Coverage Report

Created: 2025-11-24 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/tinysparql/subprojects/glib-2.80.3/glib/gvariant-serialiser.c
Line
Count
Source
1
/*
2
 * Copyright © 2007, 2008 Ryan Lortie
3
 * Copyright © 2010 Codethink Limited
4
 * Copyright © 2020 William Manley
5
 *
6
 * SPDX-License-Identifier: LGPL-2.1-or-later
7
 *
8
 * This library is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * This library is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20
 *
21
 * Author: Ryan Lortie <desrt@desrt.ca>
22
 */
23
24
/* Prologue {{{1 */
25
#include "config.h"
26
27
#include "gvariant-serialiser.h"
28
29
#include <glib/gvariant-internal.h>
30
#include <glib/gtestutils.h>
31
#include <glib/gstrfuncs.h>
32
#include <glib/gtypes.h>
33
34
#include <string.h>
35
36
37
/* GVariantSerialiser
38
 *
39
 * After this prologue section, this file has roughly 2 parts.
40
 *
41
 * The first part is split up into sections according to various
42
 * container types.  Maybe, Array, Tuple, Variant.  The Maybe and Array
43
 * sections are subdivided for element types being fixed or
44
 * variable-sized types.
45
 *
46
 * Each section documents the format of that particular type of
47
 * container and implements 5 functions for dealing with it:
48
 *
49
 *  n_children:
50
 *    - determines (according to serialized data) how many child values
51
 *      are inside a particular container value.
52
 *
53
 *  get_child:
54
 *    - gets the type of and the serialized data corresponding to a
55
 *      given child value within the container value.
56
 *
57
 *  needed_size:
58
 *    - determines how much space would be required to serialize a
59
 *      container of this type, containing the given children so that
60
 *      buffers can be preallocated before serializing.
61
 *
62
 *  serialise:
63
 *    - write the serialized data for a container of this type,
64
 *      containing the given children, to a buffer.
65
 *
66
 *  is_normal:
67
 *    - check the given data to ensure that it is in normal form.  For a
68
 *      given set of child values, there is exactly one normal form for
69
 *      the serialized data of a container.  Other forms are possible
70
 *      while maintaining the same children (for example, by inserting
71
 *      something other than zero bytes as padding) but only one form is
72
 *      the normal form.
73
 *
74
 * The second part contains the main entry point for each of the above 5
75
 * functions and logic to dispatch it to the handler for the appropriate
76
 * container type code.
77
 *
78
 * The second part also contains a routine to byteswap serialized
79
 * values.  This code makes use of the n_children() and get_child()
80
 * functions above to do its work so no extra support is needed on a
81
 * per-container-type basis.
82
 *
83
 * There is also additional code for checking for normal form.  All
84
 * numeric types are always in normal form since the full range of
85
 * values is permitted (eg: 0 to 255 is a valid byte).  Special checks
86
 * need to be performed for booleans (only 0 or 1 allowed), strings
87
 * (properly nul-terminated) and object paths and signature strings
88
 * (meeting the D-Bus specification requirements).  Depth checks need to be
89
 * performed for nested types (arrays, tuples, and variants), to avoid massive
90
 * recursion which could exhaust our stack when handling untrusted input.
91
 */
92
93
/* < private >
94
 * GVariantSerialised:
95
 * @type_info: the #GVariantTypeInfo of this value
96
 * @data: (nullable): the serialized data of this value, or %NULL
97
 * @size: the size of this value
98
 *
99
 * A structure representing a GVariant in serialized form.  This
100
 * structure is used with #GVariantSerialisedFiller functions and as the
101
 * primary interface to the serializer.  See #GVariantSerialisedFiller
102
 * for a description of its use there.
103
 *
104
 * When used with the serializer API functions, the following invariants
105
 * apply to all #GVariantTypeSerialised structures passed to and
106
 * returned from the serializer.
107
 *
108
 * @type_info must be non-%NULL.
109
 *
110
 * @data must be properly aligned for the type described by @type_info.
111
 *
112
 * If @type_info describes a fixed-sized type then @size must always be
113
 * equal to the fixed size of that type.
114
 *
115
 * For fixed-sized types (and only fixed-sized types), @data may be
116
 * %NULL even if @size is non-zero.  This happens when a framing error
117
 * occurs while attempting to extract a fixed-sized value out of a
118
 * variable-sized container.  There is no data to return for the
119
 * fixed-sized type, yet @size must be non-zero.  The effect of this
120
 * combination should be as if @data were a pointer to an
121
 * appropriately-sized zero-filled region.
122
 *
123
 * @depth has no restrictions; the depth of a top-level serialized #GVariant is
124
 * zero, and it increases for each level of nested child.
125
 *
126
 * @checked_offsets_up_to is always ≥ @ordered_offsets_up_to
127
 */
128
129
/* < private >
130
 * g_variant_serialised_check:
131
 * @serialised: a #GVariantSerialised struct
132
 *
133
 * Checks @serialised for validity according to the invariants described
134
 * above.
135
 *
136
 * Returns: %TRUE if @serialised is valid; %FALSE otherwise
137
 */
138
gboolean
139
g_variant_serialised_check (GVariantSerialised serialised)
140
2.45M
{
141
2.45M
  gsize fixed_size;
142
2.45M
  guint alignment;
143
144
2.45M
  if (serialised.type_info == NULL)
145
0
    return FALSE;
146
2.45M
  g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
147
148
2.45M
  if (fixed_size != 0 && serialised.size != fixed_size)
149
0
    return FALSE;
150
2.45M
  else if (fixed_size == 0 &&
151
2.07M
           !(serialised.size == 0 || serialised.data != NULL))
152
0
    return FALSE;
153
154
2.45M
  if (serialised.ordered_offsets_up_to > serialised.checked_offsets_up_to)
155
0
    return FALSE;
156
157
  /* Depending on the native alignment requirements of the machine, the
158
   * compiler will insert either 3 or 7 padding bytes after the char.
159
   * This will result in the sizeof() the struct being 12 or 16.
160
   * Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get
161
   * the alignment bits that we "care about" being zero: in the
162
   * 4-aligned case, we care about 2 bits, and in the 8-aligned case, we
163
   * care about 3 bits.
164
   */
165
2.45M
  alignment &= sizeof (struct {
166
2.45M
                         char a;
167
2.45M
                         union {
168
2.45M
                           guint64 x;
169
2.45M
                           void *y;
170
2.45M
                           gdouble z;
171
2.45M
                         } b;
172
2.45M
                       }
173
2.45M
                      ) - 9;
174
175
  /* Some OSes (FreeBSD is a known example) have a malloc() that returns
176
   * unaligned memory if you request small sizes.  'malloc (1);', for
177
   * example, has been seen to return pointers aligned to 6 mod 16.
178
   *
179
   * Check if this is a small allocation and return without enforcing
180
   * the alignment assertion if this is the case.
181
   */
182
2.45M
  return (serialised.size <= alignment ||
183
2.45M
          (alignment & (gsize) serialised.data) == 0);
184
2.45M
}
185
186
/* < private >
187
 * GVariantSerialisedFiller:
188
 * @serialised: a #GVariantSerialised instance to fill
189
 * @data: data from the children array
190
 *
191
 * This function is called back from g_variant_serialiser_needed_size()
192
 * and g_variant_serialiser_serialise().  It fills in missing details
193
 * from a partially-complete #GVariantSerialised.
194
 *
195
 * The @data parameter passed back to the function is one of the items
196
 * that was passed to the serializer in the @children array.  It
197
 * represents a single child item of the container that is being
198
 * serialized.  The information filled in to @serialised is the
199
 * information for this child.
200
 *
201
 * If the @type_info field of @serialised is %NULL then the callback
202
 * function must set it to the type information corresponding to the
203
 * type of the child.  No reference should be added.  If it is non-%NULL
204
 * then the callback should assert that it is equal to the actual type
205
 * of the child.
206
 *
207
 * If the @size field is zero then the callback must fill it in with the
208
 * required amount of space to store the serialized form of the child.
209
 * If it is non-zero then the callback should assert that it is equal to
210
 * the needed size of the child.
211
 *
212
 * If @data is non-%NULL then it points to a space that is properly
213
 * aligned for and large enough to store the serialized data of the
214
 * child.  The callback must store the serialized form of the child at
215
 * @data.
216
 *
217
 * If the child value is another container then the callback will likely
218
 * recurse back into the serializer by calling
219
 * g_variant_serialiser_needed_size() to determine @size and
220
 * g_variant_serialiser_serialise() to write to @data.
221
 */
222
223
/* PART 1: Container types {{{1
224
 *
225
 * This section contains the serializer implementation functions for
226
 * each container type.
