsize width of brick Sel |
652 | | * \param[in] vsize height of brick Sel |
653 | | * \return pixd |
654 | | * |
655 | | * <pre> |
656 | | * Notes: |
657 | | * (1) Sel is a brick with all elements being hits |
658 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
659 | | * (3) Do separably if both hsize and vsize are > 1. |
660 | | * (4) There are three cases: |
661 | | * (a) pixd == null (result into new pixd) |
662 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
663 | | * (c) pixd != pixs (puts result into existing pixd) |
664 | | * (5) For clarity, if the case is known, use these patterns: |
665 | | * (a) pixd = pixDilateBrick(NULL, pixs, ...); |
666 | | * (b) pixDilateBrick(pixs, pixs, ...); |
667 | | * (c) pixDilateBrick(pixd, pixs, ...); |
668 | | * (6) The size of the result is determined by pixs. |
669 | | * </pre> |
670 | | */ |
671 | | PIX * |
672 | | pixDilateBrick(PIX *pixd, |
673 | | PIX *pixs, |
674 | | l_int32 hsize, |
675 | | l_int32 vsize) |
676 | 0 | { |
677 | 0 | PIX *pixt; |
678 | 0 | SEL *sel, *selh, *selv; |
679 | |
|
680 | 0 | if (!pixs) |
681 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
682 | 0 | if (pixGetDepth(pixs) != 1) |
683 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
684 | 0 | if (hsize < 1 || vsize < 1) |
685 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
686 | | |
687 | 0 | if (hsize == 1 && vsize == 1) |
688 | 0 | return pixCopy(pixd, pixs); |
689 | 0 | if (hsize == 1 || vsize == 1) { /* no intermediate result */ |
690 | 0 | sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); |
691 | 0 | if (!sel) |
692 | 0 | return (PIX *)ERROR_PTR("sel not made", __func__, pixd); |
693 | 0 | pixd = pixDilate(pixd, pixs, sel); |
694 | 0 | selDestroy(&sel); |
695 | 0 | } else { |
696 | 0 | if ((selh = selCreateBrick(1, hsize, 0, hsize / 2, SEL_HIT)) == NULL) |
697 | 0 | return (PIX *)ERROR_PTR("selh not made", __func__, pixd); |
698 | 0 | if ((selv = selCreateBrick(vsize, 1, vsize / 2, 0, SEL_HIT)) == NULL) { |
699 | 0 | selDestroy(&selh); |
700 | 0 | return (PIX *)ERROR_PTR("selv not made", __func__, pixd); |
701 | 0 | } |
702 | 0 | pixt = pixDilate(NULL, pixs, selh); |
703 | 0 | pixd = pixDilate(pixd, pixt, selv); |
704 | 0 | pixDestroy(&pixt); |
705 | 0 | selDestroy(&selh); |
706 | 0 | selDestroy(&selv); |
707 | 0 | } |
708 | | |
709 | 0 | return pixd; |
710 | 0 | } |
711 | | |
712 | | |
713 | | /*! |
714 | | * \brief pixErodeBrick() |
715 | | * |
716 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
717 | | * or different from pixs |
718 | | * \param[in] pixs 1 bpp |
719 | | * \param[in] hsize width of brick Sel |
720 | | * \param[in] vsize height of brick Sel |
721 | | * \return pixd |
722 | | * |
723 | | * <pre> |
724 | | * Notes: |
725 | | * (1) Sel is a brick with all elements being hits |
726 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
727 | | * (3) Do separably if both hsize and vsize are > 1. |
728 | | * (4) There are three cases: |
729 | | * (a) pixd == null (result into new pixd) |
730 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
731 | | * (c) pixd != pixs (puts result into existing pixd) |
732 | | * (5) For clarity, if the case is known, use these patterns: |
733 | | * (a) pixd = pixErodeBrick(NULL, pixs, ...); |
734 | | * (b) pixErodeBrick(pixs, pixs, ...); |
735 | | * (c) pixErodeBrick(pixd, pixs, ...); |
736 | | * (6) The size of the result is determined by pixs. |
737 | | * </pre> |
738 | | */ |
739 | | PIX * |
740 | | pixErodeBrick(PIX *pixd, |
741 | | PIX *pixs, |
742 | | l_int32 hsize, |
743 | | l_int32 vsize) |
744 | 0 | { |
745 | 0 | PIX *pixt; |
746 | 0 | SEL *sel, *selh, *selv; |
747 | |
|
748 | 0 | if (!pixs) |
749 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
750 | 0 | if (pixGetDepth(pixs) != 1) |
751 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
752 | 0 | if (hsize < 1 || vsize < 1) |
753 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
754 | | |
755 | 0 | if (hsize == 1 && vsize == 1) |
756 | 0 | return pixCopy(pixd, pixs); |
757 | 0 | if (hsize == 1 || vsize == 1) { /* no intermediate result */ |
758 | 0 | sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); |
759 | 0 | if (!sel) |
760 | 0 | return (PIX *)ERROR_PTR("sel not made", __func__, pixd); |
761 | 0 | pixd = pixErode(pixd, pixs, sel); |
762 | 0 | selDestroy(&sel); |
763 | 0 | } else { |
764 | 0 | if ((selh = selCreateBrick(1, hsize, 0, hsize / 2, SEL_HIT)) == NULL) |
765 | 0 | return (PIX *)ERROR_PTR("selh not made", __func__, pixd); |
766 | 0 | if ((selv = selCreateBrick(vsize, 1, vsize / 2, 0, SEL_HIT)) == NULL) { |
767 | 0 | selDestroy(&selh); |
768 | 0 | return (PIX *)ERROR_PTR("selv not made", __func__, pixd); |
769 | 0 | } |
770 | 0 | pixt = pixErode(NULL, pixs, selh); |
771 | 0 | pixd = pixErode(pixd, pixt, selv); |
772 | 0 | pixDestroy(&pixt); |
773 | 0 | selDestroy(&selh); |
774 | 0 | selDestroy(&selv); |
775 | 0 | } |
776 | | |
777 | 0 | return pixd; |
778 | 0 | } |
779 | | |
780 | | |
781 | | /*! |
782 | | * \brief pixOpenBrick() |
783 | | * |
784 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
785 | | * or different from pixs |
786 | | * \param[in] pixs 1 bpp |
787 | | * \param[in] hsize width of brick Sel |
788 | | * \param[in] vsize height of brick Sel |
789 | | * \return pixd, or NULL on error |
790 | | * |
791 | | * <pre> |
792 | | * Notes: |
793 | | * (1) Sel is a brick with all elements being hits |
794 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
795 | | * (3) Do separably if both hsize and vsize are > 1. |
796 | | * (4) There are three cases: |
797 | | * (a) pixd == null (result into new pixd) |
798 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
799 | | * (c) pixd != pixs (puts result into existing pixd) |
800 | | * (5) For clarity, if the case is known, use these patterns: |
801 | | * (a) pixd = pixOpenBrick(NULL, pixs, ...); |
802 | | * (b) pixOpenBrick(pixs, pixs, ...); |
803 | | * (c) pixOpenBrick(pixd, pixs, ...); |
