/src/openssl/crypto/asn1/a_time.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /*- |
11 | | * This is an implementation of the ASN1 Time structure which is: |
12 | | * Time ::= CHOICE { |
13 | | * utcTime UTCTime, |
14 | | * generalTime GeneralizedTime } |
15 | | */ |
16 | | |
17 | | #include <stdio.h> |
18 | | #include <time.h> |
19 | | #include "internal/ctype.h" |
20 | | #include "internal/cryptlib.h" |
21 | | #include <openssl/asn1t.h> |
22 | | #include "asn1_locl.h" |
23 | | |
24 | | IMPLEMENT_ASN1_MSTRING(ASN1_TIME, B_ASN1_TIME) |
25 | | |
26 | | IMPLEMENT_ASN1_FUNCTIONS(ASN1_TIME) |
27 | | |
28 | | static int is_utc(const int year) |
29 | 0 | { |
30 | 0 | if (50 <= year && year <= 149) |
31 | 0 | return 1; |
32 | 0 | return 0; |
33 | 0 | } |
34 | | |
35 | | static int leap_year(const int year) |
36 | 0 | { |
37 | 0 | if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) |
38 | 0 | return 1; |
39 | 0 | return 0; |
40 | 0 | } |
41 | | |
42 | | /* |
43 | | * Compute the day of the week and the day of the year from the year, month |
44 | | * and day. The day of the year is straightforward, the day of the week uses |
45 | | * a form of Zeller's congruence. For this months start with March and are |
46 | | * numbered 4 through 15. |
47 | | */ |
48 | | static void determine_days(struct tm *tm) |
49 | 0 | { |
50 | 0 | static const int ydays[12] = { |
51 | 0 | 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 |
52 | 0 | }; |
53 | 0 | int y = tm->tm_year + 1900; |
54 | 0 | int m = tm->tm_mon; |
55 | 0 | int d = tm->tm_mday; |
56 | 0 | int c; |
57 | 0 |
|
58 | 0 | tm->tm_yday = ydays[m] + d - 1; |
59 | 0 | if (m >= 2) { |
60 | 0 | /* March and onwards can be one day further into the year */ |
61 | 0 | tm->tm_yday += leap_year(y); |
62 | 0 | m += 2; |
63 | 0 | } else { |
64 | 0 | /* Treat January and February as part of the previous year */ |
65 | 0 | m += 14; |
66 | 0 | y--; |
67 | 0 | } |
68 | 0 | c = y / 100; |
69 | 0 | y %= 100; |
70 | 0 | /* Zeller's congruance */ |
71 | 0 | tm->tm_wday = (d + (13 * m) / 5 + y + y / 4 + c / 4 + 5 * c + 6) % 7; |
72 | 0 | } |
73 | | |
74 | | int asn1_time_to_tm(struct tm *tm, const ASN1_TIME *d) |
75 | 0 | { |
76 | 0 | static const int min[9] = { 0, 0, 1, 1, 0, 0, 0, 0, 0 }; |
77 | 0 | static const int max[9] = { 99, 99, 12, 31, 23, 59, 59, 12, 59 }; |
78 | 0 | static const int mdays[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; |
79 | 0 | char *a; |
80 | 0 | int n, i, i2, l, o, min_l = 11, strict = 0, end = 6, btz = 5, md; |
81 | 0 | struct tm tmp; |
82 | 0 |
|
83 | 0 | /* |
84 | 0 | * ASN1_STRING_FLAG_X509_TIME is used to enforce RFC 5280 |
85 | 0 | * time string format, in which: |
86 | 0 | * |
87 | 0 | * 1. "seconds" is a 'MUST' |
88 | 0 | * 2. "Zulu" timezone is a 'MUST' |
