Coverage Report

Created: 2025-07-12 06:31

/src/tinysparql/subprojects/glib-2.80.3/glib/gbytes.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2009, 2010 Codethink Limited
3
 * Copyright © 2011 Collabora Ltd.
4
 *
5
 * SPDX-License-Identifier: LGPL-2.1-or-later
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 *
20
 * Author: Ryan Lortie <desrt@desrt.ca>
21
 *         Stef Walter <stefw@collabora.co.uk>
22
 */
23
24
#include "config.h"
25
26
#include "gbytes.h"
27
28
#include <glib/garray.h>
29
#include <glib/gstrfuncs.h>
30
#include <glib/gatomic.h>
31
#include <glib/gslice.h>
32
#include <glib/gtestutils.h>
33
#include <glib/gmem.h>
34
#include <glib/gmessages.h>
35
#include <glib/grefcount.h>
36
37
#include <string.h>
38
39
/**
40
 * GBytes:
41
 *
42
 * A simple refcounted data type representing an immutable sequence of zero or
43
 * more bytes from an unspecified origin.
44
 *
45
 * The purpose of a #GBytes is to keep the memory region that it holds
46
 * alive for as long as anyone holds a reference to the bytes.  When
47
 * the last reference count is dropped, the memory is released. Multiple
48
 * unrelated callers can use byte data in the #GBytes without coordinating
49
 * their activities, resting assured that the byte data will not change or
50
 * move while they hold a reference.
51
 *
52
 * A #GBytes can come from many different origins that may have
53
 * different procedures for freeing the memory region.  Examples are
54
 * memory from g_malloc(), from memory slices, from a #GMappedFile or
55
 * memory from other allocators.
56
 *
57
 * #GBytes work well as keys in #GHashTable. Use g_bytes_equal() and
58
 * g_bytes_hash() as parameters to g_hash_table_new() or g_hash_table_new_full().
59
 * #GBytes can also be used as keys in a #GTree by passing the g_bytes_compare()
60
 * function to g_tree_new().
61
 *
62
 * The data pointed to by this bytes must not be modified. For a mutable
63
 * array of bytes see #GByteArray. Use g_bytes_unref_to_array() to create a
64
 * mutable array for a #GBytes sequence. To create an immutable #GBytes from
65
 * a mutable #GByteArray, use the g_byte_array_free_to_bytes() function.
66
 *
67
 * Since: 2.32
68
 **/
69
70
/* Keep in sync with glib/tests/bytes.c */
71
struct _GBytes
72
{
73
  gconstpointer data;  /* may be NULL iff (size == 0) */
74
  gsize size;  /* may be 0 */
75
  gatomicrefcount ref_count;
76
  GDestroyNotify free_func;
77
  gpointer user_data;
78
};
79
80
/**
81
 * g_bytes_new:
82
 * @data: (transfer none) (array length=size) (element-type guint8) (nullable):
83
 *        the data to be used for the bytes
84
 * @size: the size of @data
85
 *
86
 * Creates a new #GBytes from @data.
87
 *
88
 * @data is copied. If @size is 0, @data may be %NULL.
89
 *
90
 * Returns: (transfer full): a new #GBytes
91
 *
92
 * Since: 2.32
93
 */
94
GBytes *
95
g_bytes_new (gconstpointer data,
96
             gsize         size)
97
0
{
98
0
  g_return_val_if_fail (data != NULL || size == 0, NULL);
99
100
0
  return g_bytes_new_take (g_memdup2 (data, size), size);
101
0
}
102
103
/**
104
 * g_bytes_new_take:
105
 * @data: (transfer full) (array length=size) (element-type guint8) (nullable):
106
 *        the data to be used for the bytes
107
 * @size: the size of @data
108
 *
109
 * Creates a new #GBytes from @data.
110
 *
111
 * After this call, @data belongs to the #GBytes and may no longer be
112
 * modified by the caller. The memory of @data has to be dynamically
113
 * allocated and will eventually be freed with g_free().
114
 *
115
 * For creating #GBytes with memory from other allocators, see
116
 * g_bytes_new_with_free_func().
117
 *
118
 * @data may be %NULL if @size is 0.
119
 *
120
 * Returns: (transfer full): a new #GBytes
121
 *
122
 * Since: 2.32
123
 */
124
GBytes *
125
g_bytes_new_take (gpointer data,
126
                  gsize    size)
127
7.39k
{
128
7.39k
  return g_bytes_new_with_free_func (data, size, g_free, data);
129
7.39k
}
130
131
132
/**
133
 * g_bytes_new_static: (skip)
134
 * @data: (transfer full) (array length=size) (element-type guint8) (nullable):
135
 *        the data to be used for the bytes
136
 * @size: the size of @data
137
 *
138
 * Creates a new #GBytes from static data.