227
 */
228
229
/* Maybe {{{2
230
 *
231
 * Maybe types are handled depending on if the element type of the maybe
232
 * type is a fixed-sized or variable-sized type.  Although all maybe
233
 * types themselves are variable-sized types, herein, a maybe value with
234
 * a fixed-sized element type is called a "fixed-sized maybe" for
235
 * convenience and a maybe value with a variable-sized element type is
236
 * called a "variable-sized maybe".
237
 */
238
239
/* Fixed-sized Maybe {{{3
240
 *
241
 * The size of a maybe value with a fixed-sized element type is either 0
242
 * or equal to the fixed size of its element type.  The case where the
243
 * size of the maybe value is zero corresponds to the "Nothing" case and
244
 * the case where the size of the maybe value is equal to the fixed size
245
 * of the element type corresponds to the "Just" case; in that case, the
246
 * serialized data of the child value forms the entire serialized data
247
 * of the maybe value.
248
 *
249
 * In the event that a fixed-sized maybe value is presented with a size
250
 * that is not equal to the fixed size of the element type then the
251
 * value must be taken to be "Nothing".
252
 */
253
254
static gsize
255
gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
256
0
{
257
0
  gsize element_fixed_size;
258
259
0
  g_variant_type_info_query_element (value.type_info, NULL,
260
0
                                     &element_fixed_size);
261
262
0
  return (element_fixed_size == value.size) ? 1 : 0;
263
0
}
264
265
static GVariantSerialised
266
gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
267
                                 gsize              index_)
268
0
{
269
  /* the child has the same bounds as the
270
   * container, so just update the type.
271
   */
272
0
  value.type_info = g_variant_type_info_element (value.type_info);
273
0
  g_variant_type_info_ref (value.type_info);
274
0
  value.depth++;
275
0
  value.ordered_offsets_up_to = 0;
276
0
  value.checked_offsets_up_to = 0;
277
278
0
  return value;
279
0
}
280
281
static gsize
282
gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo         *type_info,
283
                                   GVariantSerialisedFiller  gvs_filler,
284
                                   const gpointer           *children,
285
                                   gsize                     n_children)
286
0
{
287
0
  if (n_children)
288
0
    {
289
0
      gsize element_fixed_size;
290
291
0
      g_variant_type_info_query_element (type_info, NULL,
292
0
                                         &element_fixed_size);
293
294
0
      return element_fixed_size;
295
0
    }
296
0
  else
297
0
    return 0;
298
0
}
299
300
static void
301
gvs_fixed_sized_maybe_serialise (GVariantSerialised        value,
302
                                 GVariantSerialisedFiller  gvs_filler,
303
                                 const gpointer           *children,
304
                                 gsize                     n_children)
305
0
{
306
0
  if (n_children)
307
0
    {
308
0
      GVariantSerialised child = { NULL, value.data, value.size, value.depth + 1, 0, 0 };
309
310
0
      gvs_filler (&child, children[0]);
311
0
    }
312
0
}
313
314
static gboolean
315
gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
316
0
{
317
0
  if (value.size > 0)
318
0
    {
319
0
      gsize element_fixed_size;
320
321
0
      g_variant_type_info_query_element (value.type_info,
322
0
                                         NULL, &element_fixed_size);
323
324
0
      if (value.size != element_fixed_size)
325
0
        return FALSE;
326
327
      /* proper element size: "Just".  recurse to the child. */
328
0
      value.type_info = g_variant_type_info_element (value.type_info);
329
0
      value.depth++;
330
0
      value.ordered_offsets_up_to = 0;
331
0
      value.checked_offsets_up_to = 0;
332
333
0
      return g_variant_serialised_is_normal (value);
334
0
    }
335
336
  /* size of 0: "Nothing" */
337
0
  return TRUE;
338
0
}
339
340
/* Variable-sized Maybe
341
 *
342
 * The size of a maybe value with a variable-sized element type is
343
 * either 0 or strictly greater than 0.  The case where the size of the
344
 * maybe value is zero corresponds to the "Nothing" case and the case
345
 * where the size of the maybe value is greater than zero corresponds to
346
 * the "Just" case; in that case, the serialized data of the child value
347
 * forms the first part of the serialized data of the maybe value and is
348
 * followed by a single zero byte.  This zero byte is always appended,
349
 * regardless of any zero bytes that may already be at the end of the
350
 * serialized ata of the child value.
351
 */
352
353
static gsize
354
gvs_variable_sized_maybe_n_children (GVariantSerialised value)
355
0
{
356
0
  return (value.size > 0) ? 1 : 0;
357
0
}
358
359
static GVariantSerialised
360
gvs_variable_sized_maybe_get_child (GVariantSerialised value,
361
                                    gsize              index_)
362
0
{
363
  /* remove the padding byte and update the type. */
364
0
  value.type_info = g_variant_type_info_element (value.type_info);
365
0
  g_variant_type_info_ref (value.type_info);
366
0
  value.size--;
367
368
  /* if it's zero-sized then it may as well be NULL */
369
0
  if (value.size == 0)
370
0
    value.data = NULL;
371
372
0
  value.depth++;
373
0
  value.ordered_offsets_up_to = 0;
374
0
  value.checked_offsets_up_to = 0;
375
376
0
  return value;
377
0
}
378
379
static gsize
380
gvs_variable_sized_maybe_needed_size (GVariantTypeInfo         *type_info,
381
                                      GVariantSerialisedFiller  gvs_filler,
382
                                      const gpointer           *children,
383
                                      gsize                     n_children)
384
0
{
385
0
  if (n_children)
386
0
    {
387
0
      GVariantSerialised child = { 0, };
388
389
0
      gvs_filler (&child, children[0]);
390
391
0
      return child.size + 1;
392
0
    }
393
0
  else
394
0
    return 0;
395
0
}
396
397
static void
398
gvs_variable_sized_maybe_serialise (GVariantSerialised        value,
399
                                    GVariantSerialisedFiller  gvs_filler,
400
                                    const gpointer           *children,
401
                                    gsize                     n_children)
402
0
{
403
0
  if (n_children)
404
0
    {
405
0
      GVariantSerialised child = { NULL, value.data, value.size - 1, value.depth + 1, 0, 0 };
406
407
      /* write the data for the child.  */
408
0
      gvs_filler (&child, children[0]);
409
0
      value.data[child.size] = '\0';
410
0
    }
411
0
}
412
413
static gboolean
414
gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
415
0
{
416
0
  if (value.size == 0)
417
0
    return TRUE;
418
419
0
  if (value.data[value.size - 1] != '\0')
420
0
    return FALSE;
421
422
0
  value.type_info = g_variant_type_info_element (value.type_info);
423
0
  value.size--;
424
0
  value.depth++;
425
0
  value.ordered_offsets_up_to = 0;
426
0
  value.checked_offsets_up_to = 0;
427
428
0
  return g_variant_serialised_is_normal (value);
429
0
}
430
431
/* Arrays {{{2
432
 *
433
 * Just as with maybe types, array types are handled depending on if the
434
 * element type of the array type is a fixed-sized or variable-sized
435
 * type.  Similar to maybe types, for convenience, an array value with a
436
 * fixed-sized element type is called a "fixed-sized array" and an array
437
 * value with a variable-sized element type is called a "variable sized
438
 * array".
439
 */
440
441
/* Fixed-sized Array {{{3
442
 *
443
 * For fixed sized arrays, the serialized data is simply a concatenation
444
 * of the serialized data of each element, in order.  Since fixed-sized
445
 * values always have a fixed size that is a multiple of their alignment
446
 * requirement no extra padding is required.
447
 *
448
 * In the event that a fixed-sized array is presented with a size that
449
 * is not an integer multiple of the element size then the value of the
450
 * array must be taken as being empty.