804 | | * (6) The size of the result is determined by pixs. |
805 | | * </pre> |
806 | | */ |
807 | | PIX * |
808 | | pixOpenBrick(PIX *pixd, |
809 | | PIX *pixs, |
810 | | l_int32 hsize, |
811 | | l_int32 vsize) |
812 | 0 | { |
813 | 0 | PIX *pixt; |
814 | 0 | SEL *sel, *selh, *selv; |
815 | |
|
816 | 0 | if (!pixs) |
817 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
818 | 0 | if (pixGetDepth(pixs) != 1) |
819 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
820 | 0 | if (hsize < 1 || vsize < 1) |
821 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
822 | | |
823 | 0 | if (hsize == 1 && vsize == 1) |
824 | 0 | return pixCopy(pixd, pixs); |
825 | 0 | if (hsize == 1 || vsize == 1) { /* no intermediate result */ |
826 | 0 | sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); |
827 | 0 | if (!sel) |
828 | 0 | return (PIX *)ERROR_PTR("sel not made", __func__, pixd); |
829 | 0 | pixd = pixOpen(pixd, pixs, sel); |
830 | 0 | selDestroy(&sel); |
831 | 0 | } else { /* do separably */ |
832 | 0 | if ((selh = selCreateBrick(1, hsize, 0, hsize / 2, SEL_HIT)) == NULL) |
833 | 0 | return (PIX *)ERROR_PTR("selh not made", __func__, pixd); |
834 | 0 | if ((selv = selCreateBrick(vsize, 1, vsize / 2, 0, SEL_HIT)) == NULL) { |
835 | 0 | selDestroy(&selh); |
836 | 0 | return (PIX *)ERROR_PTR("selv not made", __func__, pixd); |
837 | 0 | } |
838 | 0 | pixt = pixErode(NULL, pixs, selh); |
839 | 0 | pixd = pixErode(pixd, pixt, selv); |
840 | 0 | pixDilate(pixt, pixd, selh); |
841 | 0 | pixDilate(pixd, pixt, selv); |
842 | 0 | pixDestroy(&pixt); |
843 | 0 | selDestroy(&selh); |
844 | 0 | selDestroy(&selv); |
845 | 0 | } |
846 | | |
847 | 0 | return pixd; |
848 | 0 | } |
849 | | |
850 | | |
851 | | /*! |
852 | | * \brief pixCloseBrick() |
853 | | * |
854 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
855 | | * or different from pixs |
856 | | * \param[in] pixs 1 bpp |
857 | | * \param[in] hsize width of brick Sel |
858 | | * \param[in] vsize height of brick Sel |
859 | | * \return pixd, or NULL on error |
860 | | * |
861 | | * <pre> |
862 | | * Notes: |
863 | | * (1) Sel is a brick with all elements being hits |
864 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
865 | | * (3) Do separably if both hsize and vsize are > 1. |
866 | | * (4) There are three cases: |
867 | | * (a) pixd == null (result into new pixd) |
868 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
869 | | * (c) pixd != pixs (puts result into existing pixd) |
870 | | * (5) For clarity, if the case is known, use these patterns: |
871 | | * (a) pixd = pixCloseBrick(NULL, pixs, ...); |
872 | | * (b) pixCloseBrick(pixs, pixs, ...); |
873 | | * (c) pixCloseBrick(pixd, pixs, ...); |
874 | | * (6) The size of the result is determined by pixs. |
875 | | * </pre> |
876 | | */ |
877 | | PIX * |
878 | | pixCloseBrick(PIX *pixd, |
879 | | PIX *pixs, |
880 | | l_int32 hsize, |
881 | | l_int32 vsize) |
882 | 0 | { |
883 | 0 | PIX *pixt; |
884 | 0 | SEL *sel, *selh, *selv; |
885 | |
|
886 | 0 | if (!pixs) |
887 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
888 | 0 | if (pixGetDepth(pixs) != 1) |
889 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
890 | 0 | if (hsize < 1 || vsize < 1) |
891 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
892 | | |
893 | 0 | if (hsize == 1 && vsize == 1) |
894 | 0 | return pixCopy(pixd, pixs); |
895 | 0 | if (hsize == 1 || vsize == 1) { /* no intermediate result */ |
896 | 0 | sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); |
897 | 0 | if (!sel) |
898 | 0 | return (PIX *)ERROR_PTR("sel not made", __func__, pixd); |
899 | 0 | pixd = pixClose(pixd, pixs, sel); |
900 | 0 | selDestroy(&sel); |
901 | 0 | } else { /* do separably */ |
902 | 0 | if ((selh = selCreateBrick(1, hsize, 0, hsize / 2, SEL_HIT)) == NULL) |
903 | 0 | return (PIX *)ERROR_PTR("selh not made", __func__, pixd); |
904 | 0 | if ((selv = selCreateBrick(vsize, 1, vsize / 2, 0, SEL_HIT)) == NULL) { |
905 | 0 | selDestroy(&selh); |
906 | 0 | return (PIX *)ERROR_PTR("selv not made", __func__, pixd); |
907 | 0 | } |
908 | 0 | pixt = pixDilate(NULL, pixs, selh); |
909 | 0 | pixd = pixDilate(pixd, pixt, selv); |
910 | 0 | pixErode(pixt, pixd, selh); |
911 | 0 | pixErode(pixd, pixt, selv); |
912 | 0 | pixDestroy(&pixt); |
913 | 0 | selDestroy(&selh); |
914 | 0 | selDestroy(&selv); |
915 | 0 | } |
916 | | |
917 | 0 | return pixd; |
918 | 0 | } |
919 | | |
920 | | |
921 | | /*! |
922 | | * \brief pixCloseSafeBrick() |
923 | | * |
924 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
925 | | * or different from pixs |
926 | | * \param[in] pixs 1 bpp |
927 | | * \param[in] hsize width of brick Sel |
928 | | * \param[in] vsize height of brick Sel |
929 | | * \return pixd, or NULL on error |
930 | | * |
931 | | * <pre> |
932 | | * Notes: |
933 | | * (1) Sel is a brick with all elements being hits |
934 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
935 | | * (3) Do separably if both hsize and vsize are > 1. |
936 | | * (4) Safe closing adds a border of 0 pixels, of sufficient size so |
937 | | * that all pixels in input image are processed within |
938 | | * 32-bit words in the expanded image. As a result, there is |
939 | | * no special processing for pixels near the boundary, and there |
940 | | * are no boundary effects. The border is removed at the end. |
941 | | * (5) There are three cases: |
942 | | * (a) pixd == null (result into new pixd) |
943 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
944 | | * (c) pixd != pixs (puts result into existing pixd) |
945 | | * (6) For clarity, if the case is known, use these patterns: |
946 | | * (a) pixd = pixCloseBrick(NULL, pixs, ...); |
947 | | * (b) pixCloseBrick(pixs, pixs, ...); |
948 | | * (c) pixCloseBrick(pixd, pixs, ...); |
949 | | * (7) The size of the result is determined by pixs. |
950 | | * </pre> |
951 | | */ |
952 | | PIX * |
953 | | pixCloseSafeBrick(PIX *pixd, |
954 | | PIX *pixs, |
955 | | l_int32 hsize, |