139
 *
140
 * @data must be static (ie: never modified or freed). It may be %NULL if @size
141
 * is 0.
142
 *
143
 * Returns: (transfer full): a new #GBytes
144
 *
145
 * Since: 2.32
146
 */
147
GBytes *
148
g_bytes_new_static (gconstpointer data,
149
                    gsize         size)
150
8
{
151
8
  return g_bytes_new_with_free_func (data, size, NULL, NULL);
152
8
}
153
154
/**
155
 * g_bytes_new_with_free_func: (skip)
156
 * @data: (array length=size) (element-type guint8) (nullable):
157
 *        the data to be used for the bytes
158
 * @size: the size of @data
159
 * @free_func: the function to call to release the data
160
 * @user_data: data to pass to @free_func
161
 *
162
 * Creates a #GBytes from @data.
163
 *
164
 * When the last reference is dropped, @free_func will be called with the
165
 * @user_data argument.
166
 *
167
 * @data must not be modified after this call is made until @free_func has
168
 * been called to indicate that the bytes is no longer in use.
169
 *
170
 * @data may be %NULL if @size is 0.
171
 *
172
 * Returns: (transfer full): a new #GBytes
173
 *
174
 * Since: 2.32
175
 */
176
GBytes *
177
g_bytes_new_with_free_func (gconstpointer  data,
178
                            gsize          size,
179
                            GDestroyNotify free_func,
180
                            gpointer       user_data)
181
244k
{
182
244k
  GBytes *bytes;
183
184
244k
  g_return_val_if_fail (data != NULL || size == 0, NULL);
185
186
244k
  bytes = g_slice_new (GBytes);
187
244k
  bytes->data = data;
188
244k
  bytes->size = size;
189
244k
  bytes->free_func = free_func;
190
244k
  bytes->user_data = user_data;
191
244k
  g_atomic_ref_count_init (&bytes->ref_count);
192
193
244k
  return (GBytes *)bytes;
194
244k
}
195
196
/**
197
 * g_bytes_new_from_bytes:
198
 * @bytes: a #GBytes
199
 * @offset: offset which subsection starts at
200
 * @length: length of subsection
201
 *
202
 * Creates a #GBytes which is a subsection of another #GBytes. The @offset +
203
 * @length may not be longer than the size of @bytes.
204
 *
205
 * A reference to @bytes will be held by the newly created #GBytes until
206
 * the byte data is no longer needed.
207
 *
208
 * Since 2.56, if @offset is 0 and @length matches the size of @bytes, then
209
 * @bytes will be returned with the reference count incremented by 1. If @bytes
210
 * is a slice of another #GBytes, then the resulting #GBytes will reference
211
 * the same #GBytes instead of @bytes. This allows consumers to simplify the
212
 * usage of #GBytes when asynchronously writing to streams.
213
 *
214
 * Returns: (transfer full): a new #GBytes
215
 *
216
 * Since: 2.32
217
 */
218
GBytes *
219
g_bytes_new_from_bytes (GBytes  *bytes,
220
                        gsize    offset,
221
                        gsize    length)
222
123k
{
223
123k
  gchar *base;
224
225
  /* Note that length may be 0. */
226
123k
  g_return_val_if_fail (bytes != NULL, NULL);
227
123k
  g_return_val_if_fail (offset <= bytes->size, NULL);
228
123k
  g_return_val_if_fail (offset + length <= bytes->size, NULL);
229
230
  /* Avoid an extra GBytes if all bytes were requested */
231
123k
  if (offset == 0 && length == bytes->size)
232
0
    return g_bytes_ref (bytes);
233
234
123k
  base = (gchar *)bytes->data + offset;
235
236
  /* Avoid referencing intermediate GBytes. In practice, this should
237
   * only loop once.
238
   */
239
123k
  while (bytes->free_func == (gpointer)g_bytes_unref)
240
0
    bytes = bytes->user_data;
241
242
123k
  g_return_val_if_fail (bytes != NULL, NULL);
243
123k
  g_return_val_if_fail (base >= (gchar *)bytes->data, NULL);
244
123k
  g_return_val_if_fail (base <= (gchar *)bytes->data + bytes->size, NULL);
245
123k
  g_return_val_if_fail (base + length <= (gchar *)bytes->data + bytes->size, NULL);
246
247
123k
  return g_bytes_new_with_free_func (base, length,
248
123k
                                     (GDestroyNotify)g_bytes_unref, g_bytes_ref (bytes));
249
123k
}
250
251
/**
252
 * g_bytes_get_data:
253
 * @bytes: a #GBytes
254
 * @size: (out) (optional): location to return size of byte data
255
 *
256
 * Get the byte data in the #GBytes. This data should not be modified.