89 | 0 | * 3. "+|-" is not allowed to indicate a time zone |
90 | 0 | */ |
91 | 0 | if (d->type == V_ASN1_UTCTIME) { |
92 | 0 | if (d->flags & ASN1_STRING_FLAG_X509_TIME) { |
93 | 0 | min_l = 13; |
94 | 0 | strict = 1; |
95 | 0 | } |
96 | 0 | } else if (d->type == V_ASN1_GENERALIZEDTIME) { |
97 | 0 | end = 7; |
98 | 0 | btz = 6; |
99 | 0 | if (d->flags & ASN1_STRING_FLAG_X509_TIME) { |
100 | 0 | min_l = 15; |
101 | 0 | strict = 1; |
102 | 0 | } else { |
103 | 0 | min_l = 13; |
104 | 0 | } |
105 | 0 | } else { |
106 | 0 | return 0; |
107 | 0 | } |
108 | 0 | |
109 | 0 | l = d->length; |
110 | 0 | a = (char *)d->data; |
111 | 0 | o = 0; |
112 | 0 | memset(&tmp, 0, sizeof(tmp)); |
113 | 0 |
|
114 | 0 | /* |
115 | 0 | * GENERALIZEDTIME is similar to UTCTIME except the year is represented |
116 | 0 | * as YYYY. This stuff treats everything as a two digit field so make |
117 | 0 | * first two fields 00 to 99 |
118 | 0 | */ |
119 | 0 |
|
120 | 0 | if (l < min_l) |
121 | 0 | goto err; |
122 | 0 | for (i = 0; i < end; i++) { |
123 | 0 | if (!strict && (i == btz) && ((a[o] == 'Z') || (a[o] == '+') || (a[o] == '-'))) { |
124 | 0 | i++; |
125 | 0 | break; |
126 | 0 | } |
127 | 0 | if (!ossl_isdigit(a[o])) |
128 | 0 | goto err; |
129 | 0 | n = a[o] - '0'; |
130 | 0 | /* incomplete 2-digital number */ |
131 | 0 | if (++o == l) |
132 | 0 | goto err; |
133 | 0 | |
134 | 0 | if (!ossl_isdigit(a[o])) |
135 | 0 | goto err; |
136 | 0 | n = (n * 10) + a[o] - '0'; |
137 | 0 | /* no more bytes to read, but we haven't seen time-zone yet */ |
138 | 0 | if (++o == l) |
139 | 0 | goto err; |
140 | 0 | |
141 | 0 | i2 = (d->type == V_ASN1_UTCTIME) ? i + 1 : i; |
142 | 0 |
|
143 | 0 | if ((n < min[i2]) || (n > max[i2])) |
144 | 0 | goto err; |
145 | 0 | switch (i2) { |
146 | 0 | case 0: |
147 | 0 | /* UTC will never be here */ |
148 | 0 | tmp.tm_year = n * 100 - 1900; |
149 | 0 | break; |
150 | 0 | case 1: |
151 | 0 | if (d->type == V_ASN1_UTCTIME) |
152 | 0 | tmp.tm_year = n < 50 ? n + 100 : n; |
153 | 0 | else |
154 | 0 | tmp.tm_year += n; |
155 | 0 | break; |
156 | 0 | case 2: |
157 | 0 | tmp.tm_mon = n - 1; |
158 | 0 | break; |
159 | 0 | case 3: |
160 | 0 | /* check if tm_mday is valid in tm_mon */ |
161 | 0 | if (tmp.tm_mon == 1) { |
162 | 0 | /* it's February */ |
163 | 0 | md = mdays[1] + leap_year(tmp.tm_year + 1900); |
164 | 0 | } else { |
165 | 0 | md = mdays[tmp.tm_mon]; |
166 | 0 | } |
167 | 0 | if (n > md) |
168 | 0 | goto err; |
169 | 0 | tmp.tm_mday = n; |
170 | 0 | determine_days(&tmp); |
171 | 0 | break; |
172 | 0 | case 4: |
173 | 0 | tmp.tm_hour = n; |
174 | 0 | break; |
175 | 0 | case 5: |
176 | 0 | tmp.tm_min = n; |
177 | 0 | break; |
178 | 0 | case 6: |
179 | 0 | tmp.tm_sec = n; |
180 | 0 | break; |
181 | 0 | } |
182 | 0 | } |
183 | 0 |