956 | | l_int32 vsize) |
957 | 12 | { |
958 | 12 | l_int32 maxtrans, bordsize; |
959 | 12 | PIX *pixsb, *pixt, *pixdb; |
960 | 12 | SEL *sel, *selh, *selv; |
961 | | |
962 | 12 | if (!pixs) |
963 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
964 | 12 | if (pixGetDepth(pixs) != 1) |
965 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
966 | 12 | if (hsize < 1 || vsize < 1) |
967 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
968 | | |
969 | 12 | if (hsize == 1 && vsize == 1) |
970 | 0 | return pixCopy(pixd, pixs); |
971 | | |
972 | | /* Symmetric b.c. handles correctly without added pixels */ |
973 | 12 | if (MORPH_BC == SYMMETRIC_MORPH_BC) |
974 | 0 | return pixCloseBrick(pixd, pixs, hsize, vsize); |
975 | | |
976 | 12 | maxtrans = L_MAX(hsize / 2, vsize / 2); |
977 | 12 | bordsize = 32 * ((maxtrans + 31) / 32); /* full 32 bit words */ |
978 | 12 | pixsb = pixAddBorder(pixs, bordsize, 0); |
979 | | |
980 | 12 | if (hsize == 1 || vsize == 1) { /* no intermediate result */ |
981 | 12 | sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); |
982 | 12 | if (!sel) { |
983 | 0 | pixDestroy(&pixsb); |
984 | 0 | return (PIX *)ERROR_PTR("sel not made", __func__, pixd); |
985 | 0 | } |
986 | 12 | pixdb = pixClose(NULL, pixsb, sel); |
987 | 12 | selDestroy(&sel); |
988 | 12 | } else { /* do separably */ |
989 | 0 | selh = selCreateBrick(1, hsize, 0, hsize / 2, SEL_HIT); |
990 | 0 | selv = selCreateBrick(vsize, 1, vsize / 2, 0, SEL_HIT); |
991 | 0 | if (!selh || !selv) { |
992 | 0 | selDestroy(&selh); |
993 | 0 | selDestroy(&selv); |
994 | 0 | pixDestroy(&pixsb); |
995 | 0 | return (PIX *)ERROR_PTR("selh and selv not both made", |
996 | 0 | __func__, pixd); |
997 | 0 | } |
998 | 0 | pixt = pixDilate(NULL, pixsb, selh); |
999 | 0 | pixdb = pixDilate(NULL, pixt, selv); |
1000 | 0 | pixErode(pixt, pixdb, selh); |
1001 | 0 | pixErode(pixdb, pixt, selv); |
1002 | 0 | pixDestroy(&pixt); |
1003 | 0 | selDestroy(&selh); |
1004 | 0 | selDestroy(&selv); |
1005 | 0 | } |
1006 | | |
1007 | 12 | pixt = pixRemoveBorder(pixdb, bordsize); |
1008 | 12 | pixDestroy(&pixsb); |
1009 | 12 | pixDestroy(&pixdb); |
1010 | | |
1011 | 12 | if (!pixd) { |
1012 | 12 | pixd = pixt; |
1013 | 12 | } else { |
1014 | 0 | pixCopy(pixd, pixt); |
1015 | 0 | pixDestroy(&pixt); |
1016 | 0 | } |
1017 | 12 | return pixd; |
1018 | 12 | } |
1019 | | |
1020 | | |
1021 | | /*-----------------------------------------------------------------* |
1022 | | * Binary composed morphological (raster) ops with brick Sels * |
1023 | | *-----------------------------------------------------------------*/ |
1024 | | /* \brief selectComposableSels() |
1025 | | * |
1026 | | * \param[in] size of composed sel |
1027 | | * \param[in] direction L_HORIZ, L_VERT |
1028 | | * \param[out] psel1 [optional] contiguous sel; can be null |
1029 | | * \param[out] psel2 [optional] comb sel; can be null |
1030 | | * \return 0 if OK, 1 on error |
1031 | | * |
1032 | | * <pre> |
1033 | | * Notes: |
1034 | | * (1) When using composable Sels, where the original Sel is |
1035 | | * decomposed into two, the best you can do in terms |
1036 | | * of reducing the computation is by a factor: |
1037 | | * |
1038 | | * 2 * sqrt(size) / size |
1039 | | * |
1040 | | * In practice, you get quite close to this. E.g., |
1041 | | * |
1042 | | * Sel size | Optimum reduction factor |
1043 | | * -------- ------------------------ |
1044 | | * 36 | 1/3 |
1045 | | * 64 | 1/4 |
1046 | | * 144 | 1/6 |
1047 | | * 256 | 1/8 |
1048 | | * </pre> |
1049 | | */ |
1050 | | l_int32 |
1051 | | selectComposableSels(l_int32 size, |
1052 | | l_int32 direction, |
1053 | | SEL **psel1, |
1054 | | SEL **psel2) |
1055 | 0 | { |
1056 | 0 | l_int32 factor1, factor2; |
1057 | |
|
1058 | 0 | if (!psel1 && !psel2) |
1059 | 0 | return ERROR_INT("neither &sel1 nor &sel2 are defined", __func__, 1); |
1060 | 0 | if (psel1) *psel1 = NULL; |
1061 | 0 | if (psel2) *psel2 = NULL; |
1062 | 0 | if (size < 1 || size > 10000) |
1063 | 0 | return ERROR_INT("size < 1 or size > 10000", __func__, 1); |
1064 | 0 | if (direction != L_HORIZ && direction != L_VERT) |
1065 | 0 | return ERROR_INT("invalid direction", __func__, 1); |
1066 | | |
1067 | 0 | if (selectComposableSizes(size, &factor1, &factor2)) |
1068 | 0 | return ERROR_INT("factors not found", __func__, 1); |
1069 | | |
1070 | 0 | if (psel1) { |
1071 | 0 | if (direction == L_HORIZ) |
1072 | 0 | *psel1 = selCreateBrick(1, factor1, 0, factor1 / 2, SEL_HIT); |
1073 | 0 | else |
1074 | 0 | *psel1 = selCreateBrick(factor1, 1, factor1 / 2 , 0, SEL_HIT); |
1075 | 0 | } |
1076 | 0 | if (psel2) |
1077 | 0 | *psel2 = selCreateComb(factor1, factor2, direction); |
1078 | 0 | return 0; |
1079 | 0 | } |
1080 | | |
1081 | | |
1082 | | /*! |
1083 | | * \brief selectComposableSizes() |
1084 | | * |
1085 | | * \param[in] size of sel to be decomposed |
1086 | | * \param[out] pfactor1 larger factor |
1087 | | * \param[out] pfactor2 smaller factor |
1088 | | * \return 0 if OK, 1 on error |
1089 | | * |
1090 | | * <pre> |
1091 | | * Notes: |
1092 | | * (1) This works for Sel sizes up to 10000, which seems sufficient. |
1093 | | * (2) The composable sel size is typically within +- 1 of |
1094 | | * the requested size. Up to size = 300, the maximum difference |
1095 | | * is +- 2. |
1096 | | * (3) We choose an overall cost function where the penalty for |
1097 | | * the size difference between input and actual is 4 times |
1098 | | * the penalty for additional rasterops. |
1099 | | * (4) Returned values: factor1 >= factor2 |
1100 | | * If size > 1, then factor1 > 1. |
1101 | | * </pre> |
1102 | | */ |
1103 | | l_ok |
1104 | | selectComposableSizes(l_int32 size, |
1105 | | l_int32 *pfactor1, |
1106 | | l_int32 *pfactor2) |
1107 | 0 | { |
1108 | 0 | l_int32 i, midval, val1, val2m, val2p; |
1109 | 0 | l_int32 index, prodm, prodp; |
1110 | 0 | l_int32 mincost, totcost, rastcostm, rastcostp, diffm, diffp; |
1111 | 0 | l_int32 lowval[256]; |
1112 | 0 | l_int32 hival[256]; |
