/src/tinysparql/subprojects/glib-2.80.3/glib/gtimer.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* GLIB - Library of useful routines for C programming |
2 | | * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald |
3 | | * |
4 | | * SPDX-License-Identifier: LGPL-2.1-or-later |
5 | | * |
6 | | * This library is free software; you can redistribute it and/or |
7 | | * modify it under the terms of the GNU Lesser General Public |
8 | | * License as published by the Free Software Foundation; either |
9 | | * version 2.1 of the License, or (at your option) any later version. |
10 | | * |
11 | | * This library is distributed in the hope that it will be useful, |
12 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | | * Lesser General Public License for more details. |
15 | | * |
16 | | * You should have received a copy of the GNU Lesser General Public |
17 | | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
18 | | */ |
19 | | |
20 | | /* |
21 | | * Modified by the GLib Team and others 1997-2000. See the AUTHORS |
22 | | * file for a list of people on the GLib Team. See the ChangeLog |
23 | | * files for a list of changes. These files are distributed with |
24 | | * GLib at ftp://ftp.gtk.org/pub/gtk/. |
25 | | */ |
26 | | |
27 | | /* |
28 | | * MT safe |
29 | | */ |
30 | | |
31 | | #include "config.h" |
32 | | #include "glibconfig.h" |
33 | | |
34 | | #include <stdlib.h> |
35 | | |
36 | | #ifdef G_OS_UNIX |
37 | | #include <unistd.h> |
38 | | #endif /* G_OS_UNIX */ |
39 | | |
40 | | #ifdef HAVE_SYS_TIME_H |
41 | | #include <sys/time.h> |
42 | | #endif |
43 | | #include <time.h> |
44 | | #ifndef G_OS_WIN32 |
45 | | #include <errno.h> |
46 | | #endif /* G_OS_WIN32 */ |
47 | | |
48 | | #ifdef G_OS_WIN32 |
49 | | #include <windows.h> |
50 | | #endif /* G_OS_WIN32 */ |
51 | | |
52 | | #include "gtimer.h" |
53 | | |
54 | | #include "gmem.h" |
55 | | #include "gstrfuncs.h" |
56 | | #include "gtestutils.h" |
57 | | #include "gmain.h" |
58 | | |
59 | | /** |
60 | | * GTimer: |
61 | | * |
62 | | * `GTimer` records a start time, and counts microseconds elapsed since |
63 | | * that time. |
64 | | * |
65 | | * This is done somewhat differently on different platforms, and can be |
66 | | * tricky to get exactly right, so `GTimer` provides a portable/convenient interface. |
67 | | */ |
68 | | struct _GTimer |
69 | | { |
70 | | guint64 start; |
71 | | guint64 end; |
72 | | |
73 | | guint active : 1; |
74 | | }; |
75 | | |
76 | | /** |
77 | | * g_timer_new: (constructor) |
78 | | * |
79 | | * Creates a new timer, and starts timing (i.e. g_timer_start() is |
80 | | * implicitly called for you). |
81 | | * |
82 | | * Returns: (transfer full): a new #GTimer. |
83 | | **/ |
84 | | GTimer* |
85 | | g_timer_new (void) |
86 | 0 | { |
87 | 0 | GTimer *timer; |
88 | |
|
89 | 0 | timer = g_new (GTimer, 1); |
90 | 0 | timer->active = TRUE; |
91 | |
|
92 | 0 | timer->start = g_get_monotonic_time (); |
93 | |
|
94 | 0 | return timer; |
95 | 0 | } |
96 | | |
97 | | /** |
98 | | * g_timer_destroy: |
99 | | * @timer: a #GTimer to destroy. |
100 | | * |