|
184 | 0 | /* |
185 | 0 | * Optional fractional seconds: decimal point followed by one or more |
186 | 0 | * digits. |
187 | 0 | */ |
188 | 0 | if (d->type == V_ASN1_GENERALIZEDTIME && a[o] == '.') { |
189 | 0 | if (strict) |
190 | 0 | /* RFC 5280 forbids fractional seconds */ |
191 | 0 | goto err; |
192 | 0 | if (++o == l) |
193 | 0 | goto err; |
194 | 0 | i = o; |
195 | 0 | while ((o < l) && ossl_isdigit(a[o])) |
196 | 0 | o++; |
197 | 0 | /* Must have at least one digit after decimal point */ |
198 | 0 | if (i == o) |
199 | 0 | goto err; |
200 | 0 | /* no more bytes to read, but we haven't seen time-zone yet */ |
201 | 0 | if (o == l) |
202 | 0 | goto err; |
203 | 0 | } |
204 | 0 | |
205 | 0 | /* |
206 | 0 | * 'o' will never point to '\0' at this point, the only chance |
207 | 0 | * 'o' can point to '\0' is either the subsequent if or the first |
208 | 0 | * else if is true. |
209 | 0 | */ |
210 | 0 | if (a[o] == 'Z') { |
211 | 0 | o++; |
212 | 0 | } else if (!strict && ((a[o] == '+') || (a[o] == '-'))) { |
213 | 0 | int offsign = a[o] == '-' ? 1 : -1; |
214 | 0 | int offset = 0; |
215 | 0 |
|
216 | 0 | o++; |
217 | 0 | /* |
218 | 0 | * if not equal, no need to do subsequent checks |
219 | 0 | * since the following for-loop will add 'o' by 4 |
220 | 0 | * and the final return statement will check if 'l' |
221 | 0 | * and 'o' are equal. |
222 | 0 | */ |
223 | 0 | if (o + 4 != l) |
224 | 0 | goto err; |
225 | 0 | for (i = end; i < end + 2; i++) { |
226 | 0 | if (!ossl_isdigit(a[o])) |
227 | 0 | goto err; |
228 | 0 | n = a[o] - '0'; |
229 | 0 | o++; |
230 | 0 | if (!ossl_isdigit(a[o])) |
231 | 0 | goto err; |
232 | 0 | n = (n * 10) + a[o] - '0'; |
233 | 0 | i2 = (d->type == V_ASN1_UTCTIME) ? i + 1 : i; |
234 | 0 | if ((n < min[i2]) || (n > max[i2])) |
235 | 0 | goto err; |
236 | 0 | /* if tm is NULL, no need to adjust */ |
237 | 0 | if (tm != NULL) { |
238 | 0 | if (i == end) |
239 | 0 | offset = n * 3600; |
240 | 0 | else if (i == end + 1) |
241 | 0 | offset += n * 60; |
242 | 0 | } |
243 | 0 | o++; |
244 | 0 | } |
245 | 0 | if (offset && !OPENSSL_gmtime_adj(&tmp, 0, offset * offsign)) |
246 | 0 | goto err; |
247 | 0 | } else { |
248 | 0 | /* not Z, or not +/- in non-strict mode */ |
249 | 0 | goto err; |
250 | 0 | } |
251 | 0 | if (o == l) { |
252 | 0 | /* success, check if tm should be filled */ |
253 | 0 | if (tm != NULL) |
254 | 0 | *tm = tmp; |
255 | 0 | return 1; |
256 | 0 | } |
257 | 0 | err: |
258 | 0 | return 0; |
259 | 0 | } |
260 | | |
261 | | ASN1_TIME *asn1_time_from_tm(ASN1_TIME *s, struct tm *ts, int type) |
262 | 0 | { |
263 | 0 | char* p; |
264 | 0 | ASN1_TIME *tmps = NULL; |
265 | 0 | const size_t len = 20; |
266 | 0 |
|
267 | 0 | if (type == V_ASN1_UNDEF) { |
268 | 0 | if (is_utc(ts->tm_year)) |