1113 | 0 | l_int32 rastcost[256]; /* excess in sum of sizes (extra rasterops) */ |
1114 | 0 | l_int32 diff[256]; /* diff between product (sel size) and input size */ |
1115 | |
|
1116 | 0 | if (size < 1 || size > 10000) |
1117 | 0 | return ERROR_INT("size < 1 or size > 10000", __func__, 1); |
1118 | 0 | if (!pfactor1 || !pfactor2) |
1119 | 0 | return ERROR_INT("&factor1 or &factor2 not defined", __func__, 1); |
1120 | | |
1121 | 0 | midval = (l_int32)(sqrt((l_float64)size) + 0.001); |
1122 | 0 | if (midval * midval == size) { |
1123 | 0 | *pfactor1 = *pfactor2 = midval; |
1124 | 0 | return 0; |
1125 | 0 | } |
1126 | | |
1127 | | /* Set up arrays. For each val1, optimize for lowest diff, |
1128 | | * and save the rastcost, the diff, and the two factors. */ |
1129 | 0 | for (val1 = midval + 1, i = 0; val1 > 0; val1--, i++) { |
1130 | 0 | val2m = size / val1; |
1131 | 0 | val2p = val2m + 1; |
1132 | 0 | prodm = val1 * val2m; |
1133 | 0 | prodp = val1 * val2p; |
1134 | 0 | rastcostm = val1 + val2m - 2 * midval; |
1135 | 0 | rastcostp = val1 + val2p - 2 * midval; |
1136 | 0 | diffm = L_ABS(size - prodm); |
1137 | 0 | diffp = L_ABS(size - prodp); |
1138 | 0 | if (diffm <= diffp) { |
1139 | 0 | lowval[i] = L_MIN(val1, val2m); |
1140 | 0 | hival[i] = L_MAX(val1, val2m); |
1141 | 0 | rastcost[i] = rastcostm; |
1142 | 0 | diff[i] = diffm; |
1143 | 0 | } else { |
1144 | 0 | lowval[i] = L_MIN(val1, val2p); |
1145 | 0 | hival[i] = L_MAX(val1, val2p); |
1146 | 0 | rastcost[i] = rastcostp; |
1147 | 0 | diff[i] = diffp; |
1148 | 0 | } |
1149 | 0 | } |
1150 | | |
1151 | | /* Choose the optimum factors; use cost ratio 4 on diff */ |
1152 | 0 | mincost = 10000; |
1153 | 0 | index = 1; /* unimportant initial value */ |
1154 | 0 | for (i = 0; i < midval + 1; i++) { |
1155 | 0 | if (diff[i] == 0 && rastcost[i] < ACCEPTABLE_COST) { |
1156 | 0 | *pfactor1 = hival[i]; |
1157 | 0 | *pfactor2 = lowval[i]; |
1158 | 0 | return 0; |
1159 | 0 | } |
1160 | 0 | totcost = 4 * diff[i] + rastcost[i]; |
1161 | 0 | if (totcost < mincost) { |
1162 | 0 | mincost = totcost; |
1163 | 0 | index = i; |
1164 | 0 | } |
1165 | 0 | } |
1166 | 0 | *pfactor1 = hival[index]; |
1167 | 0 | *pfactor2 = lowval[index]; |
1168 | |
|
1169 | 0 | return 0; |
1170 | 0 | } |
1171 | | |
1172 | | |
1173 | | /*! |
1174 | | * \brief pixDilateCompBrick() |
1175 | | * |
1176 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1177 | | * or different from pixs |
1178 | | * \param[in] pixs 1 bpp |
1179 | | * \param[in] hsize width of brick Sel |
1180 | | * \param[in] vsize height of brick Sel |
1181 | | * \return pixd, or NULL on error |
1182 | | * |
1183 | | * <pre> |
1184 | | * Notes: |
1185 | | * (1) Sel is a brick with all elements being hits |
1186 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
1187 | | * (3) Do compositely for each dimension > 1. |
1188 | | * (4) Do separably if both hsize and vsize are > 1. |
1189 | | * (5) There are three cases: |
1190 | | * (a) pixd == null (result into new pixd) |
1191 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
1192 | | * (c) pixd != pixs (puts result into existing pixd) |
1193 | | * (6) For clarity, if the case is known, use these patterns: |
1194 | | * (a) pixd = pixDilateCompBrick(NULL, pixs, ...); |
1195 | | * (b) pixDilateCompBrick(pixs, pixs, ...); |
1196 | | * (c) pixDilateCompBrick(pixd, pixs, ...); |
1197 | | * (7) The dimensions of the resulting image are determined by pixs. |
1198 | | * (8) CAUTION: both hsize and vsize are being decomposed. |
1199 | | * The decomposer chooses a product of sizes (call them |
1200 | | * 'terms') for each that is close to the input size, |
1201 | | * but not necessarily equal to it. It attempts to optimize: |
1202 | | * (a) for consistency with the input values: the product |
1203 | | * of terms is close to the input size |
1204 | | * (b) for efficiency of the operation: the sum of the |
1205 | | * terms is small; ideally about twice the square |
1206 | | * root of the input size. |
1207 | | * So, for example, if the input hsize = 37, which is |
1208 | | * a prime number, the decomposer will break this into two |
1209 | | * terms, 6 and 6, so that the net result is a dilation |
1210 | | * with hsize = 36. |
1211 | | * </pre> |
1212 | | */ |
1213 | | PIX * |
1214 | | pixDilateCompBrick(PIX *pixd, |
1215 | | PIX *pixs, |
1216 | | l_int32 hsize, |
1217 | | l_int32 vsize) |
1218 | 0 | { |
1219 | 0 | PIX *pix1, *pix2, *pix3; |
1220 | 0 | SEL *selh1 = NULL; |
1221 | 0 | SEL *selh2 = NULL; |
1222 | 0 | SEL *selv1 = NULL; |
1223 | 0 | SEL *selv2 = NULL; |
1224 | |
|
1225 | 0 | if (!pixs) |
1226 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1227 | 0 | if (pixGetDepth(pixs) != 1) |
1228 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1229 | 0 | if (hsize < 1 || vsize < 1) |
1230 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
1231 | | |
1232 | 0 | if (hsize == 1 && vsize == 1) |
1233 | 0 | return pixCopy(pixd, pixs); |
1234 | 0 | if (hsize > 1) { |
1235 | 0 | if (selectComposableSels(hsize, L_HORIZ, &selh1, &selh2)) { |
1236 | 0 | selDestroy(&selh1); |
1237 | 0 | selDestroy(&selh2); |
1238 | 0 | return (PIX *)ERROR_PTR("horiz sels not made", __func__, pixd); |
1239 | 0 | } |
1240 | 0 | } |
1241 | 0 | if (vsize > 1) { |
1242 | 0 | if (selectComposableSels(vsize, L_VERT, &selv1, &selv2)) { |
1243 | 0 | selDestroy(&selh1); |
1244 | 0 | selDestroy(&selh2); |
1245 | 0 | selDestroy(&selv1); |
1246 | 0 | selDestroy(&selv2); |
1247 | 0 | return (PIX *)ERROR_PTR("vert sels not made", __func__, pixd); |
1248 | 0 | } |
1249 | 0 | } |
1250 | | |
1251 | 0 | pix1 = pixAddBorder(pixs, 32, 0); |
1252 | 0 | if (vsize == 1) { |
1253 | 0 | pix2 = pixDilate(NULL, pix1, selh1); |
1254 | 0 | pix3 = pixDilate(NULL, pix2, selh2); |
1255 | 0 | } else if (hsize == 1) { |
1256 | 0 | pix2 = pixDilate(NULL, pix1, selv1); |
1257 | 0 | pix3 = pixDilate(NULL, pix2, selv2); |
1258 | 0 | } else { |
1259 | 0 | pix2 = pixDilate(NULL, pix1, selh1); |