451
 */
452
453
static gsize
454
gvs_fixed_sized_array_n_children (GVariantSerialised value)
455
0
{
456
0
  gsize element_fixed_size;
457
458
0
  g_variant_type_info_query_element (value.type_info, NULL,
459
0
                                     &element_fixed_size);
460
461
0
  if (value.size % element_fixed_size == 0)
462
0
    return value.size / element_fixed_size;
463
464
0
  return 0;
465
0
}
466
467
static GVariantSerialised
468
gvs_fixed_sized_array_get_child (GVariantSerialised value,
469
                                 gsize              index_)
470
0
{
471
0
  GVariantSerialised child = { 0, };
472
473
0
  child.type_info = g_variant_type_info_element (value.type_info);
474
0
  g_variant_type_info_query (child.type_info, NULL, &child.size);
475
0
  child.data = value.data + (child.size * index_);
476
0
  g_variant_type_info_ref (child.type_info);
477
0
  child.depth = value.depth + 1;
478
479
0
  return child;
480
0
}
481
482
static gsize
483
gvs_fixed_sized_array_needed_size (GVariantTypeInfo         *type_info,
484
                                   GVariantSerialisedFiller  gvs_filler,
485
                                   const gpointer           *children,
486
                                   gsize                     n_children)
487
0
{
488
0
  gsize element_fixed_size;
489
490
0
  g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
491
492
0
  return element_fixed_size * n_children;
493
0
}
494
495
static void
496
gvs_fixed_sized_array_serialise (GVariantSerialised        value,
497
                                 GVariantSerialisedFiller  gvs_filler,
498
                                 const gpointer           *children,
499
                                 gsize                     n_children)
500
0
{
501
0
  GVariantSerialised child = { 0, };
502
0
  gsize i;
503
504
0
  child.type_info = g_variant_type_info_element (value.type_info);
505
0
  g_variant_type_info_query (child.type_info, NULL, &child.size);
506
0
  child.data = value.data;
507
0
  child.depth = value.depth + 1;
508
509
0
  for (i = 0; i < n_children; i++)
510
0
    {
511
0
      gvs_filler (&child, children[i]);
512
0
      child.data += child.size;
513
0
    }
514
0
}
515
516
static gboolean
517
gvs_fixed_sized_array_is_normal (GVariantSerialised value)
518
0
{
519
0
  GVariantSerialised child = { 0, };
520
521
0
  child.type_info = g_variant_type_info_element (value.type_info);
522
0
  g_variant_type_info_query (child.type_info, NULL, &child.size);
523
0
  child.depth = value.depth + 1;
524
525
0
  if (value.size % child.size != 0)
526
0
    return FALSE;
527
528
0
  for (child.data = value.data;
529
0
       child.data < value.data + value.size;
530
0
       child.data += child.size)
531
0
    {
532
0
      if (!g_variant_serialised_is_normal (child))
533
0
        return FALSE;
534
0
    }
535
536
0
  return TRUE;
537
0
}
538
539
/* Variable-sized Array {{{3
540
 *
541
 * Variable sized arrays, containing variable-sized elements, must be
542
 * able to determine the boundaries between the elements.  The items
543
 * cannot simply be concatenated.  Additionally, we are faced with the
544
 * fact that non-fixed-sized values do not necessarily have a size that
545
 * is a multiple of their alignment requirement, so we may need to
546
 * insert zero-filled padding.
547
 *
548
 * While it is possible to find the start of an item by starting from
549
 * the end of the item before it and padding for alignment, it is not
550
 * generally possible to do the reverse operation.  For this reason, we
551
 * record the end point of each element in the array.
552
 *
553
 * GVariant works in terms of "offsets".  An offset is a pointer to a
554
 * boundary between two bytes.  In 4 bytes of serialized data, there
555
 * would be 5 possible offsets: one at the start ('0'), one between each
556
 * pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
557
 *
558
 * The numeric value of an offset is an unsigned integer given relative
559
 * to the start of the serialized data of the array.  Offsets are always
560
 * stored in little endian byte order and are always only as big as they
561
 * need to be.  For example, in 255 bytes of serialized data, there are
562
 * 256 offsets.  All possibilities can be stored in an 8 bit unsigned
563
 * integer.  In 256 bytes of serialized data, however, there are 257
564
 * possible offsets so 16 bit integers must be used.  The size of an
565
 * offset is always a power of 2.
566
 *
567
 * The offsets are stored at the end of the serialized data of the
568
 * array.  They are simply concatenated on without any particular
569
 * alignment.  The size of the offsets is included in the size of the
570
 * serialized data for purposes of determining the size of the offsets.
571
 * This presents a possibly ambiguity; in certain cases, a particular
572
 * value of array could have two different serialized forms.
573
 *
574
 * Imagine an array containing a single string of 253 bytes in length
575
 * (so, 254 bytes including the nul terminator).  Now the offset must be
576
 * written.  If an 8 bit offset is written, it will bring the size of
577
 * the array's serialized data to 255 -- which means that the use of an
578
 * 8 bit offset was valid.  If a 16 bit offset is used then the total
579
 * size of the array will be 256 -- which means that the use of a 16 bit
580
 * offset was valid.  Although both of these will be accepted by the
581
 * deserializer, only the smaller of the two is considered to be in
582
 * normal form and that is the one that the serializer must produce.
583
 */
584
585
/* bytes may be NULL if (size == 0). */
586
static inline gsize
587
gvs_read_unaligned_le (guchar *bytes,
588
                       guint   size)
589
0
{
590
0
  union
591
0
  {
592
0
    guchar bytes[GLIB_SIZEOF_SIZE_T];
593
0
    gsize integer;
594
0
  } tmpvalue;
595
596
0
  tmpvalue.integer = 0;
597
0
  if (bytes != NULL)
598
0
    memcpy (&tmpvalue.bytes, bytes, size);
599
600
0
  return GSIZE_FROM_LE (tmpvalue.integer);
601
0
}
602
603
static inline void
604
gvs_write_unaligned_le (guchar *bytes,
605
                        gsize   value,
606
                        guint   size)
607
0
{
608
0
  union
609
0
  {
610
0
    guchar bytes[GLIB_SIZEOF_SIZE_T];
611
0
    gsize integer;
612
0
  } tmpvalue;
613
614
0
  tmpvalue.integer = GSIZE_TO_LE (value);
615
0
  memcpy (bytes, &tmpvalue.bytes, size);
616
0
}
617
618
static guint
619
gvs_get_offset_size (gsize size)
620
567k
{
621
567k
  if (size > G_MAXUINT32)
622
0
    return 8;
623
624
567k
  else if (size > G_MAXUINT16)
625
0
    return 4;
626
627
567k
  else if (size > G_MAXUINT8)
628
567k
    return 2;
629
630
0
  else if (size > 0)
631
0
    return 1;
632
633
0
  return 0;
634
567k
}
635
636
static gsize
637
gvs_calculate_total_size (gsize body_size,
638
                          gsize offsets)
639
0
{
640
0
  if (body_size + 1 * offsets <= G_MAXUINT8)
641
0
    return body_size + 1 * offsets;
642
643
0
  if (body_size + 2 * offsets <= G_MAXUINT16)
644
0
    return body_size + 2 * offsets;
645
646
0
  if (body_size + 4 * offsets <= G_MAXUINT32)
647
0
    return body_size + 4 * offsets;
648
649
0
  return body_size + 8 * offsets;
650
0
}
651
652
struct Offsets
653
{
654
  gsize     data_size;
655
656
  guchar   *array;
657
  gsize     length;
658
  guint     offset_size;
659
660
  gboolean  is_normal;
661
};
662
663
static gsize
664
gvs_offsets_get_offset_n (struct Offsets *offsets,
665
                          gsize           n)
666
0
{
667
0
  return gvs_read_unaligned_le (
668
0
      offsets->array + (offsets->offset_size * n), offsets->offset_size);
669
0
}
670
671
static struct Offsets
672
gvs_variable_sized_array_get_frame_offsets (GVariantSerialised value)
673
0
{
674
0
  struct Offsets out = { 0, };
675
0
  gsize offsets_array_size;
676
0
  gsize last_end;
677
678
0
  if (value.size == 0)
679
0
    {
680
0
      out.is_normal = TRUE;
681
0
      return out;
682
0
    }
683
684
0
  out.offset_size = gvs_get_offset_size (value.size);
685
0
  last_end = gvs_read_unaligned_le (value.data + value.size - out.offset_size,
686
0
                                    out.offset_size);
687
688
0
  if (last_end > value.size)
689
0
    return out;  /* offsets not normal */
690
691
0
  offsets_array_size = value.size - last_end;
692
693
0
  if (offsets_array_size % out.offset_size)
694
0
    return out;  /* offsets not normal */
695
696
0
  out.data_size = last_end;
697
0
  out.array = value.data + last_end;
698
0
  out.length = offsets_array_size / out.offset_size;
699
700
0
  if (out.length > 0 && gvs_calculate_total_size (last_end, out.length) != value.size)
701
0
    return out;  /* offset size not minimal */
702
703
0
  out.is_normal = TRUE;
704
705
0
  return out;
706
0
}
707
708
static gsize
709
gvs_variable_sized_array_n_children (GVariantSerialised value)
710
0
{
711
0
  return gvs_variable_sized_array_get_frame_offsets (value).length;
712
0
}
713
714
/* Find the index of the first out-of-order element in @data, assuming that
715
 * @data is an array of elements of given @type, starting at index @start and
716
 * containing a further @len-@start elements. */
717
#define DEFINE_FIND_UNORDERED(type, le_to_native) \
718
  static gsize \
719
  find_unordered_##type (const guint8 *data, gsize start, gsize len) \
720
0
  { \
721
0
    gsize off; \
722
0
    type current_le, previous_le, current, previous; \
723
0
    \
724
0
    memcpy (&previous_le, data + start * sizeof (current), sizeof (current)); \
725
0
    previous = le_to_native (previous_le); \
726
0
    for (off = (start + 1) * sizeof (current); off < len * sizeof (current); off += sizeof (current)) \
727
0
      { \
728
0
        memcpy (&current_le, data + off, sizeof (current)); \
729
0
        current = le_to_native (current_le); \
730
0
        if (current < previous) \
731
0
          break; \
732
0
        previous = current; \
733
0
      } \
734
0
    return off / sizeof (current) - 1; \
735
0
  }
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint8
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint16
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint32
Unexecuted instantiation: gvariant-serialiser.c:find_unordered_guint64
736
737
0
#define NO_CONVERSION(x) (x)
738
0
DEFINE_FIND_UNORDERED (guint8, NO_CONVERSION);
739
0
DEFINE_FIND_UNORDERED (guint16, GUINT16_FROM_LE);
740
0
DEFINE_FIND_UNORDERED (guint32, GUINT32_FROM_LE);
741
0
DEFINE_FIND_UNORDERED (guint64, GUINT64_FROM_LE);
742
743
static GVariantSerialised
744
gvs_variable_sized_array_get_child (GVariantSerialised value,
745
                                    gsize              index_)
746
0
{
747
0
  GVariantSerialised child = { 0, };
748
749
0
  struct Offsets offsets = gvs_variable_sized_array_get_frame_offsets (value);
750
751
0
  gsize start;
752
0
  gsize end;
753
754
0
  child.type_info = g_variant_type_info_element (value.type_info);
755
0
  g_variant_type_info_ref (child.type_info);
756
0
  child.depth = value.depth + 1;
757
758
  /* If the requested @index_ is beyond the set of indices whose framing offsets
759
   * have been checked, check the remaining offsets to see whether they’re
760
   * normal (in order, no overlapping array elements).