269 | 0 | type = V_ASN1_UTCTIME; |
270 | 0 | else |
271 | 0 | type = V_ASN1_GENERALIZEDTIME; |
272 | 0 | } else if (type == V_ASN1_UTCTIME) { |
273 | 0 | if (!is_utc(ts->tm_year)) |
274 | 0 | goto err; |
275 | 0 | } else if (type != V_ASN1_GENERALIZEDTIME) { |
276 | 0 | goto err; |
277 | 0 | } |
278 | 0 | |
279 | 0 | if (s == NULL) |
280 | 0 | tmps = ASN1_STRING_new(); |
281 | 0 | else |
282 | 0 | tmps = s; |
283 | 0 | if (tmps == NULL) |
284 | 0 | return NULL; |
285 | 0 | |
286 | 0 | if (!ASN1_STRING_set(tmps, NULL, len)) |
287 | 0 | goto err; |
288 | 0 | |
289 | 0 | tmps->type = type; |
290 | 0 | p = (char*)tmps->data; |
291 | 0 |
|
292 | 0 | if (type == V_ASN1_GENERALIZEDTIME) |
293 | 0 | tmps->length = BIO_snprintf(p, len, "%04d%02d%02d%02d%02d%02dZ", |
294 | 0 | ts->tm_year + 1900, ts->tm_mon + 1, |
295 | 0 | ts->tm_mday, ts->tm_hour, ts->tm_min, |
296 | 0 | ts->tm_sec); |
297 | 0 | else |
298 | 0 | tmps->length = BIO_snprintf(p, len, "%02d%02d%02d%02d%02d%02dZ", |
299 | 0 | ts->tm_year % 100, ts->tm_mon + 1, |
300 | 0 | ts->tm_mday, ts->tm_hour, ts->tm_min, |
301 | 0 | ts->tm_sec); |
302 | 0 |
|
303 | | #ifdef CHARSET_EBCDIC_not |
304 | | ebcdic2ascii(tmps->data, tmps->data, tmps->length); |
305 | | #endif |
306 | | return tmps; |
307 | 0 | err: |
308 | 0 | if (tmps != s) |
309 | 0 | ASN1_STRING_free(tmps); |
310 | 0 | return NULL; |
311 | 0 | } |
312 | | |
313 | | ASN1_TIME *ASN1_TIME_set(ASN1_TIME *s, time_t t) |
314 | 0 | { |
315 | 0 | return ASN1_TIME_adj(s, t, 0, 0); |
316 | 0 | } |
317 | | |
318 | | ASN1_TIME *ASN1_TIME_adj(ASN1_TIME *s, time_t t, |
319 | | int offset_day, long offset_sec) |
320 | 0 | { |
321 | 0 | struct tm *ts; |
322 | 0 | struct tm data; |
323 | 0 |
|
324 | 0 | ts = OPENSSL_gmtime(&t, &data); |
325 | 0 | if (ts == NULL) { |
326 | 0 | ASN1err(ASN1_F_ASN1_TIME_ADJ, ASN1_R_ERROR_GETTING_TIME); |
327 | 0 | return NULL; |
328 | 0 | } |
329 | 0 | if (offset_day || offset_sec) { |
330 | 0 | if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec)) |
331 | 0 | return NULL; |
332 | 0 | } |
333 | 0 | return asn1_time_from_tm(s, ts, V_ASN1_UNDEF); |
334 | 0 | } |
335 | | |
336 | | int ASN1_TIME_check(const ASN1_TIME *t) |
337 | 0 | { |
338 | 0 | if (t->type == V_ASN1_GENERALIZEDTIME) |
339 | 0 | return ASN1_GENERALIZEDTIME_check(t); |
340 | 0 | else if (t->type == V_ASN1_UTCTIME) |
341 | 0 | return ASN1_UTCTIME_check(t); |
342 | 0 | return 0; |
343 | 0 | } |
344 | | |
345 | | /* Convert an ASN1_TIME structure to GeneralizedTime */ |
346 | | ASN1_GENERALIZEDTIME *ASN1_TIME_to_generalizedtime(const ASN1_TIME *t, |
347 | | ASN1_GENERALIZEDTIME **out) |
348 | 0 | { |
349 | 0 | ASN1_GENERALIZEDTIME *ret = NULL; |
350 | 0 | struct tm tm; |
351 | 0 |
|
352 | 0 | if (!ASN1_TIME_to_tm(t, &tm)) |
353 | 0 | return NULL; |
354 | 0 | |