257
 *
258
 * This function will always return the same pointer for a given #GBytes.
259
 *
260
 * %NULL may be returned if @size is 0. This is not guaranteed, as the #GBytes
261
 * may represent an empty string with @data non-%NULL and @size as 0. %NULL will
262
 * not be returned if @size is non-zero.
263
 *
264
 * Returns: (transfer none) (array length=size) (element-type guint8) (nullable):
265
 *          a pointer to the byte data, or %NULL
266
 *
267
 * Since: 2.32
268
 */
269
gconstpointer
270
g_bytes_get_data (GBytes *bytes,
271
                  gsize *size)
272
6.96M
{
273
6.96M
  g_return_val_if_fail (bytes != NULL, NULL);
274
6.96M
  if (size)
275
6.96M
    *size = bytes->size;
276
6.96M
  return bytes->data;
277
6.96M
}
278
279
/**
280
 * g_bytes_get_size:
281
 * @bytes: a #GBytes
282
 *
283
 * Get the size of the byte data in the #GBytes.
284
 *
285
 * This function will always return the same value for a given #GBytes.
286
 *
287
 * Returns: the size
288
 *
289
 * Since: 2.32
290
 */
291
gsize
292
g_bytes_get_size (GBytes *bytes)
293
7.90M
{
294
7.90M
  g_return_val_if_fail (bytes != NULL, 0);
295
7.90M
  return bytes->size;
296
7.90M
}
297
298
299
/**
300
 * g_bytes_ref:
301
 * @bytes: a #GBytes
302
 *
303
 * Increase the reference count on @bytes.
304
 *
305
 * Returns: the #GBytes
306
 *
307
 * Since: 2.32
308
 */
309
GBytes *
310
g_bytes_ref (GBytes *bytes)
311
859k
{
312
859k
  g_return_val_if_fail (bytes != NULL, NULL);
313
314
859k
  g_atomic_ref_count_inc (&bytes->ref_count);
315
316
859k
  return bytes;
317
859k
}
318
319
/**
320
 * g_bytes_unref:
321
 * @bytes: (nullable): a #GBytes
322
 *
323
 * Releases a reference on @bytes.  This may result in the bytes being
324
 * freed. If @bytes is %NULL, it will return immediately.
325
 *
326
 * Since: 2.32
327
 */
328
void
329
g_bytes_unref (GBytes *bytes)
330
1.10M
{
331
1.10M
  if (bytes == NULL)
332
0
    return;
333
334
1.10M
  if (g_atomic_ref_count_dec (&bytes->ref_count))
335
244k
    {
336
244k
      if (bytes->free_func != NULL)
337
130k
        bytes->free_func (bytes->user_data);
338
244k
      g_slice_free (GBytes, bytes);
339
244k
    }
340
1.10M
}
341
342
/**
343
 * g_bytes_equal:
344
 * @bytes1: (type GLib.Bytes): a pointer to a #GBytes
345
 * @bytes2: (type GLib.Bytes): a pointer to a #GBytes to compare with @bytes1
346
 *
347
 * Compares the two #GBytes values being pointed to and returns
348
 * %TRUE if they are equal.
349
 *
350
 * This function can be passed to g_hash_table_new() as the @key_equal_func
351
 * parameter, when using non-%NULL #GBytes pointers as keys in a #GHashTable.
352
 *
353
 * Returns: %TRUE if the two keys match.
354
 *
355
 * Since: 2.32
356
 */
357
gboolean
358
g_bytes_equal (gconstpointer bytes1,
359
               gconstpointer bytes2)
360
0
{
361
0
  const GBytes *b1 = bytes1;
362
0
  const GBytes *b2 = bytes2;
363
364
0
  g_return_val_if_fail (bytes1 != NULL, FALSE);
365
0
  g_return_val_if_fail (bytes2 != NULL, FALSE);
366
367
0
  return b1->size == b2->size &&
368
0
         (b1->size == 0 || memcmp (b1->data, b2->data, b1->size) == 0);
369
0
}
370
371
/**
372
 * g_bytes_hash:
373
 * @bytes: (type GLib.Bytes): a pointer to a #GBytes key
374
 *
375
 * Creates an integer hash code for the byte data in the #GBytes.