101 | | * Destroys a timer, freeing associated resources. |
102 | | **/ |
103 | | void |
104 | | g_timer_destroy (GTimer *timer) |
105 | 0 | { |
106 | 0 | g_return_if_fail (timer != NULL); |
107 | | |
108 | 0 | g_free (timer); |
109 | 0 | } |
110 | | |
111 | | /** |
112 | | * g_timer_start: |
113 | | * @timer: a #GTimer. |
114 | | * |
115 | | * Marks a start time, so that future calls to g_timer_elapsed() will |
116 | | * report the time since g_timer_start() was called. g_timer_new() |
117 | | * automatically marks the start time, so no need to call |
118 | | * g_timer_start() immediately after creating the timer. |
119 | | **/ |
120 | | void |
121 | | g_timer_start (GTimer *timer) |
122 | 0 | { |
123 | 0 | g_return_if_fail (timer != NULL); |
124 | | |
125 | 0 | timer->active = TRUE; |
126 | |
|
127 | 0 | timer->start = g_get_monotonic_time (); |
128 | 0 | } |
129 | | |
130 | | /** |
131 | | * g_timer_stop: |
132 | | * @timer: a #GTimer. |
133 | | * |
134 | | * Marks an end time, so calls to g_timer_elapsed() will return the |
135 | | * difference between this end time and the start time. |
136 | | **/ |
137 | | void |
138 | | g_timer_stop (GTimer *timer) |
139 | 0 | { |
140 | 0 | g_return_if_fail (timer != NULL); |
141 | | |
142 | 0 | timer->active = FALSE; |
143 | |
|
144 | 0 | timer->end = g_get_monotonic_time (); |
145 | 0 | } |
146 | | |
147 | | /** |
148 | | * g_timer_reset: |
149 | | * @timer: a #GTimer. |
150 | | * |
151 | | * This function is useless; it's fine to call g_timer_start() on an |
152 | | * already-started timer to reset the start time, so g_timer_reset() |
153 | | * serves no purpose. |
154 | | **/ |
155 | | void |
156 | | g_timer_reset (GTimer *timer) |
157 | 0 | { |
158 | 0 | g_return_if_fail (timer != NULL); |
159 | | |
160 | 0 | timer->start = g_get_monotonic_time (); |
161 | 0 | } |
162 | | |
163 | | /** |
164 | | * g_timer_continue: |
165 | | * @timer: a #GTimer. |
166 | | * |
167 | | * Resumes a timer that has previously been stopped with |
168 | | * g_timer_stop(). g_timer_stop() must be called before using this |
169 | | * function. |
170 | | * |
171 | | * Since: 2.4 |
172 | | **/ |
173 | | void |
174 | | g_timer_continue (GTimer *timer) |
175 | 0 | { |
176 | 0 | guint64 elapsed; |
177 | |
|
178 | 0 | g_return_if_fail (timer != NULL); |
179 | 0 | g_return_if_fail (timer->active == FALSE); |
180 | | |
181 | | /* Get elapsed time and reset timer start time |
182 | | * to the current time minus the previously |
183 | | * elapsed interval. |
184 | | */ |
185 | | |
186 | 0 | elapsed = timer->end - timer->start; |
187 | |
|
188 | 0 | timer->start = g_get_monotonic_time (); |
189 | |
|
190 | 0 | timer->start -= elapsed; |
191 | |
|
192 | 0 | timer->active = TRUE; |
193 | 0 | } |
194 | | |
195 | | /** |
196 | | * g_timer_elapsed: |
197 | | * @timer: a #GTimer. |
198 | | * @microseconds: return location for the fractional part of seconds |
199 | | * elapsed, in microseconds (that is, the total number |
200 | | * of microseconds elapsed, modulo 1000000), or %NULL |
201 | | * |