1260 | 0 | pix3 = pixDilate(NULL, pix2, selh2); |
1261 | 0 | pixDilate(pix2, pix3, selv1); |
1262 | 0 | pixDilate(pix3, pix2, selv2); |
1263 | 0 | } |
1264 | 0 | pixDestroy(&pix1); |
1265 | 0 | pixDestroy(&pix2); |
1266 | |
|
1267 | 0 | selDestroy(&selh1); |
1268 | 0 | selDestroy(&selh2); |
1269 | 0 | selDestroy(&selv1); |
1270 | 0 | selDestroy(&selv2); |
1271 | |
|
1272 | 0 | pix1 = pixRemoveBorder(pix3, 32); |
1273 | 0 | pixDestroy(&pix3); |
1274 | 0 | if (!pixd) |
1275 | 0 | return pix1; |
1276 | 0 | pixCopy(pixd, pix1); |
1277 | 0 | pixDestroy(&pix1); |
1278 | 0 | return pixd; |
1279 | 0 | } |
1280 | | |
1281 | | |
1282 | | /*! |
1283 | | * \brief pixErodeCompBrick() |
1284 | | * |
1285 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1286 | | * or different from pixs |
1287 | | * \param[in] pixs 1 bpp |
1288 | | * \param[in] hsize width of brick Sel |
1289 | | * \param[in] vsize height of brick Sel |
1290 | | * \return pixd, or NULL on error |
1291 | | * |
1292 | | * <pre> |
1293 | | * Notes: |
1294 | | * (1) Sel is a brick with all elements being hits |
1295 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
1296 | | * (3) Do compositely for each dimension > 1. |
1297 | | * (4) Do separably if both hsize and vsize are > 1. |
1298 | | * (5) There are three cases: |
1299 | | * (a) pixd == null (result into new pixd) |
1300 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
1301 | | * (c) pixd != pixs (puts result into existing pixd) |
1302 | | * (6) For clarity, if the case is known, use these patterns: |
1303 | | * (a) pixd = pixErodeCompBrick(NULL, pixs, ...); |
1304 | | * (b) pixErodeCompBrick(pixs, pixs, ...); |
1305 | | * (c) pixErodeCompBrick(pixd, pixs, ...); |
1306 | | * (7) The dimensions of the resulting image are determined by pixs. |
1307 | | * (8) CAUTION: both hsize and vsize are being decomposed. |
1308 | | * The decomposer chooses a product of sizes (call them |
1309 | | * 'terms') for each that is close to the input size, |
1310 | | * but not necessarily equal to it. It attempts to optimize: |
1311 | | * (a) for consistency with the input values: the product |
1312 | | * of terms is close to the input size |
1313 | | * (b) for efficiency of the operation: the sum of the |
1314 | | * terms is small; ideally about twice the square |
1315 | | * root of the input size. |
1316 | | * So, for example, if the input hsize = 37, which is |
1317 | | * a prime number, the decomposer will break this into two |
1318 | | * terms, 6 and 6, so that the net result is a dilation |
1319 | | * with hsize = 36. |
1320 | | * </pre> |
1321 | | */ |
1322 | | PIX * |
1323 | | pixErodeCompBrick(PIX *pixd, |
1324 | | PIX *pixs, |
1325 | | l_int32 hsize, |
1326 | | l_int32 vsize) |
1327 | 0 | { |
1328 | 0 | PIX *pixt; |
1329 | 0 | SEL *selh1 = NULL; |
1330 | 0 | SEL *selh2 = NULL; |
1331 | 0 | SEL *selv1 = NULL; |
1332 | 0 | SEL *selv2 = NULL; |
1333 | |
|
1334 | 0 | if (!pixs) |
1335 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1336 | 0 | if (pixGetDepth(pixs) != 1) |
1337 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1338 | 0 | if (hsize < 1 || vsize < 1) |
1339 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
1340 | | |
1341 | 0 | if (hsize == 1 && vsize == 1) |
1342 | 0 | return pixCopy(pixd, pixs); |
1343 | 0 | if (hsize > 1) { |
1344 | 0 | if (selectComposableSels(hsize, L_HORIZ, &selh1, &selh2)) { |
1345 | 0 | selDestroy(&selh1); |
1346 | 0 | selDestroy(&selh2); |
1347 | 0 | return (PIX *)ERROR_PTR("horiz sels not made", __func__, pixd); |
1348 | 0 | } |
1349 | 0 | } |
1350 | 0 | if (vsize > 1) { |
1351 | 0 | if (selectComposableSels(vsize, L_VERT, &selv1, &selv2)) { |
1352 | 0 | selDestroy(&selh1); |
1353 | 0 | selDestroy(&selh2); |
1354 | 0 | selDestroy(&selv1); |
1355 | 0 | selDestroy(&selv2); |
1356 | 0 | return (PIX *)ERROR_PTR("vert sels not made", __func__, pixd); |
1357 | 0 | } |
1358 | 0 | } |
1359 | | |
1360 | 0 | if (vsize == 1) { |
1361 | 0 | pixt = pixErode(NULL, pixs, selh1); |
1362 | 0 | pixd = pixErode(pixd, pixt, selh2); |
1363 | 0 | } else if (hsize == 1) { |
1364 | 0 | pixt = pixErode(NULL, pixs, selv1); |
1365 | 0 | pixd = pixErode(pixd, pixt, selv2); |
1366 | 0 | } else { |
1367 | 0 | pixt = pixErode(NULL, pixs, selh1); |
1368 | 0 | pixd = pixErode(pixd, pixt, selh2); |
1369 | 0 | pixErode(pixt, pixd, selv1); |
1370 | 0 | pixErode(pixd, pixt, selv2); |
1371 | 0 | } |
1372 | 0 | pixDestroy(&pixt); |
1373 | |
|
1374 | 0 | selDestroy(&selh1); |
1375 | 0 | selDestroy(&selh2); |
1376 | 0 | selDestroy(&selv1); |
1377 | 0 | selDestroy(&selv2); |
1378 | 0 | return pixd; |
1379 | 0 | } |
1380 | | |
1381 | | |
1382 | | /*! |
1383 | | * \brief pixOpenCompBrick() |
1384 | | * |
1385 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1386 | | * or different from pixs |
1387 | | * \param[in] pixs 1 bpp |
1388 | | * \param[in] hsize width of brick Sel |
1389 | | * \param[in] vsize height of brick Sel |
1390 | | * \return pixd, or NULL on error |
1391 | | * |
1392 | | * <pre> |
1393 | | * Notes: |
1394 | | * (1) Sel is a brick with all elements being hits |
1395 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
1396 | | * (3) Do compositely for each dimension > 1. |
1397 | | * (4) Do separably if both hsize and vsize are > 1. |
1398 | | * (5) There are three cases: |
1399 | | * (a) pixd == null (result into new pixd) |
1400 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
1401 | | * (c) pixd != pixs (puts result into existing pixd) |
1402 | | * (6) For clarity, if the case is known, use these patterns: |
1403 | | * (a) pixd = pixOpenCompBrick(NULL, pixs, ...); |
1404 | | * (b) pixOpenCompBrick(pixs, pixs, ...); |
1405 | | * (c) pixOpenCompBrick(pixd, pixs, ...); |
1406 | | * (7) The dimensions of the resulting image are determined by pixs. |
1407 | | * (8) CAUTION: both hsize and vsize are being decomposed. |
1408 | | * The decomposer chooses a product of sizes (call them |
1409 | | * 'terms') for each that is close to the input size, |