761
   *
762
   * Don’t bother checking if the highest known-good offset is lower than the
763
   * highest checked offset, as that means there’s an invalid element at that
764
   * index, so there’s no need to check further. */
765
0
  if (offsets.array != NULL &&
766
0
      index_ > value.checked_offsets_up_to &&
767
0
      value.ordered_offsets_up_to == value.checked_offsets_up_to)
768
0
    {
769
0
      switch (offsets.offset_size)
770
0
        {
771
0
        case 1:
772
0
          {
773
0
            value.ordered_offsets_up_to = find_unordered_guint8 (
774
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
775
0
            break;
776
0
          }
777
0
        case 2:
778
0
          {
779
0
            value.ordered_offsets_up_to = find_unordered_guint16 (
780
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
781
0
            break;
782
0
          }
783
0
        case 4:
784
0
          {
785
0
            value.ordered_offsets_up_to = find_unordered_guint32 (
786
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
787
0
            break;
788
0
          }
789
0
        case 8:
790
0
          {
791
0
            value.ordered_offsets_up_to = find_unordered_guint64 (
792
0
                offsets.array, value.checked_offsets_up_to, index_ + 1);
793
0
            break;
794
0
          }
795
0
        default:
796
          /* gvs_get_offset_size() only returns maximum 8 */
797
0
          g_assert_not_reached ();
798
0
        }
799
800
0
      value.checked_offsets_up_to = index_;
801
0
    }
802
803
0
  if (index_ > value.ordered_offsets_up_to)
804
0
    {
805
      /* Offsets are invalid somewhere, so return an empty child. */
806
0
      return child;
807
0
    }
808
809
0
  if (index_ > 0)
810
0
    {
811
0
      guint alignment;
812
813
0
      start = gvs_offsets_get_offset_n (&offsets, index_ - 1);
814
815
0
      g_variant_type_info_query (child.type_info, &alignment, NULL);
816
0
      start += (-start) & alignment;
817
0
    }
818
0
  else
819
0
    start = 0;
820
821
0
  end = gvs_offsets_get_offset_n (&offsets, index_);
822
823
0
  if (start < end && end <= value.size && end <= offsets.data_size)
824
0
    {
825
0
      child.data = value.data + start;
826
0
      child.size = end - start;
827
0
    }
828
829
0
  return child;
830
0
}
831
832
static gsize
833
gvs_variable_sized_array_needed_size (GVariantTypeInfo         *type_info,
834
                                      GVariantSerialisedFiller  gvs_filler,
835
                                      const gpointer           *children,
836
                                      gsize                     n_children)
837
0
{
838
0
  guint alignment;
839
0
  gsize offset;
840
0
  gsize i;
841
842
0
  g_variant_type_info_query (type_info, &alignment, NULL);
843
0
  offset = 0;
844
845
0
  for (i = 0; i < n_children; i++)
846
0
    {
847
0
      GVariantSerialised child = { 0, };
848
849
0
      offset += (-offset) & alignment;
850
0
      gvs_filler (&child, children[i]);
851
0
      offset += child.size;
852
0
    }
853
854
0
  return gvs_calculate_total_size (offset, n_children);
855
0
}
856
857
static void
858
gvs_variable_sized_array_serialise (GVariantSerialised        value,
859
                                    GVariantSerialisedFiller  gvs_filler,
860
                                    const gpointer           *children,
861
                                    gsize                     n_children)
862
0
{
863
0
  guchar *offset_ptr;
864
0
  gsize offset_size;
865
0
  guint alignment;
866
0
  gsize offset;
867
0
  gsize i;
868
869
0
  g_variant_type_info_query (value.type_info, &alignment, NULL);
870
0
  offset_size = gvs_get_offset_size (value.size);
871
0
  offset = 0;
872
873
0
  offset_ptr = value.data + value.size - offset_size * n_children;
874
875
0
  for (i = 0; i < n_children; i++)
876
0
    {
877
0
      GVariantSerialised child = { 0, };
878
879
0
      while (offset & alignment)
880
0
        value.data[offset++] = '\0';
881
882
0
      child.data = value.data + offset;
883
0
      gvs_filler (&child, children[i]);
884
0
      offset += child.size;
885
886
0
      gvs_write_unaligned_le (offset_ptr, offset, offset_size);
887
0
      offset_ptr += offset_size;
888
0
    }
889
0
}
890
891
static gboolean
892
gvs_variable_sized_array_is_normal (GVariantSerialised value)
893
0
{
894
0
  GVariantSerialised child = { 0, };
895
0
  guint alignment;
896
0
  gsize offset;
897
0
  gsize i;
898
899
0
  struct Offsets offsets = gvs_variable_sized_array_get_frame_offsets (value);
900
901
0
  if (!offsets.is_normal)
902
0
    return FALSE;
903
904
0
  if (value.size != 0 && offsets.length == 0)
905
0
    return FALSE;
906
907
0
  child.type_info = g_variant_type_info_element (value.type_info);
908
0
  g_variant_type_info_query (child.type_info, &alignment, NULL);
909
0
  child.depth = value.depth + 1;
910
0
  offset = 0;
911
912
0
  for (i = 0; i < offsets.length; i++)
913
0
    {
914
0
      gsize this_end;
915
916
0
      this_end = gvs_read_unaligned_le (offsets.array + offsets.offset_size * i,
917
0
                                        offsets.offset_size);
918
919
0
      if (this_end < offset || this_end > offsets.data_size)
920
0
        return FALSE;
921
922
0
      while (offset & alignment)
923
0
        {
924
0
          if (!(offset < this_end && value.data[offset] == '\0'))
925
0
            return FALSE;
926
0
          offset++;
927
0
        }
928
929
0
      child.data = value.data + offset;
930
0
      child.size = this_end - offset;
931
932
0
      if (child.size == 0)
933
0
        child.data = NULL;
934
935
0
      if (!g_variant_serialised_is_normal (child))
936
0
        return FALSE;
937
938
0
      offset = this_end;
939
0
    }
940
941
0
  g_assert (offset == offsets.data_size);
942
943
  /* All offsets have now been checked. */
944
0
  value.ordered_offsets_up_to = G_MAXSIZE;
945
0
  value.checked_offsets_up_to = G_MAXSIZE;
946
947
0
  return TRUE;
948
0
}
949
950
/* Tuples {{{2
951
 *
952
 * Since tuples can contain a mix of variable- and fixed-sized items,
953
 * they are, in terms of serialization, a hybrid of variable-sized and
954
 * fixed-sized arrays.
955
 *
956
 * Offsets are only stored for variable-sized items.  Also, since the
957
 * number of items in a tuple is known from its type, we are able to
958
 * know exactly how many offsets to expect in the serialized data (and
959
 * therefore how much space is taken up by the offset array).  This
960
 * means that we know where the end of the serialized data for the last
961
 * item is -- we can just subtract the size of the offset array from the
962
 * total size of the tuple.  For this reason, the last item in the tuple
963
 * doesn't need an offset stored.
964
 *
965
 * Tuple offsets are stored in reverse.  This design choice allows
966
 * iterator-based deserializers to be more efficient.
967
 *
968
 * Most of the "heavy lifting" here is handled by the GVariantTypeInfo
969
 * for the tuple.  See the notes in gvarianttypeinfo.h.