202 | | * If @timer has been started but not stopped, obtains the time since |
203 | | * the timer was started. If @timer has been stopped, obtains the |
204 | | * elapsed time between the time it was started and the time it was |
205 | | * stopped. The return value is the number of seconds elapsed, |
206 | | * including any fractional part. The @microseconds out parameter is |
207 | | * essentially useless. |
208 | | * |
209 | | * Returns: seconds elapsed as a floating point value, including any |
210 | | * fractional part. |
211 | | **/ |
212 | | gdouble |
213 | | g_timer_elapsed (GTimer *timer, |
214 | | gulong *microseconds) |
215 | 0 | { |
216 | 0 | gdouble total; |
217 | 0 | gint64 elapsed; |
218 | |
|
219 | 0 | g_return_val_if_fail (timer != NULL, 0); |
220 | | |
221 | 0 | if (timer->active) |
222 | 0 | timer->end = g_get_monotonic_time (); |
223 | |
|
224 | 0 | elapsed = timer->end - timer->start; |
225 | |
|
226 | 0 | total = elapsed / 1e6; |
227 | |
|
228 | 0 | if (microseconds) |
229 | 0 | *microseconds = elapsed % 1000000; |
230 | |
|
231 | 0 | return total; |
232 | 0 | } |
233 | | |
234 | | /** |
235 | | * g_timer_is_active: |
236 | | * @timer: a #GTimer. |
237 | | * |
238 | | * Exposes whether the timer is currently active. |
239 | | * |
240 | | * Returns: %TRUE if the timer is running, %FALSE otherwise |
241 | | * Since: 2.62 |
242 | | **/ |
243 | | gboolean |
244 | | g_timer_is_active (GTimer *timer) |
245 | 0 | { |
246 | 0 | g_return_val_if_fail (timer != NULL, FALSE); |
247 | | |
248 | 0 | return timer->active; |
249 | 0 | } |
250 | | |
251 | | /** |
252 | | * g_usleep: |
253 | | * @microseconds: number of microseconds to pause |
254 | | * |
255 | | * Pauses the current thread for the given number of microseconds. |
256 | | * |
257 | | * There are 1 million microseconds per second (represented by the |
258 | | * %G_USEC_PER_SEC macro). g_usleep() may have limited precision, |
259 | | * depending on hardware and operating system; don't rely on the exact |
260 | | * length of the sleep. |
261 | | */ |
262 | | void |
263 | | g_usleep (gulong microseconds) |
264 | 0 | { |
265 | 0 | if G_UNLIKELY (microseconds == 0) |
266 | 0 | return; |
267 | | |
268 | | #ifdef G_OS_WIN32 |
269 | | /* Round up to the next millisecond */ |
270 | | Sleep (microseconds ? (1 + (microseconds - 1) / 1000) : 0); |
271 | | #else |
272 | 0 | struct timespec request, remaining; |
273 | 0 | request.tv_sec = microseconds / G_USEC_PER_SEC; |
274 | 0 | request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC); |
275 | 0 | while (nanosleep (&request, &remaining) == -1 && errno == EINTR) |
276 | 0 | request = remaining; |
277 | 0 | #endif |
278 | 0 | } |
279 | | |
280 | | /** |
281 | | * g_time_val_add: |
282 | | * @time_: a #GTimeVal |
283 | | * @microseconds: number of microseconds to add to @time |
284 | | * |
285 | | * Adds the given number of microseconds to @time_. @microseconds can |
286 | | * also be negative to decrease the value of @time_. |
287 | | * |
288 | | * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use `guint64` for |