1410 | | * but not necessarily equal to it. It attempts to optimize: |
1411 | | * (a) for consistency with the input values: the product |
1412 | | * of terms is close to the input size |
1413 | | * (b) for efficiency of the operation: the sum of the |
1414 | | * terms is small; ideally about twice the square |
1415 | | * root of the input size. |
1416 | | * So, for example, if the input hsize = 37, which is |
1417 | | * a prime number, the decomposer will break this into two |
1418 | | * terms, 6 and 6, so that the net result is a dilation |
1419 | | * with hsize = 36. |
1420 | | * </pre> |
1421 | | */ |
1422 | | PIX * |
1423 | | pixOpenCompBrick(PIX *pixd, |
1424 | | PIX *pixs, |
1425 | | l_int32 hsize, |
1426 | | l_int32 vsize) |
1427 | 0 | { |
1428 | 0 | PIX *pixt; |
1429 | 0 | SEL *selh1 = NULL; |
1430 | 0 | SEL *selh2 = NULL; |
1431 | 0 | SEL *selv1 = NULL; |
1432 | 0 | SEL *selv2 = NULL; |
1433 | |
|
1434 | 0 | if (!pixs) |
1435 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1436 | 0 | if (pixGetDepth(pixs) != 1) |
1437 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1438 | 0 | if (hsize < 1 || vsize < 1) |
1439 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
1440 | | |
1441 | 0 | if (hsize == 1 && vsize == 1) |
1442 | 0 | return pixCopy(pixd, pixs); |
1443 | 0 | if (hsize > 1) { |
1444 | 0 | if (selectComposableSels(hsize, L_HORIZ, &selh1, &selh2)) { |
1445 | 0 | selDestroy(&selh1); |
1446 | 0 | selDestroy(&selh2); |
1447 | 0 | return (PIX *)ERROR_PTR("horiz sels not made", __func__, pixd); |
1448 | 0 | } |
1449 | 0 | } |
1450 | 0 | if (vsize > 1) { |
1451 | 0 | if (selectComposableSels(vsize, L_VERT, &selv1, &selv2)) { |
1452 | 0 | selDestroy(&selh1); |
1453 | 0 | selDestroy(&selh2); |
1454 | 0 | selDestroy(&selv1); |
1455 | 0 | selDestroy(&selv2); |
1456 | 0 | return (PIX *)ERROR_PTR("vert sels not made", __func__, pixd); |
1457 | 0 | } |
1458 | 0 | } |
1459 | | |
1460 | 0 | if (vsize == 1) { |
1461 | 0 | pixt = pixErode(NULL, pixs, selh1); |
1462 | 0 | pixd = pixErode(pixd, pixt, selh2); |
1463 | 0 | pixDilate(pixt, pixd, selh1); |
1464 | 0 | pixDilate(pixd, pixt, selh2); |
1465 | 0 | } else if (hsize == 1) { |
1466 | 0 | pixt = pixErode(NULL, pixs, selv1); |
1467 | 0 | pixd = pixErode(pixd, pixt, selv2); |
1468 | 0 | pixDilate(pixt, pixd, selv1); |
1469 | 0 | pixDilate(pixd, pixt, selv2); |
1470 | 0 | } else { /* do separably */ |
1471 | 0 | pixt = pixErode(NULL, pixs, selh1); |
1472 | 0 | pixd = pixErode(pixd, pixt, selh2); |
1473 | 0 | pixErode(pixt, pixd, selv1); |
1474 | 0 | pixErode(pixd, pixt, selv2); |
1475 | 0 | pixDilate(pixt, pixd, selh1); |
1476 | 0 | pixDilate(pixd, pixt, selh2); |
1477 | 0 | pixDilate(pixt, pixd, selv1); |
1478 | 0 | pixDilate(pixd, pixt, selv2); |
1479 | 0 | } |
1480 | 0 | pixDestroy(&pixt); |
1481 | |
|
1482 | 0 | selDestroy(&selh1); |
1483 | 0 | selDestroy(&selh2); |
1484 | 0 | selDestroy(&selv1); |
1485 | 0 | selDestroy(&selv2); |
1486 | 0 | return pixd; |
1487 | 0 | } |
1488 | | |
1489 | | |
1490 | | /*! |
1491 | | * \brief pixCloseCompBrick() |
1492 | | * |
1493 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1494 | | * or different from pixs |
1495 | | * \param[in] pixs 1 bpp |
1496 | | * \param[in] hsize width of brick Sel |
1497 | | * \param[in] vsize height of brick Sel |
1498 | | * \return pixd, or NULL on error |
1499 | | * |
1500 | | * <pre> |
1501 | | * Notes: |
1502 | | * (1) Sel is a brick with all elements being hits |
1503 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
1504 | | * (3) Do compositely for each dimension > 1. |
1505 | | * (4) Do separably if both hsize and vsize are > 1. |
1506 | | * (5) There are three cases: |
1507 | | * (a) pixd == null (result into new pixd) |
1508 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
1509 | | * (c) pixd != pixs (puts result into existing pixd) |
1510 | | * (6) For clarity, if the case is known, use these patterns: |
1511 | | * (a) pixd = pixCloseCompBrick(NULL, pixs, ...); |
1512 | | * (b) pixCloseCompBrick(pixs, pixs, ...); |
1513 | | * (c) pixCloseCompBrick(pixd, pixs, ...); |
1514 | | * (7) The dimensions of the resulting image are determined by pixs. |
1515 | | * (8) CAUTION: both hsize and vsize are being decomposed. |
1516 | | * The decomposer chooses a product of sizes (call them |
1517 | | * 'terms') for each that is close to the input size, |
1518 | | * but not necessarily equal to it. It attempts to optimize: |
1519 | | * (a) for consistency with the input values: the product |
1520 | | * of terms is close to the input size |
1521 | | * (b) for efficiency of the operation: the sum of the |
1522 | | * terms is small; ideally about twice the square |
1523 | | * root of the input size. |
1524 | | * So, for example, if the input hsize = 37, which is |
1525 | | * a prime number, the decomposer will break this into two |
1526 | | * terms, 6 and 6, so that the net result is a dilation |
1527 | | * with hsize = 36. |
1528 | | * </pre> |
1529 | | */ |
1530 | | PIX * |
1531 | | pixCloseCompBrick(PIX *pixd, |
1532 | | PIX *pixs, |
1533 | | l_int32 hsize, |
1534 | | l_int32 vsize) |
1535 | 0 | { |
1536 | 0 | PIX *pixt; |
1537 | 0 | SEL *selh1 = NULL; |
1538 | 0 | SEL *selh2 = NULL; |
1539 | 0 | SEL *selv1 = NULL; |
1540 | 0 | SEL *selv2 = NULL; |
1541 | |
|
1542 | 0 | if (!pixs) |
1543 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1544 | 0 | if (pixGetDepth(pixs) != 1) |
1545 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1546 | 0 | if (hsize < 1 || vsize < 1) |
1547 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
1548 | | |
1549 | 0 | if (hsize == 1 && vsize == 1) |
1550 | 0 | return pixCopy(pixd, pixs); |
1551 | 0 | if (hsize > 1) { |
1552 | 0 | if (selectComposableSels(hsize, L_HORIZ, &selh1, &selh2)) { |
1553 | 0 | selDestroy(&selh1); |
1554 | 0 | selDestroy(&selh2); |
1555 | 0 | return (PIX *)ERROR_PTR("horiz sels not made", __func__, pixd); |
1556 | 0 | } |
1557 | 0 | } |