355 | 0 | if (out != NULL) |
356 | 0 | ret = *out; |
357 | 0 |
|
358 | 0 | ret = asn1_time_from_tm(ret, &tm, V_ASN1_GENERALIZEDTIME); |
359 | 0 |
|
360 | 0 | if (out != NULL && ret != NULL) |
361 | 0 | *out = ret; |
362 | 0 |
|
363 | 0 | return ret; |
364 | 0 | } |
365 | | |
366 | | int ASN1_TIME_set_string(ASN1_TIME *s, const char *str) |
367 | 0 | { |
368 | 0 | /* Try UTC, if that fails, try GENERALIZED */ |
369 | 0 | if (ASN1_UTCTIME_set_string(s, str)) |
370 | 0 | return 1; |
371 | 0 | return ASN1_GENERALIZEDTIME_set_string(s, str); |
372 | 0 | } |
373 | | |
374 | | int ASN1_TIME_set_string_X509(ASN1_TIME *s, const char *str) |
375 | 0 | { |
376 | 0 | ASN1_TIME t; |
377 | 0 | struct tm tm; |
378 | 0 | int rv = 0; |
379 | 0 |
|
380 | 0 | t.length = strlen(str); |
381 | 0 | t.data = (unsigned char *)str; |
382 | 0 | t.flags = ASN1_STRING_FLAG_X509_TIME; |
383 | 0 |
|
384 | 0 | t.type = V_ASN1_UTCTIME; |
385 | 0 |
|
386 | 0 | if (!ASN1_TIME_check(&t)) { |
387 | 0 | t.type = V_ASN1_GENERALIZEDTIME; |
388 | 0 | if (!ASN1_TIME_check(&t)) |
389 | 0 | goto out; |
390 | 0 | } |
391 | 0 | |
392 | 0 | /* |
393 | 0 | * Per RFC 5280 (section 4.1.2.5.), the valid input time |
394 | 0 | * strings should be encoded with the following rules: |
395 | 0 | * |
396 | 0 | * 1. UTC: YYMMDDHHMMSSZ, if YY < 50 (20YY) --> UTC: YYMMDDHHMMSSZ |
397 | 0 | * 2. UTC: YYMMDDHHMMSSZ, if YY >= 50 (19YY) --> UTC: YYMMDDHHMMSSZ |
398 | 0 | * 3. G'd: YYYYMMDDHHMMSSZ, if YYYY >= 2050 --> G'd: YYYYMMDDHHMMSSZ |
399 | 0 | * 4. G'd: YYYYMMDDHHMMSSZ, if YYYY < 2050 --> UTC: YYMMDDHHMMSSZ |
400 | 0 | * |
401 | 0 | * Only strings of the 4th rule should be reformatted, but since a |
402 | 0 | * UTC can only present [1950, 2050), so if the given time string |
403 | 0 | * is less than 1950 (e.g. 19230419000000Z), we do nothing... |
404 | 0 | */ |
405 | 0 | |
406 | 0 | if (s != NULL && t.type == V_ASN1_GENERALIZEDTIME) { |
407 | 0 | if (!asn1_time_to_tm(&tm, &t)) |
408 | 0 | goto out; |
409 | 0 | if (is_utc(tm.tm_year)) { |
410 | 0 | t.length -= 2; |
411 | 0 | /* |
412 | 0 | * it's OK to let original t.data go since that's assigned |
413 | 0 | * to a piece of memory allocated outside of this function. |
414 | 0 | * new t.data would be freed after ASN1_STRING_copy is done. |
415 | 0 | */ |
416 | 0 | t.data = OPENSSL_zalloc(t.length + 1); |
417 | 0 | if (t.data == NULL) |
418 | 0 | goto out; |
419 | 0 | memcpy(t.data, str + 2, t.length); |
420 | 0 | t.type = V_ASN1_UTCTIME; |
421 | 0 | } |
422 | 0 | } |
423 | 0 |
|
424 | 0 | if (s == NULL || ASN1_STRING_copy((ASN1_STRING *)s, (ASN1_STRING *)&t)) |
425 | 0 | rv = 1; |
426 | 0 |
|
427 | 0 | if (t.data != (unsigned char *)str) |
428 | 0 | OPENSSL_free(t.data); |
429 | 0 | out: |
430 | 0 | return rv; |
431 | 0 | } |
432 | | |