289 | | * representing microseconds since the epoch, or use #GDateTime. |
290 | | **/ |
291 | | G_GNUC_BEGIN_IGNORE_DEPRECATIONS |
292 | | void |
293 | | g_time_val_add (GTimeVal *time_, glong microseconds) |
294 | 0 | { |
295 | 0 | g_return_if_fail (time_ != NULL && |
296 | 0 | time_->tv_usec >= 0 && |
297 | 0 | time_->tv_usec < G_USEC_PER_SEC); |
298 | | |
299 | 0 | if (microseconds >= 0) |
300 | 0 | { |
301 | 0 | time_->tv_usec += microseconds % G_USEC_PER_SEC; |
302 | 0 | time_->tv_sec += microseconds / G_USEC_PER_SEC; |
303 | 0 | if (time_->tv_usec >= G_USEC_PER_SEC) |
304 | 0 | { |
305 | 0 | time_->tv_usec -= G_USEC_PER_SEC; |
306 | 0 | time_->tv_sec++; |
307 | 0 | } |
308 | 0 | } |
309 | 0 | else |
310 | 0 | { |
311 | 0 | microseconds *= -1; |
312 | 0 | time_->tv_usec -= microseconds % G_USEC_PER_SEC; |
313 | 0 | time_->tv_sec -= microseconds / G_USEC_PER_SEC; |
314 | 0 | if (time_->tv_usec < 0) |
315 | 0 | { |
316 | 0 | time_->tv_usec += G_USEC_PER_SEC; |
317 | 0 | time_->tv_sec--; |
318 | 0 | } |
319 | 0 | } |
320 | 0 | } |
321 | | G_GNUC_END_IGNORE_DEPRECATIONS |
322 | | |
323 | | /* converts a broken down date representation, relative to UTC, |
324 | | * to a timestamp; it uses timegm() if it's available. |
325 | | */ |
326 | | static time_t |
327 | | mktime_utc (struct tm *tm) |
328 | 0 | { |
329 | 0 | time_t retval; |
330 | | |
331 | | #ifndef HAVE_TIMEGM |
332 | | static const gint days_before[] = |
333 | | { |
334 | | 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 |
335 | | }; |
336 | | #endif |
337 | |
|
338 | | #ifndef HAVE_TIMEGM |
339 | | if (tm->tm_mon < 0 || tm->tm_mon > 11) |
340 | | return (time_t) -1; |
341 | | |
342 | | retval = (tm->tm_year - 70) * 365; |
343 | | retval += (tm->tm_year - 68) / 4; |
344 | | retval += days_before[tm->tm_mon] + tm->tm_mday - 1; |
345 | | |
346 | | if (tm->tm_year % 4 == 0 && tm->tm_mon < 2) |
347 | | retval -= 1; |
348 | | |
349 | | retval = ((((retval * 24) + tm->tm_hour) * 60) + tm->tm_min) * 60 + tm->tm_sec; |
350 | | #else |
351 | 0 | retval = timegm (tm); |
352 | 0 | #endif /* !HAVE_TIMEGM */ |
353 | | |
354 | 0 | return retval; |
355 | 0 | } |
356 | | |
357 | | /** |
358 | | * g_time_val_from_iso8601: |
359 | | * @iso_date: an ISO 8601 encoded date string |
360 | | * @time_: (out): a #GTimeVal |
361 | | * |
362 | | * Converts a string containing an ISO 8601 encoded date and time |
363 | | * to a #GTimeVal and puts it into @time_. |
364 | | * |
365 | | * @iso_date must include year, month, day, hours, minutes, and |
366 | | * seconds. It can optionally include fractions of a second and a time |
367 | | * zone indicator. (In the absence of any time zone indication, the |
368 | | * timestamp is assumed to be in local time.) |
369 | | * |
370 | | * Any leading or trailing space in @iso_date is ignored. |
371 | | * |
372 | | * This function was deprecated, along with #GTimeVal itself, in GLib 2.62. |
373 | | * Equivalent functionality is available using code like: |
374 | | * |[ |
375 | | * GDateTime *dt = g_date_time_new_from_iso8601 (iso8601_string, NULL); |
376 | | * gint64 time_val = g_date_time_to_unix (dt); |