1558 | 0 | if (vsize > 1) { |
1559 | 0 | if (selectComposableSels(vsize, L_VERT, &selv1, &selv2)) { |
1560 | 0 | selDestroy(&selh1); |
1561 | 0 | selDestroy(&selh2); |
1562 | 0 | selDestroy(&selv1); |
1563 | 0 | selDestroy(&selv2); |
1564 | 0 | return (PIX *)ERROR_PTR("vert sels not made", __func__, pixd); |
1565 | 0 | } |
1566 | 0 | } |
1567 | | |
1568 | 0 | if (vsize == 1) { |
1569 | 0 | pixt = pixDilate(NULL, pixs, selh1); |
1570 | 0 | pixd = pixDilate(pixd, pixt, selh2); |
1571 | 0 | pixErode(pixt, pixd, selh1); |
1572 | 0 | pixErode(pixd, pixt, selh2); |
1573 | 0 | } else if (hsize == 1) { |
1574 | 0 | pixt = pixDilate(NULL, pixs, selv1); |
1575 | 0 | pixd = pixDilate(pixd, pixt, selv2); |
1576 | 0 | pixErode(pixt, pixd, selv1); |
1577 | 0 | pixErode(pixd, pixt, selv2); |
1578 | 0 | } else { /* do separably */ |
1579 | 0 | pixt = pixDilate(NULL, pixs, selh1); |
1580 | 0 | pixd = pixDilate(pixd, pixt, selh2); |
1581 | 0 | pixDilate(pixt, pixd, selv1); |
1582 | 0 | pixDilate(pixd, pixt, selv2); |
1583 | 0 | pixErode(pixt, pixd, selh1); |
1584 | 0 | pixErode(pixd, pixt, selh2); |
1585 | 0 | pixErode(pixt, pixd, selv1); |
1586 | 0 | pixErode(pixd, pixt, selv2); |
1587 | 0 | } |
1588 | 0 | pixDestroy(&pixt); |
1589 | |
|
1590 | 0 | selDestroy(&selh1); |
1591 | 0 | selDestroy(&selh2); |
1592 | 0 | selDestroy(&selv1); |
1593 | 0 | selDestroy(&selv2); |
1594 | 0 | return pixd; |
1595 | 0 | } |
1596 | | |
1597 | | |
1598 | | /*! |
1599 | | * \brief pixCloseSafeCompBrick() |
1600 | | * |
1601 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1602 | | * or different from pixs |
1603 | | * \param[in] pixs 1 bpp |
1604 | | * \param[in] hsize width of brick Sel |
1605 | | * \param[in] vsize height of brick Sel |
1606 | | * \return pixd, or NULL on error |
1607 | | * |
1608 | | * <pre> |
1609 | | * Notes: |
1610 | | * (1) Sel is a brick with all elements being hits |
1611 | | * (2) The origin is at (x, y) = (hsize/2, vsize/2) |
1612 | | * (3) Do compositely for each dimension > 1. |
1613 | | * (4) Do separably if both hsize and vsize are > 1. |
1614 | | * (5) Safe closing adds a border of 0 pixels, of sufficient size so |
1615 | | * that all pixels in input image are processed within |
1616 | | * 32-bit words in the expanded image. As a result, there is |
1617 | | * no special processing for pixels near the boundary, and there |
1618 | | * are no boundary effects. The border is removed at the end. |
1619 | | * (6) There are three cases: |
1620 | | * (a) pixd == null (result into new pixd) |
1621 | | * (b) pixd == pixs (in-place; writes result back to pixs) |
1622 | | * (c) pixd != pixs (puts result into existing pixd) |
1623 | | * (7) For clarity, if the case is known, use these patterns: |
1624 | | * (a) pixd = pixCloseSafeCompBrick(NULL, pixs, ...); |
1625 | | * (b) pixCloseSafeCompBrick(pixs, pixs, ...); |
1626 | | * (c) pixCloseSafeCompBrick(pixd, pixs, ...); |
1627 | | * (8) The dimensions of the resulting image are determined by pixs. |
1628 | | * (9) CAUTION: both hsize and vsize are being decomposed. |
1629 | | * The decomposer chooses a product of sizes (call them |
1630 | | * 'terms') for each that is close to the input size, |
1631 | | * but not necessarily equal to it. It attempts to optimize: |
1632 | | * (a) for consistency with the input values: the product |
1633 | | * of terms is close to the input size |
1634 | | * (b) for efficiency of the operation: the sum of the |
1635 | | * terms is small; ideally about twice the square |
1636 | | * root of the input size. |
1637 | | * So, for example, if the input hsize = 37, which is |
1638 | | * a prime number, the decomposer will break this into two |
1639 | | * terms, 6 and 6, so that the net result is a dilation |
1640 | | * with hsize = 36. |
1641 | | * </pre> |
1642 | | */ |
1643 | | PIX * |
1644 | | pixCloseSafeCompBrick(PIX *pixd, |
1645 | | PIX *pixs, |
1646 | | l_int32 hsize, |
1647 | | l_int32 vsize) |
1648 | 0 | { |
1649 | 0 | l_int32 maxtrans, bordsize; |
1650 | 0 | PIX *pixsb, *pixt, *pixdb; |
1651 | 0 | SEL *selh1 = NULL; |
1652 | 0 | SEL *selh2 = NULL; |
1653 | 0 | SEL *selv1 = NULL; |
1654 | 0 | SEL *selv2 = NULL; |
1655 | |
|
1656 | 0 | if (!pixs) |
1657 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1658 | 0 | if (pixGetDepth(pixs) != 1) |
1659 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1660 | 0 | if (hsize < 1 || vsize < 1) |
1661 | 0 | return (PIX *)ERROR_PTR("hsize and vsize not >= 1", __func__, pixd); |
1662 | | |
1663 | 0 | if (hsize == 1 && vsize == 1) |
1664 | 0 | return pixCopy(pixd, pixs); |
1665 | | |
1666 | | /* Symmetric b.c. handles correctly without added pixels */ |
1667 | 0 | if (MORPH_BC == SYMMETRIC_MORPH_BC) |
1668 | 0 | return pixCloseCompBrick(pixd, pixs, hsize, vsize); |
1669 | | |
1670 | 0 | if (hsize > 1) { |
1671 | 0 | if (selectComposableSels(hsize, L_HORIZ, &selh1, &selh2)) { |
1672 | 0 | selDestroy(&selh1); |
1673 | 0 | selDestroy(&selh2); |
1674 | 0 | return (PIX *)ERROR_PTR("horiz sels not made", __func__, pixd); |
1675 | 0 | } |
1676 | 0 | } |
1677 | 0 | if (vsize > 1) { |
1678 | 0 | if (selectComposableSels(vsize, L_VERT, &selv1, &selv2)) { |
1679 | 0 | selDestroy(&selh1); |
1680 | 0 | selDestroy(&selh2); |
1681 | 0 | selDestroy(&selv1); |
1682 | 0 | selDestroy(&selv2); |
1683 | 0 | return (PIX *)ERROR_PTR("vert sels not made", __func__, pixd); |
1684 | 0 | } |
1685 | 0 | } |
1686 | | |
1687 | 0 | maxtrans = L_MAX(hsize / 2, vsize / 2); |
1688 | 0 | bordsize = 32 * ((maxtrans + 31) / 32); /* full 32 bit words */ |
1689 | 0 | pixsb = pixAddBorder(pixs, bordsize, 0); |
1690 | |
|
1691 | 0 | if (vsize == 1) { |
1692 | 0 | pixt = pixDilate(NULL, pixsb, selh1); |
1693 | 0 | pixdb = pixDilate(NULL, pixt, selh2); |
1694 | 0 | pixErode(pixt, pixdb, selh1); |
1695 | 0 | pixErode(pixdb, pixt, selh2); |
1696 | 0 | } else if (hsize == 1) { |
1697 | 0 | pixt = pixDilate(NULL, pixsb, selv1); |
1698 | 0 | pixdb = pixDilate(NULL, pixt, selv2); |