970
 */
971
972
/* Note: This doesn’t guarantee that @out_member_end >= @out_member_start; that
973
 * condition may not hold true for invalid serialised variants. The caller is
974
 * responsible for checking the returned values and handling invalid ones
975
 * appropriately. */
976
static void
977
gvs_tuple_get_member_bounds (GVariantSerialised  value,
978
                             gsize               index_,
979
                             gsize               offset_size,
980
                             gsize              *out_member_start,
981
                             gsize              *out_member_end)
982
1.13M
{
983
1.13M
  const GVariantMemberInfo *member_info;
984
1.13M
  gsize member_start, member_end;
985
986
1.13M
  member_info = g_variant_type_info_member_info (value.type_info, index_);
987
988
1.13M
  if (member_info->i + 1 &&
989
0
      offset_size * (member_info->i + 1) <= value.size)
990
0
    member_start = gvs_read_unaligned_le (value.data + value.size -
991
0
                                          offset_size * (member_info->i + 1),
992
0
                                          offset_size);
993
1.13M
  else
994
1.13M
    member_start = 0;
995
996
1.13M
  member_start += member_info->a;
997
1.13M
  member_start &= member_info->b;
998
1.13M
  member_start |= member_info->c;
999
1000
1.13M
  if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST &&
1001
756k
      offset_size * (member_info->i + 1) <= value.size)
1002
756k
    member_end = value.size - offset_size * (member_info->i + 1);
1003
1004
378k
  else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
1005
378k
    {
1006
378k
      gsize fixed_size;
1007
1008
378k
      g_variant_type_info_query (member_info->type_info, NULL, &fixed_size);
1009
378k
      member_end = member_start + fixed_size;
1010
378k
    }
1011
1012
0
  else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET &&
1013
0
           offset_size * (member_info->i + 2) <= value.size)
1014
0
    member_end = gvs_read_unaligned_le (value.data + value.size -
1015
0
                                        offset_size * (member_info->i + 2),
1016
0
                                        offset_size);
1017
1018
0
  else  /* invalid */
1019
0
    member_end = G_MAXSIZE;
1020
1021
1.13M
  if (out_member_start != NULL)
1022
567k
    *out_member_start = member_start;
1023
1.13M
  if (out_member_end != NULL)
1024
1.13M
    *out_member_end = member_end;
1025
1.13M
}
1026
1027
static gsize
1028
gvs_tuple_n_children (GVariantSerialised value)
1029
567k
{
1030
567k
  return g_variant_type_info_n_members (value.type_info);
1031
567k
}
1032
1033
static GVariantSerialised
1034
gvs_tuple_get_child (GVariantSerialised value,
1035
                     gsize              index_)
1036
567k
{
1037
567k
  const GVariantMemberInfo *member_info;
1038
567k
  GVariantSerialised child = { 0, };
1039
567k
  gsize offset_size;
1040
567k
  gsize start, end, last_end;
1041
1042
567k
  member_info = g_variant_type_info_member_info (value.type_info, index_);
1043
567k
  child.type_info = g_variant_type_info_ref (member_info->type_info);
1044
567k
  child.depth = value.depth + 1;
1045
567k
  offset_size = gvs_get_offset_size (value.size);
1046
1047
  /* Ensure the size is set for fixed-sized children, or
1048
   * g_variant_serialised_check() will fail, even if we return
1049
   * (child.data == NULL) to indicate an error. */
1050
567k
  if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
1051
378k
    g_variant_type_info_query (child.type_info, NULL, &child.size);
1052
1053
  /* tuples are the only (potentially) fixed-sized containers, so the
1054
   * only ones that have to deal with the possibility of having %NULL
1055
   * data with a non-zero %size if errors occurred elsewhere.
1056
   */
1057
567k
  if G_UNLIKELY (value.data == NULL && value.size != 0)
1058
0
    {
1059
      /* this can only happen in fixed-sized tuples,
1060
       * so the child must also be fixed sized.
1061
       */
1062
0
      g_assert (child.size != 0);
1063
0
      child.data = NULL;
1064
1065
0
      return child;
1066
0
    }
1067
1068
  /* If the requested @index_ is beyond the set of indices whose framing offsets
1069
   * have been checked, check the remaining offsets to see whether they’re
1070
   * normal (in order, no overlapping tuple elements).
1071
   *
1072
   * Unlike the checks in gvs_variable_sized_array_get_child(), we have to check
1073
   * all the tuple *elements* here, not just all the framing offsets, since
1074
   * tuples contain a mix of elements which use framing offsets and ones which
1075
   * don’t. None of them are allowed to overlap. */
1076
567k
  if (index_ > value.checked_offsets_up_to &&
1077
0
      value.ordered_offsets_up_to == value.checked_offsets_up_to)
1078
0
    {
1079
0
      gsize i, prev_i_end = 0;
1080
1081
0
      if (value.checked_offsets_up_to > 0)
1082
0
        gvs_tuple_get_member_bounds (value, value.checked_offsets_up_to - 1, offset_size, NULL, &prev_i_end);
1083
1084
0
      for (i = value.checked_offsets_up_to; i <= index_; i++)
1085
0
        {
1086
0
          gsize i_start, i_end;
1087
1088
0
          gvs_tuple_get_member_bounds (value, i, offset_size, &i_start, &i_end);
1089
1090
0
          if (i_start > i_end || i_start < prev_i_end || i_end > value.size)
1091
0
            break;
1092
1093
0
          prev_i_end = i_end;
1094
0
        }
1095
1096
0
      value.ordered_offsets_up_to = i - 1;
1097
0
      value.checked_offsets_up_to = index_;
1098
0
    }
1099
1100
567k
  if (index_ > value.ordered_offsets_up_to)
1101
0
    {
1102
      /* Offsets are invalid somewhere, so return an empty child. */
1103
0
      return child;
1104
0
    }
1105
1106
567k
  if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
1107
0
    {
1108
0
      if (offset_size * (member_info->i + 2) > value.size)
1109
0
        return child;
1110
0
    }
1111
567k
  else
1112
567k
    {
1113
567k
      if (offset_size * (member_info->i + 1) > value.size)
1114
0
        return child;
1115
567k
    }
1116
1117
  /* The child should not extend into the offset table. */
1118
567k
  gvs_tuple_get_member_bounds (value, index_, offset_size, &start, &end);
1119
567k
  gvs_tuple_get_member_bounds (value, g_variant_type_info_n_members (value.type_info) - 1, offset_size, NULL, &last_end);
1120
1121
567k
  if (start < end && end <= value.size && end <= last_end)
1122
567k
    {
1123
567k
      child.data = value.data + start;
1124
567k
      child.size = end - start;
1125
567k
    }
1126
1127
567k
  return child;
1128
567k
}
1129
1130
static gsize
1131
gvs_tuple_needed_size (GVariantTypeInfo         *type_info,
1132
                       GVariantSerialisedFiller  gvs_filler,
1133
                       const gpointer           *children,
1134
                       gsize                     n_children)
1135
0
{
1136
0
  const GVariantMemberInfo *member_info = NULL;
1137
0
  gsize fixed_size;
1138
0
  gsize offset;
1139
0
  gsize i;
1140
1141
0
  g_variant_type_info_query (type_info, NULL, &fixed_size);
1142
1143
0
  if (fixed_size)
1144
0
    return fixed_size;
1145
1146
0
  offset = 0;
1147
1148
  /* We must go through at least one iteration below. If the tuple had no
1149
   * children, it would have a fixed size. */
1150
0
  g_assert (n_children > 0);
1151
1152
0
  for (i = 0; i < n_children; i++)
1153
0
    {
1154
0
      guint alignment;
1155
1156
0
      member_info = g_variant_type_info_member_info (type_info, i);
1157
0
      g_variant_type_info_query (member_info->type_info,
1158
0
                                 &alignment, &fixed_size);
1159
0
      offset += (-offset) & alignment;
1160
1161
0
      if (fixed_size)
1162
0
        offset += fixed_size;
1163
0
      else
1164
0
        {
1165
0
          GVariantSerialised child = { 0, };
1166
1167
0
          gvs_filler (&child, children[i]);
1168
0
          offset += child.size;
1169
0
        }
1170
0
    }
1171
1172
0
  return gvs_calculate_total_size (offset, member_info->i + 1);
1173
0
}
1174
1175
static void
1176
gvs_tuple_serialise (GVariantSerialised        value,
1177
                     GVariantSerialisedFiller  gvs_filler,
1178
                     const gpointer           *children,
1179
                     gsize                     n_children)
1180
0
{
1181
0
  gsize offset_size;
1182
0
  gsize offset;
1183
0
  gsize i;
1184
1185
0
  offset_size = gvs_get_offset_size (value.size);
1186
0
  offset = 0;
1187
1188
0
  for (i = 0; i < n_children; i++)
1189
0
    {
1190
0
      const GVariantMemberInfo *member_info;
1191
0
      GVariantSerialised child = { 0, };
1192
0
      guint alignment;
1193
1194
0
      member_info = g_variant_type_info_member_info (value.type_info, i);
1195
0
      g_variant_type_info_query (member_info->type_info, &alignment, NULL);
1196
1197
0
      while (offset & alignment)
1198
0
        value.data[offset++] = '\0';
1199
1200
0
      child.data = value.data + offset;
1201
0
      gvs_filler (&child, children[i]);
1202
0
      offset += child.size;
1203
1204
0
      if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
1205
0
        {
1206
0
          value.size -= offset_size;
1207
0
          gvs_write_unaligned_le (value.data + value.size,