377 | | * g_date_time_unref (dt); |
378 | | * ]| |
379 | | * |
380 | | * Returns: %TRUE if the conversion was successful. |
381 | | * |
382 | | * Since: 2.12 |
383 | | * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use |
384 | | * g_date_time_new_from_iso8601() instead. |
385 | | */ |
386 | | G_GNUC_BEGIN_IGNORE_DEPRECATIONS |
387 | | gboolean |
388 | | g_time_val_from_iso8601 (const gchar *iso_date, |
389 | | GTimeVal *time_) |
390 | 0 | { |
391 | 0 | struct tm tm = {0}; |
392 | 0 | long val; |
393 | 0 | long mday, mon, year; |
394 | 0 | long hour, min, sec; |
395 | |
|
396 | 0 | g_return_val_if_fail (iso_date != NULL, FALSE); |
397 | 0 | g_return_val_if_fail (time_ != NULL, FALSE); |
398 | | |
399 | | /* Ensure that the first character is a digit, the first digit |
400 | | * of the date, otherwise we don't have an ISO 8601 date |
401 | | */ |
402 | 0 | while (g_ascii_isspace (*iso_date)) |
403 | 0 | iso_date++; |
404 | |
|
405 | 0 | if (*iso_date == '\0') |
406 | 0 | return FALSE; |
407 | | |
408 | 0 | if (!g_ascii_isdigit (*iso_date) && *iso_date != '+') |
409 | 0 | return FALSE; |
410 | | |
411 | 0 | val = strtoul (iso_date, (char **)&iso_date, 10); |
412 | 0 | if (*iso_date == '-') |
413 | 0 | { |
414 | | /* YYYY-MM-DD */ |
415 | 0 | year = val; |
416 | 0 | iso_date++; |
417 | |
|
418 | 0 | mon = strtoul (iso_date, (char **)&iso_date, 10); |
419 | 0 | if (*iso_date++ != '-') |
420 | 0 | return FALSE; |
421 | | |
422 | 0 | mday = strtoul (iso_date, (char **)&iso_date, 10); |
423 | 0 | } |
424 | 0 | else |
425 | 0 | { |
426 | | /* YYYYMMDD */ |
427 | 0 | mday = val % 100; |
428 | 0 | mon = (val % 10000) / 100; |
429 | 0 | year = val / 10000; |
430 | 0 | } |
431 | | |
432 | | /* Validation. */ |
433 | 0 | if (year < 1900 || year > G_MAXINT) |
434 | 0 | return FALSE; |
435 | 0 | if (mon < 1 || mon > 12) |
436 | 0 | return FALSE; |
437 | 0 | if (mday < 1 || mday > 31) |
438 | 0 | return FALSE; |
439 | | |
440 | 0 | tm.tm_mday = mday; |
441 | 0 | tm.tm_mon = mon - 1; |
442 | 0 | tm.tm_year = year - 1900; |
443 | |
|
444 | 0 | if (*iso_date != 'T') |
445 | 0 | return FALSE; |
446 | | |
447 | 0 | iso_date++; |
448 | | |
449 | | /* If there is a 'T' then there has to be a time */ |
450 | 0 | if (!g_ascii_isdigit (*iso_date)) |
451 | 0 | return FALSE; |
452 | | |
453 | 0 | val = strtoul (iso_date, (char **)&iso_date, 10); |
454 | 0 | if (*iso_date == ':') |
455 | 0 | { |
456 | | /* hh:mm:ss */ |
457 | 0 | hour = val; |
458 | 0 | iso_date++; |
459 | 0 | min = strtoul (iso_date, (char **)&iso_date, 10); |
460 | | |
461 | 0 | if (*iso_date++ != ':') |
462 | 0 | return FALSE; |
463 | | |
464 | 0 | sec = strtoul (iso_date, (char **)&iso_date, 10); |
465 | 0 | } |
466 | 0 | else |
467 | 0 | { |
468 | | /* hhmmss */ |
469 | 0 | sec = val % 100; |
470 | 0 | min = (val % 10000) / 100; |
471 | 0 | hour = val / 10000; |
472 | 0 | } |
473 | | |
474 | | /* Validation. Allow up to 2 leap seconds when validating @sec. */ |
475 | 0 | if (hour > 23) |
476 | 0 | return FALSE; |
477 | 0 | if (min > 59) |
478 | 0 | return FALSE; |