1699 | 0 | pixErode(pixt, pixdb, selv1); |
1700 | 0 | pixErode(pixdb, pixt, selv2); |
1701 | 0 | } else { /* do separably */ |
1702 | 0 | pixt = pixDilate(NULL, pixsb, selh1); |
1703 | 0 | pixdb = pixDilate(NULL, pixt, selh2); |
1704 | 0 | pixDilate(pixt, pixdb, selv1); |
1705 | 0 | pixDilate(pixdb, pixt, selv2); |
1706 | 0 | pixErode(pixt, pixdb, selh1); |
1707 | 0 | pixErode(pixdb, pixt, selh2); |
1708 | 0 | pixErode(pixt, pixdb, selv1); |
1709 | 0 | pixErode(pixdb, pixt, selv2); |
1710 | 0 | } |
1711 | 0 | pixDestroy(&pixt); |
1712 | |
|
1713 | 0 | pixt = pixRemoveBorder(pixdb, bordsize); |
1714 | 0 | pixDestroy(&pixsb); |
1715 | 0 | pixDestroy(&pixdb); |
1716 | |
|
1717 | 0 | if (!pixd) { |
1718 | 0 | pixd = pixt; |
1719 | 0 | } else { |
1720 | 0 | pixCopy(pixd, pixt); |
1721 | 0 | pixDestroy(&pixt); |
1722 | 0 | } |
1723 | |
|
1724 | 0 | selDestroy(&selh1); |
1725 | 0 | selDestroy(&selh2); |
1726 | 0 | selDestroy(&selv1); |
1727 | 0 | selDestroy(&selv2); |
1728 | 0 | return pixd; |
1729 | 0 | } |
1730 | | |
1731 | | |
1732 | | /*-----------------------------------------------------------------* |
1733 | | * Functions associated with boundary conditions * |
1734 | | *-----------------------------------------------------------------*/ |
1735 | | /*! |
1736 | | * \brief resetMorphBoundaryCondition() |
1737 | | * |
1738 | | * \param[in] bc SYMMETRIC_MORPH_BC, ASYMMETRIC_MORPH_BC |
1739 | | * \return void |
1740 | | */ |
1741 | | void |
1742 | | resetMorphBoundaryCondition(l_int32 bc) |
1743 | 0 | { |
1744 | 0 | if (bc != SYMMETRIC_MORPH_BC && bc != ASYMMETRIC_MORPH_BC) { |
1745 | 0 | L_WARNING("invalid bc; using asymmetric\n", __func__); |
1746 | 0 | bc = ASYMMETRIC_MORPH_BC; |
1747 | 0 | } |
1748 | 0 | MORPH_BC = bc; |
1749 | 0 | return; |
1750 | 0 | } |
1751 | | |
1752 | | |
1753 | | /*! |
1754 | | * \brief getMorphBorderPixelColor() |
1755 | | * |
1756 | | * \param[in] type L_MORPH_DILATE, L_MORPH_ERODE |
1757 | | * \param[in] depth of pix |
1758 | | * \return color of border pixels for this operation |
1759 | | */ |
1760 | | l_uint32 |
1761 | | getMorphBorderPixelColor(l_int32 type, |
1762 | | l_int32 depth) |
1763 | 0 | { |
1764 | 0 | if (type != L_MORPH_DILATE && type != L_MORPH_ERODE) |
1765 | 0 | return ERROR_INT("invalid type", __func__, 0); |
1766 | 0 | if (depth != 1 && depth != 2 && depth != 4 && depth != 8 && |
1767 | 0 | depth != 16 && depth != 32) |
1768 | 0 | return ERROR_INT("invalid depth", __func__, 0); |
1769 | | |
1770 | 0 | if (MORPH_BC == ASYMMETRIC_MORPH_BC || type == L_MORPH_DILATE) |
1771 | 0 | return 0; |
1772 | | |
1773 | | /* Symmetric & erosion */ |
1774 | 0 | if (depth < 32) |
1775 | 0 | return ((1 << depth) - 1); |
1776 | 0 | else /* depth == 32 */ |
1777 | 0 | return 0xffffff00; |
1778 | 0 | } |
1779 | | |
1780 | | |
1781 | | /*-----------------------------------------------------------------* |
1782 | | * Static helpers for arg processing * |
1783 | | *-----------------------------------------------------------------*/ |
1784 | | /*! |
1785 | | * \brief processMorphArgs1() |
1786 | | * |
1787 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1788 | | * or different from pixs |
1789 | | * \param[in] pixs 1 bpp |
1790 | | * \param[in] sel |
1791 | | * \param[out] ppixt copy or clone of %pixs |
1792 | | * \return pixd, or NULL on error. |
1793 | | * |
1794 | | * <pre> |
1795 | | * Notes: |
1796 | | * (1) This is used for generic erosion, dilation and HMT. |
1797 | | * </pre> |
1798 | | */ |
1799 | | static PIX * |
1800 | | processMorphArgs1(PIX *pixd, |
1801 | | PIX *pixs, |
1802 | | SEL *sel, |
1803 | | PIX **ppixt) |
1804 | 24 | { |
1805 | 24 | l_int32 sx, sy; |
1806 | | |
1807 | 24 | if (!ppixt) |
1808 | 0 | return (PIX *)ERROR_PTR("&pixt not defined", __func__, pixd); |
1809 | 24 | *ppixt = NULL; |
1810 | 24 | if (!pixs) |
1811 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1812 | 24 | if (!sel) |
1813 | 0 | return (PIX *)ERROR_PTR("sel not defined", __func__, pixd); |
1814 | 24 | if (pixGetDepth(pixs) != 1) |
1815 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1816 | | |
1817 | 24 | selGetParameters(sel, &sx, &sy, NULL, NULL); |
1818 | 24 | if (sx == 0 || sy == 0) |
1819 | 0 | return (PIX *)ERROR_PTR("sel of size 0", __func__, pixd); |
1820 | | |
1821 | | /* We require pixd to exist and to be the same size as pixs. |
1822 | | * Further, pixt must be a copy (or clone) of pixs. */ |
1823 | 24 | if (!pixd) { |
1824 | 12 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
1825 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
1826 | 12 | *ppixt = pixClone(pixs); |
1827 | 12 | } else { |
1828 | 12 | pixResizeImageData(pixd, pixs); |
1829 | 12 | if (pixd == pixs) { /* in-place; must make a copy of pixs */ |
1830 | 0 | if ((*ppixt = pixCopy(NULL, pixs)) == NULL) |
1831 | 0 | return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); |
1832 | 12 | } else { |
1833 | 12 | *ppixt = pixClone(pixs); |
1834 | 12 | } |
1835 | 12 | } |
1836 | 24 | return pixd; |
1837 | 24 | } |
1838 | | |
1839 | | |
1840 | | /*! |
1841 | | * \brief processMorphArgs2() |
1842 | | * |
1843 | | * This is used for generic openings and closings. |
1844 | | */ |
1845 | | static PIX * |
1846 | | processMorphArgs2(PIX *pixd, |
1847 | | PIX *pixs, |
1848 | | SEL *sel) |
1849 | 12 | { |
1850 | 12 | l_int32 sx, sy; |
1851 | | |
1852 | 12 | if (!pixs) |
1853 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1854 | 12 | if (!sel) |
1855 | 0 | return (PIX *)ERROR_PTR("sel not defined", __func__, pixd); |
1856 | 12 | if (pixGetDepth(pixs) != 1) |
1857 | 0 | return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, pixd); |
1858 | | |
1859 | 12 | selGetParameters(sel, &sx, &sy, NULL, NULL); |
1860 | 12 | if (sx == 0 || sy == 0) |
1861 | 0 | return (PIX *)ERROR_PTR("sel of size 0", __func__, pixd); |
1862 | | |
1863 | 12 | if (!pixd) |
1864 | 12 | return pixCreateTemplate(pixs); |
1865 | 0 | pixResizeImageData(pixd, pixs); |
1866 | 0 | return pixd; |
1867 | 12 | } |