Coverage Report

Created: 2026-02-14 06:30

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/tesseract/src/lstm/static_shape.h
Line
Count
Source
1
///////////////////////////////////////////////////////////////////////
2
// File:        static_shape.h
3
// Description: Defines the size of the 4-d tensor input/output from a network.
4
// Author:      Ray Smith
5
// Created:     Fri Oct 14 09:07:31 PST 2016
6
//
7
// (C) Copyright 2016, Google Inc.
8
// Licensed under the Apache License, Version 2.0 (the "License");
9
// you may not use this file except in compliance with the License.
10
// You may obtain a copy of the License at
11
// http://www.apache.org/licenses/LICENSE-2.0
12
// Unless required by applicable law or agreed to in writing, software
13
// distributed under the License is distributed on an "AS IS" BASIS,
14
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
// See the License for the specific language governing permissions and
16
// limitations under the License.
17
///////////////////////////////////////////////////////////////////////
18
19
#ifndef TESSERACT_LSTM_STATIC_SHAPE_H_
20
#define TESSERACT_LSTM_STATIC_SHAPE_H_
21
22
#include "serialis.h" // for TFile
23
#include "tprintf.h"  // for tprintf
24
25
namespace tesseract {
26
27
// Enum describing the loss function to apply during training and/or the
28
// decoding method to apply at runtime.
29
enum LossType {
30
  LT_NONE,     // Undefined.
31
  LT_CTC,      // Softmax with standard CTC for training/decoding.
32
  LT_SOFTMAX,  // Outputs sum to 1 in fixed positions.
33
  LT_LOGISTIC, // Logistic outputs with independent values.
34
};
35
36
// Simple class to hold the tensor shape that is known at network build time
37
// and the LossType of the loss function.
38
class StaticShape {
39
public:
40
6
  StaticShape() : batch_(0), height_(0), width_(0), depth_(0), loss_type_(LT_NONE) {}
41
2
  int batch() const {
42
2
    return batch_;
43
2
  }
44
0
  void set_batch(int value) {
45
0
    batch_ = value;
46
0
  }
47
769k
  int height() const {
48
769k
    return height_;
49
769k
  }
50
4
  void set_height(int value) {
51
4
    height_ = value;
52
4
  }
53
256k
  int width() const {
54
256k
    return width_;
55
256k
  }
56
6
  void set_width(int value) {
57
6
    width_ = value;
58
6
  }
59
769k
  int depth() const {
60
769k
    return depth_;
61
769k
  }
62
14
  void set_depth(int value) {
63
14
    depth_ = value;
64
14
  }
65
2
  LossType loss_type() const {
66
2
    return loss_type_;
67
2
  }
68
4
  void set_loss_type(LossType value) {
69
4
    loss_type_ = value;
70
4
  }
71
2
  void SetShape(int batch, int height, int width, int depth) {
72
2
    batch_ = batch;
73
2
    height_ = height;
74
2
    width_ = width;
75
2
    depth_ = depth;
76
2
  }
77
78
0
  void Print() const {
79
0
    tprintf("Batch=%d, Height=%d, Width=%d, Depth=%d, loss=%d\n", batch_, height_, width_, depth_,
80
0
            loss_type_);
81
0
  }
82
83
4
  bool DeSerialize(TFile *fp) {
84
4
    int32_t tmp = LT_NONE;
85
4
    bool result = fp->DeSerialize(&batch_) && fp->DeSerialize(&height_) &&
86
4
                  fp->DeSerialize(&width_) && fp->DeSerialize(&depth_) && fp->DeSerialize(&tmp);
87
4
    loss_type_ = static_cast<LossType>(tmp);
88
4
    return result;
89
4
  }
90
91
0
  bool Serialize(TFile *fp) const {
92
0
    int32_t tmp = loss_type_;
93
0
    return fp->Serialize(&batch_) && fp->Serialize(&height_) && fp->Serialize(&width_) &&
94
0
           fp->Serialize(&depth_) && fp->Serialize(&tmp);
95
0
  }
96
97
private:
98
  // Size of the 4-D tensor input/output to a network. A value of zero is
99
  // allowed for all except depth_ and means to be determined at runtime, and
100
  // regarded as variable.
101
  // Number of elements in a batch, or number of frames in a video stream.
102
  int32_t batch_;
103
  // Height of the image.
104
  int32_t height_;
105
  // Width of the image.
106
  int32_t width_;
107
  // Depth of the image. (Number of "nodes").
108
  int32_t depth_;
109
  // How to train/interpret the output.
110
  LossType loss_type_;
111
};
112
113
} // namespace tesseract
114
115
#endif // TESSERACT_LSTM_STATIC_SHAPE_H_