479 | 0 | if (sec > 61) |
480 | 0 | return FALSE; |
481 | | |
482 | 0 | tm.tm_hour = hour; |
483 | 0 | tm.tm_min = min; |
484 | 0 | tm.tm_sec = sec; |
485 | |
|
486 | 0 | time_->tv_usec = 0; |
487 | | |
488 | 0 | if (*iso_date == ',' || *iso_date == '.') |
489 | 0 | { |
490 | 0 | glong mul = 100000; |
491 | |
|
492 | 0 | while (mul >= 1 && g_ascii_isdigit (*++iso_date)) |
493 | 0 | { |
494 | 0 | time_->tv_usec += (*iso_date - '0') * mul; |
495 | 0 | mul /= 10; |
496 | 0 | } |
497 | | |
498 | | /* Skip any remaining digits after we’ve reached our limit of precision. */ |
499 | 0 | while (g_ascii_isdigit (*iso_date)) |
500 | 0 | iso_date++; |
501 | 0 | } |
502 | | |
503 | | /* Now parse the offset and convert tm to a time_t */ |
504 | 0 | if (*iso_date == 'Z') |
505 | 0 | { |
506 | 0 | iso_date++; |
507 | 0 | time_->tv_sec = mktime_utc (&tm); |
508 | 0 | } |
509 | 0 | else if (*iso_date == '+' || *iso_date == '-') |
510 | 0 | { |
511 | 0 | gint sign = (*iso_date == '+') ? -1 : 1; |
512 | | |
513 | 0 | val = strtoul (iso_date + 1, (char **)&iso_date, 10); |
514 | | |
515 | 0 | if (*iso_date == ':') |
516 | 0 | { |
517 | | /* hh:mm */ |
518 | 0 | hour = val; |
519 | 0 | min = strtoul (iso_date + 1, (char **)&iso_date, 10); |
520 | 0 | } |
521 | 0 | else |
522 | 0 | { |
523 | | /* hhmm */ |
524 | 0 | hour = val / 100; |
525 | 0 | min = val % 100; |
526 | 0 | } |
527 | |
|
528 | 0 | if (hour > 99) |
529 | 0 | return FALSE; |
530 | 0 | if (min > 59) |
531 | 0 | return FALSE; |
532 | | |
533 | 0 | time_->tv_sec = mktime_utc (&tm) + (time_t) (60 * (gint64) (60 * hour + min) * sign); |
534 | 0 | } |
535 | 0 | else |
536 | 0 | { |
537 | | /* No "Z" or offset, so local time */ |
538 | 0 | tm.tm_isdst = -1; /* locale selects DST */ |
539 | 0 | time_->tv_sec = mktime (&tm); |
540 | 0 | } |
541 | | |
542 | 0 | while (g_ascii_isspace (*iso_date)) |
543 | 0 | iso_date++; |
544 | |
|
545 | 0 | return *iso_date == '\0'; |
546 | 0 | } |
547 | | G_GNUC_END_IGNORE_DEPRECATIONS |
548 | | |
549 | | /** |
550 | | * g_time_val_to_iso8601: |
551 | | * @time_: a #GTimeVal |
552 | | * |
553 | | * Converts @time_ into an RFC 3339 encoded string, relative to the |
554 | | * Coordinated Universal Time (UTC). This is one of the many formats |
555 | | * allowed by ISO 8601. |
556 | | * |
557 | | * ISO 8601 allows a large number of date/time formats, with or without |
558 | | * punctuation and optional elements. The format returned by this function |
559 | | * is a complete date and time, with optional punctuation included, the |
560 | | * UTC time zone represented as "Z", and the @tv_usec part included if |
561 | | * and only if it is nonzero, i.e. either |
562 | | * "YYYY-MM-DDTHH:MM:SSZ" or "YYYY-MM-DDTHH:MM:SS.fffffZ". |
563 | | * |
564 | | * This corresponds to the Internet date/time format defined by |
565 | | * [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt), |
566 | | * and to either of the two most-precise formats defined by |
567 | | * the W3C Note |
568 | | * [Date and Time Formats](http://www.w3.org/TR/NOTE-datetime-19980827). |