376
 *
377
 * This function can be passed to g_hash_table_new() as the @key_hash_func
378
 * parameter, when using non-%NULL #GBytes pointers as keys in a #GHashTable.
379
 *
380
 * Returns: a hash value corresponding to the key.
381
 *
382
 * Since: 2.32
383
 */
384
guint
385
g_bytes_hash (gconstpointer bytes)
386
0
{
387
0
  const GBytes *a = bytes;
388
0
  const signed char *p, *e;
389
0
  guint32 h = 5381;
390
391
0
  g_return_val_if_fail (bytes != NULL, 0);
392
393
0
  for (p = (signed char *)a->data, e = (signed char *)a->data + a->size; p != e; p++)
394
0
    h = (h << 5) + h + *p;
395
396
0
  return h;
397
0
}
398
399
/**
400
 * g_bytes_compare:
401
 * @bytes1: (type GLib.Bytes): a pointer to a #GBytes
402
 * @bytes2: (type GLib.Bytes): a pointer to a #GBytes to compare with @bytes1
403
 *
404
 * Compares the two #GBytes values.
405
 *
406
 * This function can be used to sort GBytes instances in lexicographical order.
407
 *
408
 * If @bytes1 and @bytes2 have different length but the shorter one is a
409
 * prefix of the longer one then the shorter one is considered to be less than
410
 * the longer one. Otherwise the first byte where both differ is used for
411
 * comparison. If @bytes1 has a smaller value at that position it is
412
 * considered less, otherwise greater than @bytes2.
413
 *
414
 * Returns: a negative value if @bytes1 is less than @bytes2, a positive value
415
 *          if @bytes1 is greater than @bytes2, and zero if @bytes1 is equal to
416
 *          @bytes2
417
 *
418
 *
419
 * Since: 2.32
420
 */
421
gint
422
g_bytes_compare (gconstpointer bytes1,
423
                 gconstpointer bytes2)
424
0
{
425
0
  const GBytes *b1 = bytes1;
426
0
  const GBytes *b2 = bytes2;
427
0
  gint ret;
428
429
0
  g_return_val_if_fail (bytes1 != NULL, 0);
430
0
  g_return_val_if_fail (bytes2 != NULL, 0);
431
432
0
  ret = memcmp (b1->data, b2->data, MIN (b1->size, b2->size));
433
0
  if (ret == 0 && b1->size != b2->size)
434
0
      ret = b1->size < b2->size ? -1 : 1;
435
0
  return ret;
436
0
}
437
438
static gpointer
439
try_steal_and_unref (GBytes         *bytes,
440
                     GDestroyNotify  free_func,
441
                     gsize          *size)
442
0
{
443
0
  gpointer result;
444
445
0
  if (bytes->free_func != free_func || bytes->data == NULL ||
446
0
      bytes->user_data != bytes->data)
447
0
    return NULL;
448
449
  /* Are we the only reference? */
450
0
  if (g_atomic_ref_count_compare (&bytes->ref_count, 1))
451
0
    {
452
0
      *size = bytes->size;
453
0
      result = (gpointer)bytes->data;
454
0
      g_slice_free (GBytes, bytes);
455
0
      return result;
456
0
    }
457
458
0
  return NULL;
459
0
}
460
461
462
/**
463
 * g_bytes_unref_to_data:
464
 * @bytes: (transfer full): a #GBytes
465
 * @size: (out): location to place the length of the returned data
466
 *
467
 * Unreferences the bytes, and returns a pointer the same byte data
468
 * contents.
469
 *
470
 * As an optimization, the byte data is returned without copying if this was
471
 * the last reference to bytes and bytes was created with g_bytes_new(),
472
 * g_bytes_new_take() or g_byte_array_free_to_bytes(). In all other cases the
473
 * data is copied.
474
 *
475
 * Returns: (transfer full) (array length=size) (element-type guint8)
476
 *          (not nullable): a pointer to the same byte data, which should be
477
 *          freed with g_free()
478
 *
479
 * Since: 2.32
480
 */
481
gpointer
482
g_bytes_unref_to_data (GBytes *bytes,
483
                       gsize  *size)
484
0
{
485
0
  gpointer result;
486
487
0
  g_return_val_if_fail (bytes != NULL, NULL);
488
0
  g_return_val_if_fail (size != NULL, NULL);
489
490
  /*
491
   * Optimal path: if this is was the last reference, then we can return
492
   * the data from this GBytes without copying.