1208
0
                                  offset, offset_size);
1209
0
        }
1210
0
    }
1211
1212
0
  while (offset < value.size)
1213
0
    value.data[offset++] = '\0';
1214
0
}
1215
1216
static gboolean
1217
gvs_tuple_is_normal (GVariantSerialised value)
1218
0
{
1219
0
  guint offset_size;
1220
0
  gsize offset_ptr;
1221
0
  gsize length;
1222
0
  gsize offset;
1223
0
  gsize i;
1224
0
  gsize offset_table_size;
1225
1226
  /* as per the comment in gvs_tuple_get_child() */
1227
0
  if G_UNLIKELY (value.data == NULL && value.size != 0)
1228
0
    return FALSE;
1229
1230
0
  offset_size = gvs_get_offset_size (value.size);
1231
0
  length = g_variant_type_info_n_members (value.type_info);
1232
0
  offset_ptr = value.size;
1233
0
  offset = 0;
1234
1235
0
  for (i = 0; i < length; i++)
1236
0
    {
1237
0
      const GVariantMemberInfo *member_info;
1238
0
      GVariantSerialised child = { 0, };
1239
0
      gsize fixed_size;
1240
0
      guint alignment;
1241
0
      gsize end;
1242
1243
0
      member_info = g_variant_type_info_member_info (value.type_info, i);
1244
0
      child.type_info = member_info->type_info;
1245
0
      child.depth = value.depth + 1;
1246
1247
0
      g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
1248
1249
0
      while (offset & alignment)
1250
0
        {
1251
0
          if (offset > value.size || value.data[offset] != '\0')
1252
0
            return FALSE;
1253
0
          offset++;
1254
0
        }
1255
1256
0
      child.data = value.data + offset;
1257
1258
0
      switch (member_info->ending_type)
1259
0
        {
1260
0
        case G_VARIANT_MEMBER_ENDING_FIXED:
1261
0
          end = offset + fixed_size;
1262
0
          break;
1263
1264
0
        case G_VARIANT_MEMBER_ENDING_LAST:
1265
0
          end = offset_ptr;
1266
0
          break;
1267
1268
0
        case G_VARIANT_MEMBER_ENDING_OFFSET:
1269
0
          if (offset_ptr < offset_size)
1270
0
            return FALSE;
1271
1272
0
          offset_ptr -= offset_size;
1273
1274
0
          if (offset_ptr < offset)
1275
0
            return FALSE;
1276
1277
0
          end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
1278
0
          break;
1279
1280
0
        default:
1281
0
          g_assert_not_reached ();
1282
0
        }
1283
1284
0
      if (end < offset || end > offset_ptr)
1285
0
        return FALSE;
1286
1287
0
      child.size = end - offset;
1288
1289
0
      if (child.size == 0)
1290
0
        child.data = NULL;
1291
1292
0
      if (!g_variant_serialised_is_normal (child))
1293
0
        return FALSE;
1294
1295
0
      offset = end;
1296
0
    }
1297
1298
  /* All element bounds have been checked above. */
1299
0
  value.ordered_offsets_up_to = G_MAXSIZE;
1300
0
  value.checked_offsets_up_to = G_MAXSIZE;
1301
1302
0
  {
1303
0
    gsize fixed_size;
1304
0
    guint alignment;
1305
1306
0
    g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
1307
1308
0
    if (fixed_size)
1309
0
      {
1310
0
        g_assert (fixed_size == value.size);
1311
0
        g_assert (offset_ptr == value.size);
1312
1313
0
        if (i == 0)
1314
0
          {
1315
0
            if (value.data[offset++] != '\0')
1316
0
              return FALSE;
1317
0
          }
1318
0
        else
1319
0
          {
1320
0
            while (offset & alignment)
1321
0
              if (value.data[offset++] != '\0')
1322
0
                return FALSE;
1323
0
          }
1324
1325
0
        g_assert (offset == value.size);
1326
0
      }
1327
0
  }
1328
1329
  /* @offset_ptr has been counting backwards from the end of the variant, to
1330
   * find the beginning of the offset table. @offset has been counting forwards
1331
   * from the beginning of the variant to find the end of the data. They should
1332
   * have met in the middle. */
1333
0
  if (offset_ptr != offset)
1334
0
    return FALSE;
1335
1336
0
  offset_table_size = value.size - offset_ptr;
1337
0
  if (value.size > 0 &&
1338
0
      gvs_calculate_total_size (offset, offset_table_size / offset_size) != value.size)
1339
0
    return FALSE;  /* offset size not minimal */
1340
1341
0
  return TRUE;
1342
0
}
1343
1344
/* Variants {{{2
1345
 *
1346
 * Variants are stored by storing the serialized data of the child,
1347
 * followed by a '\0' character, followed by the type string of the
1348
 * child.
1349
 *
1350
 * In the case that a value is presented that contains no '\0'
1351
 * character, or doesn't have a single well-formed definite type string
1352
 * following that character, the variant must be taken as containing the
1353
 * unit tuple: ().
1354
 */
1355
1356
static inline gsize
1357
gvs_variant_n_children (GVariantSerialised value)
1358
189k
{
1359
189k
  return 1;
1360
189k
}
1361
1362
static inline GVariantSerialised
1363
gvs_variant_get_child (GVariantSerialised value,
1364
                       gsize              index_)
1365
189k
{
1366
189k
  GVariantSerialised child = { 0, };
1367
1368
  /* NOTE: not O(1) and impossible for it to be... */
1369
189k
  if (value.size)
1370
189k
    {
1371
      /* find '\0' character */
1372
1.32M
      for (child.size = value.size - 1; child.size; child.size--)
1373
1.32M
        if (value.data[child.size] == '\0')
1374
189k
          break;
1375
1376
      /* ensure we didn't just hit the start of the string */
1377
189k
      if (value.data[child.size] == '\0')
1378
189k
        {
1379
189k
          const gchar *type_string = (gchar *) &value.data[child.size + 1];
1380
189k
          const gchar *limit = (gchar *) &value.data[value.size];
1381
189k
          const gchar *end;
1382
1383
189k
          if (g_variant_type_string_scan (type_string, limit, &end) &&
1384
189k
              end == limit)
1385
189k
            {
1386
189k
              const GVariantType *type = (GVariantType *) type_string;
1387
1388
189k
              if (g_variant_type_is_definite (type))
1389
189k
                {
1390
189k
                  gsize fixed_size;
1391
189k
                  gsize child_type_depth;
1392
1393
189k
                  child.type_info = g_variant_type_info_get (type);
1394
189k
                  child.depth = value.depth + 1;
1395
1396
189k
                  if (child.size != 0)
1397
                    /* only set to non-%NULL if size > 0 */
1398
189k
                    child.data = value.data;
1399
1400
189k
                  g_variant_type_info_query (child.type_info,
1401
189k
                                             NULL, &fixed_size);
1402
189k
                  child_type_depth = g_variant_type_info_query_depth (child.type_info);
1403
1404
189k
                  if ((!fixed_size || fixed_size == child.size) &&
1405
189k
                      value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth)
1406
189k
                    return child;
1407
1408
0
                  g_variant_type_info_unref (child.type_info);
1409
0
                }
1410
189k
            }
1411
189k
        }
1412
189k
    }
1413
1414
0
  child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
1415
0
  child.data = NULL;
1416
0
  child.size = 1;
1417
0
  child.depth = value.depth + 1;
1418
1419
0
  return child;
1420
189k
}
1421
1422
static inline gsize
1423
gvs_variant_needed_size (GVariantTypeInfo         *type_info,
1424
                         GVariantSerialisedFiller  gvs_filler,
1425
                         const gpointer           *children,
1426
                         gsize                     n_children)
1427
0
{
1428
0
  GVariantSerialised child = { 0, };
1429
0
  const gchar *type_string;
1430
1431
0
  gvs_filler (&child, children[0]);
1432
0
  type_string = g_variant_type_info_get_type_string (child.type_info);
1433
1434
0
  return child.size + 1 + strlen (type_string);
1435
0
}
1436
1437
static inline void
1438
gvs_variant_serialise (GVariantSerialised        value,
1439
                       GVariantSerialisedFiller  gvs_filler,
1440
                       const gpointer           *children,
1441
                       gsize                     n_children)
1442
0
{
1443
0
  GVariantSerialised child = { 0, };
1444
0
  const gchar *type_string;
1445
1446
0
  child.data = value.data;
1447
1448
0
  gvs_filler (&child, children[0]);
1449
0
  type_string = g_variant_type_info_get_type_string (child.type_info);
1450
0
  value.data[child.size] = '\0';
1451
0
  memcpy (value.data + child.size + 1, type_string, strlen (type_string));
1452
0
}
1453
1454
static inline gboolean
1455
gvs_variant_is_normal (GVariantSerialised value)
1456
0
{
1457
0
  GVariantSerialised child;
1458
0
  gboolean normal;
1459
0
  gsize child_type_depth;
1460
1461
0
  child = gvs_variant_get_child (value, 0);
1462
0
  child_type_depth = g_variant_type_info_query_depth (child.type_info);
1463
1464
0
  normal = (value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth) &&
1465
0
           (child.data != NULL || child.size == 0) &&
1466
0
           g_variant_serialised_is_normal (child);
1467
1468
0
  g_variant_type_info_unref (child.type_info);
1469
1470
0
  return normal;
1471
0
}
1472
1473
1474
1475
/* PART 2: Serializer API {{{1
1476
 *
1477
 * This is the implementation of the API of the serializer as advertised
1478
 * in gvariant-serialiser.h.