569 | | * Both of these documents are profiles of ISO 8601. |
570 | | * |
571 | | * Use g_date_time_format() or g_strdup_printf() if a different |
572 | | * variation of ISO 8601 format is required. |
573 | | * |
574 | | * If @time_ represents a date which is too large to fit into a `struct tm`, |
575 | | * %NULL will be returned. This is platform dependent. Note also that since |
576 | | * `GTimeVal` stores the number of seconds as a `glong`, on 32-bit systems it |
577 | | * is subject to the year 2038 problem. Accordingly, since GLib 2.62, this |
578 | | * function has been deprecated. Equivalent functionality is available using: |
579 | | * |[ |
580 | | * GDateTime *dt = g_date_time_new_from_unix_utc (time_val); |
581 | | * iso8601_string = g_date_time_format_iso8601 (dt); |
582 | | * g_date_time_unref (dt); |
583 | | * ]| |
584 | | * |
585 | | * The return value of g_time_val_to_iso8601() has been nullable since GLib |
586 | | * 2.54; before then, GLib would crash under the same conditions. |
587 | | * |
588 | | * Returns: (nullable): a newly allocated string containing an ISO 8601 date, |
589 | | * or %NULL if @time_ was too large |
590 | | * |
591 | | * Since: 2.12 |
592 | | * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use |
593 | | * g_date_time_format_iso8601(dt) instead. |
594 | | */ |
595 | | G_GNUC_BEGIN_IGNORE_DEPRECATIONS |
596 | | gchar * |
597 | | g_time_val_to_iso8601 (GTimeVal *time_) |
598 | 0 | { |
599 | 0 | gchar *retval; |
600 | 0 | struct tm *tm; |
601 | 0 | #ifdef HAVE_GMTIME_R |
602 | 0 | struct tm tm_; |
603 | 0 | #endif |
604 | 0 | time_t secs; |
605 | |
|
606 | 0 | g_return_val_if_fail (time_ != NULL && |
607 | 0 | time_->tv_usec >= 0 && |
608 | 0 | time_->tv_usec < G_USEC_PER_SEC, NULL); |
609 | | |
610 | 0 | secs = time_->tv_sec; |
611 | | #ifdef _WIN32 |
612 | | tm = gmtime (&secs); |
613 | | #else |
614 | 0 | #ifdef HAVE_GMTIME_R |
615 | 0 | tm = gmtime_r (&secs, &tm_); |
616 | | #else |
617 | | tm = gmtime (&secs); |
618 | | #endif |
619 | 0 | #endif |
620 | | |
621 | | /* If the gmtime() call has failed, time_->tv_sec is too big. */ |
622 | 0 | if (tm == NULL) |
623 | 0 | return NULL; |
624 | | |
625 | 0 | if (time_->tv_usec != 0) |
626 | 0 | { |
627 | | /* ISO 8601 date and time format, with fractionary seconds: |
628 | | * YYYY-MM-DDTHH:MM:SS.MMMMMMZ |
629 | | */ |
630 | 0 | retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02d.%06ldZ", |
631 | 0 | tm->tm_year + 1900, |
632 | 0 | tm->tm_mon + 1, |
633 | 0 | tm->tm_mday, |
634 | 0 | tm->tm_hour, |
635 | 0 | tm->tm_min, |
636 | 0 | tm->tm_sec, |
637 | 0 | time_->tv_usec); |
638 | 0 | } |
639 | 0 | else |
640 | 0 | { |
641 | | /* ISO 8601 date and time format: |
642 | | * YYYY-MM-DDTHH:MM:SSZ |
643 | | */ |
644 | 0 | retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02dZ", |
645 | 0 | tm->tm_year + 1900, |
646 | 0 | tm->tm_mon + 1, |
647 | 0 | tm->tm_mday, |
648 | 0 | tm->tm_hour, |
649 | 0 | tm->tm_min, |
650 | 0 | tm->tm_sec); |
651 | 0 | } |
652 | | |
653 | 0 | return retval; |
654 | 0 | } |
655 | | G_GNUC_END_IGNORE_DEPRECATIONS |