493
   */
494
495
0
  result = try_steal_and_unref (bytes, g_free, size);
496
0
  if (result == NULL)
497
0
    {
498
      /*
499
       * Copy: Non g_malloc (or compatible) allocator, or static memory,
500
       * so we have to copy, and then unref.
501
       */
502
0
      result = g_memdup2 (bytes->data, bytes->size);
503
0
      *size = bytes->size;
504
0
      g_bytes_unref (bytes);
505
0
    }
506
507
0
  return result;
508
0
}
509
510
/**
511
 * g_bytes_unref_to_array:
512
 * @bytes: (transfer full): a #GBytes
513
 *
514
 * Unreferences the bytes, and returns a new mutable #GByteArray containing
515
 * the same byte data.
516
 *
517
 * As an optimization, the byte data is transferred to the array without copying
518
 * if this was the last reference to bytes and bytes was created with
519
 * g_bytes_new(), g_bytes_new_take() or g_byte_array_free_to_bytes(). In all
520
 * other cases the data is copied.
521
 *
522
 * Do not use it if @bytes contains more than %G_MAXUINT
523
 * bytes. #GByteArray stores the length of its data in #guint, which
524
 * may be shorter than #gsize, that @bytes is using.
525
 *
526
 * Returns: (transfer full): a new mutable #GByteArray containing the same byte data
527
 *
528
 * Since: 2.32
529
 */
530
GByteArray *
531
g_bytes_unref_to_array (GBytes *bytes)
532
0
{
533
0
  gpointer data;
534
0
  gsize size;
535
536
0
  g_return_val_if_fail (bytes != NULL, NULL);
537
538
0
  data = g_bytes_unref_to_data (bytes, &size);
539
0
  return g_byte_array_new_take (data, size);
540
0
}
541
542
/**
543
 * g_bytes_get_region:
544
 * @bytes: a #GBytes
545
 * @element_size: a non-zero element size
546
 * @offset: an offset to the start of the region within the @bytes
547
 * @n_elements: the number of elements in the region
548
 *
549
 * Gets a pointer to a region in @bytes.
550
 *
551
 * The region starts at @offset many bytes from the start of the data
552
 * and contains @n_elements many elements of @element_size size.
553
 *
554
 * @n_elements may be zero, but @element_size must always be non-zero.
555
 * Ideally, @element_size is a static constant (eg: sizeof a struct).
556
 *
557
 * This function does careful bounds checking (including checking for
558
 * arithmetic overflows) and returns a non-%NULL pointer if the
559
 * specified region lies entirely within the @bytes. If the region is
560
 * in some way out of range, or if an overflow has occurred, then %NULL
561
 * is returned.
562
 *
563
 * Note: it is possible to have a valid zero-size region. In this case,
564
 * the returned pointer will be equal to the base pointer of the data of
565
 * @bytes, plus @offset.  This will be non-%NULL except for the case
566
 * where @bytes itself was a zero-sized region.  Since it is unlikely
567
 * that you will be using this function to check for a zero-sized region
568
 * in a zero-sized @bytes, %NULL effectively always means "error".
569
 *
570
 * Returns: (nullable): the requested region, or %NULL in case of an error
571
 *
572
 * Since: 2.70
573
 */
574
gconstpointer
575
g_bytes_get_region (GBytes *bytes,
576
                    gsize   element_size,
577
                    gsize   offset,
578
                    gsize   n_elements)
579
0
{
580
0
  gsize total_size;
581
0
  gsize end_offset;
582
583
0
  g_return_val_if_fail (element_size > 0, NULL);
584
585
  /* No other assertion checks here.  If something is wrong then we will
586
   * simply crash (via NULL dereference or divide-by-zero).
587
   */
588
589
0
  if (!g_size_checked_mul (&total_size, element_size, n_elements))
590
0
    return NULL;
591
592
0
  if (!g_size_checked_add (&end_offset, offset, total_size))
593
0
    return NULL;
594
595
  /* We now have:
596
   *
597
   *   0 <= offset <= end_offset
598
   *
599
   * So we need only check that end_offset is within the range of the
600
   * size of @bytes and we're good to go.
601
   */
602
603
0
  if (end_offset > bytes->size)
604
0
    return NULL;
605
606
  /* We now have:
607
   *
608
   *   0 <= offset <= end_offset <= bytes->size
609
   */
610
611
0
  return ((guchar *) bytes->data) + offset;
612
0
}