1479
 */
1480
1481
/* Dispatch Utilities {{{2
1482
 *
1483
 * These macros allow a given function (for example,
1484
 * g_variant_serialiser_serialise) to be dispatched to the appropriate
1485
 * type-specific function above (fixed/variable-sized maybe,
1486
 * fixed/variable-sized array, tuple or variant).
1487
 */
1488
#define DISPATCH_FIXED(type_info, before, after) \
1489
0
  {                                                     \
1490
0
    gsize fixed_size;                                   \
1491
0
                                                        \
1492
0
    g_variant_type_info_query_element (type_info, NULL, \
1493
0
                                       &fixed_size);    \
1494
0
                                                        \
1495
0
    if (fixed_size)                                     \
1496
0
      {                                                 \
1497
0
        before ## fixed_sized ## after                  \
1498
0
      }                                                 \
1499
0
    else                                                \
1500
0
      {                                                 \
1501
0
        before ## variable_sized ## after               \
1502
0
      }                                                 \
1503
0
  }
1504
1505
#define DISPATCH_CASES(type_info, before, after) \
1506
1.51M
  switch (g_variant_type_info_get_type_char (type_info))        \
1507
1.51M
    {                                                           \
1508
0
      case G_VARIANT_TYPE_INFO_CHAR_MAYBE:                      \
1509
0
        DISPATCH_FIXED (type_info, before, _maybe ## after)     \
1510
0
                                                                \
1511
0
      case G_VARIANT_TYPE_INFO_CHAR_ARRAY:                      \
1512
0
        DISPATCH_FIXED (type_info, before, _array ## after)     \
1513
0
                                                                \
1514
0
      case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY:                 \
1515
1.13M
      case G_VARIANT_TYPE_INFO_CHAR_TUPLE:                      \
1516
567k
        {                                                       \
1517
1.13M
          before ## tuple ## after                              \
1518
567k
        }                                                       \
1519
567k
                                                                \
1520
567k
      case G_VARIANT_TYPE_INFO_CHAR_VARIANT:                    \
1521
189k
        {                                                       \
1522
378k
          before ## variant ## after                            \
1523
189k
        }                                                       \
1524
1.51M
    }
1525
1526
/* Serializer entry points {{{2
1527
 *
1528
 * These are the functions that are called in order for the serializer
1529
 * to do its thing.
1530
 */
1531
1532
/* < private >
1533
 * g_variant_serialised_n_children:
1534
 * @serialised: a #GVariantSerialised
1535
 *
1536
 * For serialized data that represents a container value (maybes,
1537
 * tuples, arrays, variants), determine how many child items are inside
1538
 * that container.
1539
 *
1540
 * Returns: the number of children
1541
 */
1542
gsize
1543
g_variant_serialised_n_children (GVariantSerialised serialised)
1544
756k
{
1545
756k
  g_assert (g_variant_serialised_check (serialised));
1546
1547
756k
  DISPATCH_CASES (serialised.type_info,
1548
1549
756k
                  return gvs_/**/,/**/_n_children (serialised);
1550
1551
756k
                 )
1552
756k
  g_assert_not_reached ();
1553
0
}
1554
1555
/* < private >
1556
 * g_variant_serialised_get_child:
1557
 * @serialised: a #GVariantSerialised
1558
 * @index_: the index of the child to fetch
1559
 *
1560
 * Extracts a child from a serialized data representing a container
1561
 * value.
1562
 *
1563
 * It is an error to call this function with an index out of bounds.
1564
 *
1565
 * If the result .data == %NULL and .size > 0 then there has been an
1566
 * error extracting the requested fixed-sized value.  This number of
1567
 * zero bytes needs to be allocated instead.
1568
 *
1569
 * In the case that .data == %NULL and .size == 0 then a zero-sized
1570
 * item of a variable-sized type is being returned.
1571
 *
1572
 * .data is never non-%NULL if size is 0.
1573
 *
1574
 * Returns: a #GVariantSerialised for the child
1575
 */
1576
GVariantSerialised
1577
g_variant_serialised_get_child (GVariantSerialised serialised,
1578
                                gsize              index_)
1579
756k
{
1580
756k
  GVariantSerialised child;
1581
1582
756k
  g_assert (g_variant_serialised_check (serialised));
1583
1584
756k
  if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
1585
756k
    {
1586
756k
      DISPATCH_CASES (serialised.type_info,
1587
1588
756k
                      child = gvs_/**/,/**/_get_child (serialised, index_);
1589
756k
                      g_assert (child.size || child.data == NULL);
1590
756k
                      g_assert (g_variant_serialised_check (child));
1591
756k
                      return child;
1592
1593
756k
                     )
1594
756k
      g_assert_not_reached ();
1595
0
    }
1596
1597
756k
  g_error ("Attempt to access item %"G_GSIZE_FORMAT
1598
0
           " in a container with only %"G_GSIZE_FORMAT" items",
1599
0
           index_, g_variant_serialised_n_children (serialised));
1600
0
}
1601
1602
/* < private >
1603
 * g_variant_serialiser_serialise:
1604
 * @serialised: a #GVariantSerialised, properly set up
1605
 * @gvs_filler: the filler function
1606
 * @children: an array of child items
1607
 * @n_children: the size of @children
1608
 *
1609
 * Writes data in serialized form.
1610
 *
1611
 * The type_info field of @serialised must be filled in to type info for
1612
 * the type that we are serializing.
1613
 *
1614
 * The size field of @serialised must be filled in with the value
1615
 * returned by a previous call to g_variant_serialiser_needed_size().
1616
 *
1617
 * The data field of @serialised must be a pointer to a properly-aligned
1618
 * memory region large enough to serialize into (ie: at least as big as
1619
 * the size field).
1620
 *
1621
 * This function is only resonsible for serializing the top-level
1622
 * container.  @gvs_filler is called on each child of the container in
1623
 * order for all of the data of that child to be filled in.
1624
 */
1625
void
1626
g_variant_serialiser_serialise (GVariantSerialised        serialised,
1627
                                GVariantSerialisedFiller  gvs_filler,
1628
                                const gpointer           *children,
1629
                                gsize                     n_children)
1630
0
{
1631
0
  g_assert (g_variant_serialised_check (serialised));
1632
1633
0
  DISPATCH_CASES (serialised.type_info,
1634
1635
0
                  gvs_/**/,/**/_serialise (serialised, gvs_filler,
1636
0
                                           children, n_children);
1637
0
                  return;
1638
1639
0
                 )
1640
0
  g_assert_not_reached ();
1641
0
}
1642
1643
/* < private >
1644
 * g_variant_serialiser_needed_size:
1645
 * @type_info: the type to serialize for
1646
 * @gvs_filler: the filler function
1647
 * @children: an array of child items
1648
 * @n_children: the size of @children
1649
 *
1650
 * Determines how much memory would be needed to serialize this value.
1651
 *
1652
 * This function is only responsible for performing calculations for the
1653
 * top-level container.  @gvs_filler is called on each child of the
1654
 * container in order to determine its size.
1655
 */
1656
gsize
1657
g_variant_serialiser_needed_size (GVariantTypeInfo         *type_info,
1658
                                  GVariantSerialisedFiller  gvs_filler,
1659
                                  const gpointer           *children,
1660
                                  gsize                     n_children)
1661
0
{
1662
0
  DISPATCH_CASES (type_info,
1663
1664
0
                  return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
1665
0
                                                    children, n_children);
1666
1667
0
                 )
1668
0
  g_assert_not_reached ();
1669
0
}
1670
1671
/* Byteswapping {{{2 */
1672
1673
/* < private >
1674
 * g_variant_serialised_byteswap:
1675
 * @value: a #GVariantSerialised
1676
 *
1677
 * Byte-swap serialized data.  The result of this function is only
1678
 * well-defined if the data is in normal form.
1679
 */
1680
void
1681
g_variant_serialised_byteswap (GVariantSerialised serialised)
1682
0
{
1683
0
  gsize fixed_size;
1684
0
  guint alignment;
1685
1686
0
  g_assert (g_variant_serialised_check (serialised));
1687
1688
0
  if (!serialised.data)
1689
0
    return;
1690
1691
  /* the types we potentially need to byteswap are
1692
   * exactly those with alignment requirements.
1693
   */
1694
0
  g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
1695
0
  if (!alignment)
1696
0
    return;
1697
1698
  /* if fixed size and alignment are equal then we are down
1699
   * to the base integer type and we should swap it.  the
1700
   * only exception to this is if we have a tuple with a
1701
   * single item, and then swapping it will be OK anyway.
1702
   */
1703
0
  if (alignment + 1 == fixed_size)
1704
0
    {
1705
0
      switch (fixed_size)
1706
0
      {
1707
0
        case 2:
1708
0
          {
1709
0
            guint16 *ptr = (guint16 *) serialised.data;
1710
1711
0
            g_assert_cmpint (serialised.size, ==, 2);
1712
0
            *ptr = GUINT16_SWAP_LE_BE (*ptr);
1713
0
          }
1714
0
          return;
1715
1716
0
        case 4:
1717
0
          {
1718
0
            guint32 *ptr = (guint32 *) serialised.data;
1719
1720
0
            g_assert_cmpint (serialised.size, ==, 4);
1721
0
            *ptr = GUINT32_SWAP_LE_BE (*ptr);
1722
0
          }
1723
0
          return;
1724
1725
0
        case 8:
1726
0
          {
1727
0
            guint64 *ptr = (guint64 *) serialised.data;
1728
1729
0
            g_assert_cmpint (serialised.size, ==, 8);
1730
0
            *ptr = GUINT64_SWAP_LE_BE (*ptr);
1731
0
          }
1732
0
          return;
1733
1734
0
        default:
1735
0
          g_assert_not_reached ();
1736
0
      }
1737
0
    }
1738
1739
  /* else, we have a container that potentially contains
1740
   * some children that need to be byteswapped.
1741
   */
1742
0
  else
1743
0
    {
1744
0
      gsize children, i;
1745
1746
0
      children = g_variant_serialised_n_children (serialised);
1747
0
      for (i = 0; i < children; i++)
1748
0
        {
1749
0
          GVariantSerialised child;
1750
1751
0
          child = g_variant_serialised_get_child (serialised, i);
1752
0
          g_variant_serialised_byteswap (child);
1753
0
          g_variant_type_info_unref (child.type_info);
1754
0
        }
1755
0
    }
1756
0
}
1757
1758
/* Normal form checking {{{2 */
1759
1760
/* < private >
1761
 * g_variant_serialised_is_normal:
1762
 * @serialised: a #GVariantSerialised
1763
 *
1764
 * Determines, recursively if @serialised is in normal form.  There is
1765
 * precisely one normal form of serialized data for each possible value.
1766
 *
1767
 * It is possible that multiple byte sequences form the serialized data
1768
 * for a given value if, for example, the padding bytes are filled in
1769
 * with something other than zeros, but only one form is the normal
1770
 * form.
1771
 */
1772
gboolean
1773
g_variant_serialised_is_normal (GVariantSerialised serialised)
1774
0
{
1775
0
  if (serialised.depth >= G_VARIANT_MAX_RECURSION_DEPTH)
1776
0
    return FALSE;
1777
1778
0
  DISPATCH_CASES (serialised.type_info,
1779
1780
0
                  return gvs_/**/,/**/_is_normal (serialised);
1781
1782
0
                 )
1783
1784
0
  if (serialised.data == NULL)
1785
0
    return FALSE;
1786
1787
  /* some hard-coded terminal cases */
1788
0
  switch (g_variant_type_info_get_type_char (serialised.type_info))
1789
0
    {
1790
0
    case 'b': /* boolean */
1791
0
      return serialised.data[0] < 2;
1792
1793
0
    case 's': /* string */
1794
0
      return g_variant_serialiser_is_string (serialised.data,
1795
0
                                             serialised.size);
1796
1797
0
    case 'o':
1798
0
      return g_variant_serialiser_is_object_path (serialised.data,
1799
0
                                                  serialised.size);
1800
1801
0
    case 'g':
1802
0
      return g_variant_serialiser_is_signature (serialised.data,
1803
0
                                                serialised.size);
1804
1805
0
    default:
1806
      /* all of the other types are fixed-sized numerical types for
1807
       * which all possible values are valid (including various NaN
1808
       * representations for floating point values).
1809
       */
1810
0
      return TRUE;
1811
0
    }
1812
0
}
1813
1814
/* Validity-checking functions {{{2
1815
 *
1816
 * Checks if strings, object paths and signature strings are valid.
1817
 */
1818
1819
/* < private >
1820
 * g_variant_serialiser_is_string:
1821
 * @data: a possible string
1822
 * @size: the size of @data
1823
 *
1824
 * Ensures that @data is a valid string with a nul terminator at the end
1825
 * and no nul bytes embedded.
1826
 */
1827
gboolean
1828
g_variant_serialiser_is_string (gconstpointer data,
1829
                                gsize         size)
1830
0
{
1831
0
  const gchar *expected_end;
1832
0
  const gchar *end;
1833
1834
  /* Strings must end with a nul terminator. */
1835
0
  if (size == 0)
1836
0
    return FALSE;
1837
1838
0
  expected_end = ((gchar *) data) + size - 1;
1839
1840
0
  if (*expected_end != '\0')
1841
0
    return FALSE;
1842
1843
0
  g_utf8_validate_len (data, size, &end);
1844
1845
0
  return end == expected_end;
1846
0
}
1847
1848
/* < private >
1849
 * g_variant_serialiser_is_object_path:
1850
 * @data: a possible D-Bus object path
1851
 * @size: the size of @data
1852
 *
1853
 * Performs the checks for being a valid string.
1854
 *
1855
 * Also, ensures that @data is a valid D-Bus object path, as per the D-Bus
1856
 * specification.
1857
 */
1858
gboolean
1859
g_variant_serialiser_is_object_path (gconstpointer data,
1860
                                     gsize         size)
1861
0
{
1862
0
  const gchar *string = data;
1863
0
  gsize i;
1864
1865
0
  if (!g_variant_serialiser_is_string (data, size))
1866
0
    return FALSE;
1867
1868
  /* The path must begin with an ASCII '/' (integer 47) character */
1869
0
  if (string[0] != '/')
1870
0
    return FALSE;
1871
1872
0
  for (i = 1; string[i]; i++)
1873
    /* Each element must only contain the ASCII characters
1874
     * "[A-Z][a-z][0-9]_"
1875
     */
1876
0
    if (g_ascii_isalnum (string[i]) || string[i] == '_')
1877
0
      ;
1878
1879
    /* must consist of elements separated by slash characters. */
1880
0
    else if (string[i] == '/')
1881
0
      {
1882
        /* No element may be the empty string. */
1883
        /* Multiple '/' characters cannot occur in sequence. */
1884
0
        if (string[i - 1] == '/')
1885
0
          return FALSE;
1886
0
      }
1887
1888
0
    else
1889
0
      return FALSE;
1890
1891
  /* A trailing '/' character is not allowed unless the path is the
1892
   * root path (a single '/' character).
1893
   */
1894
0
  if (i > 1 && string[i - 1] == '/')
1895
0
    return FALSE;
1896
1897
0
  return TRUE;
1898
0
}
1899
1900
/* < private >
1901
 * g_variant_serialiser_is_signature:
1902
 * @data: a possible D-Bus signature
1903
 * @size: the size of @data
1904
 *
1905
 * Performs the checks for being a valid string.
1906
 *
1907
 * Also, ensures that @data is a valid D-Bus type signature, as per the
1908
 * D-Bus specification. Note that this means the empty string is valid, as the
1909
 * D-Bus specification defines a signature as “zero or more single complete
1910
 * types”.
1911
 */
1912
gboolean
1913
g_variant_serialiser_is_signature (gconstpointer data,
1914
                                   gsize         size)
1915
0
{
1916
0
  const gchar *string = data;
1917
0
  gsize first_invalid;
1918
1919
0
  if (!g_variant_serialiser_is_string (data, size))
1920
0
    return FALSE;
1921
1922
  /* make sure no non-definite characters appear */
1923
0
  first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
1924
0
  if (string[first_invalid])
1925
0
    return FALSE;
1926
1927
  /* make sure each type string is well-formed */
1928
0
  while (*string)
1929
0
    if (!g_variant_type_string_scan (string, NULL, &string))
1930
0
      return FALSE;
1931
1932
0
  return TRUE;
1933
0
}
1934
1935
/* Epilogue {{{1 */
1936
/* vim:set foldmethod=marker: */