433 | | int ASN1_TIME_to_tm(const ASN1_TIME *s, struct tm *tm) |
434 | 0 | { |
435 | 0 | if (s == NULL) { |
436 | 0 | time_t now_t; |
437 | 0 |
|
438 | 0 | time(&now_t); |
439 | 0 | memset(tm, 0, sizeof(*tm)); |
440 | 0 | if (OPENSSL_gmtime(&now_t, tm) != NULL) |
441 | 0 | return 1; |
442 | 0 | return 0; |
443 | 0 | } |
444 | 0 | |
445 | 0 | return asn1_time_to_tm(tm, s); |
446 | 0 | } |
447 | | |
448 | | int ASN1_TIME_diff(int *pday, int *psec, |
449 | | const ASN1_TIME *from, const ASN1_TIME *to) |
450 | 0 | { |
451 | 0 | struct tm tm_from, tm_to; |
452 | 0 |
|
453 | 0 | if (!ASN1_TIME_to_tm(from, &tm_from)) |
454 | 0 | return 0; |
455 | 0 | if (!ASN1_TIME_to_tm(to, &tm_to)) |
456 | 0 | return 0; |
457 | 0 | return OPENSSL_gmtime_diff(pday, psec, &tm_from, &tm_to); |
458 | 0 | } |
459 | | |
460 | | static const char _asn1_mon[12][4] = { |
461 | | "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
462 | | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
463 | | }; |
464 | | |
465 | | int ASN1_TIME_print(BIO *bp, const ASN1_TIME *tm) |
466 | 0 | { |
467 | 0 | char *v; |
468 | 0 | int gmt = 0, l; |
469 | 0 | struct tm stm; |
470 | 0 |
|
471 | 0 | if (!asn1_time_to_tm(&stm, tm)) { |
472 | 0 | /* asn1_time_to_tm will check the time type */ |
473 | 0 | goto err; |
474 | 0 | } |
475 | 0 | |
476 | 0 | l = tm->length; |
477 | 0 | v = (char *)tm->data; |
478 | 0 | if (v[l - 1] == 'Z') |
479 | 0 | gmt = 1; |
480 | 0 |
|
481 | 0 | if (tm->type == V_ASN1_GENERALIZEDTIME) { |
482 | 0 | char *f = NULL; |
483 | 0 | int f_len = 0; |
484 | 0 |
|
485 | 0 | /* |
486 | 0 | * Try to parse fractional seconds. '14' is the place of |
487 | 0 | * 'fraction point' in a GeneralizedTime string. |
488 | 0 | */ |
489 | 0 | if (tm->length > 15 && v[14] == '.') { |
490 | 0 | f = &v[14]; |
491 | 0 | f_len = 1; |
492 | 0 | while (14 + f_len < l && ossl_isdigit(f[f_len])) |
493 | 0 | ++f_len; |
494 | 0 | } |
495 | 0 |
|
496 | 0 | return BIO_printf(bp, "%s %2d %02d:%02d:%02d%.*s %d%s", |
497 | 0 | _asn1_mon[stm.tm_mon], stm.tm_mday, stm.tm_hour, |
498 | 0 | stm.tm_min, stm.tm_sec, f_len, f, stm.tm_year + 1900, |
499 | 0 | (gmt ? " GMT" : "")) > 0; |
500 | 0 | } else { |
501 | 0 | return BIO_printf(bp, "%s %2d %02d:%02d:%02d %d%s", |
502 | 0 | _asn1_mon[stm.tm_mon], stm.tm_mday, stm.tm_hour, |
503 | 0 | stm.tm_min, stm.tm_sec, stm.tm_year + 1900, |
504 | 0 | (gmt ? " GMT" : "")) > 0; |
505 | 0 | } |
506 | 0 | err: |
507 | 0 | BIO_write(bp, "Bad time value", 14); |
508 | 0 | return 0; |
509 | 0 | } |
510 | | |
511 | | int ASN1_TIME_cmp_time_t(const ASN1_TIME *s, time_t t) |
512 | 0 | { |
513 | 0 | struct tm stm, ttm; |
514 | 0 | int day, sec; |
515 | 0 |
|
516 | 0 | if (!ASN1_TIME_to_tm(s, &stm)) |
517 | 0 | return -2; |
518 | 0 | |
519 | 0 | if (!OPENSSL_gmtime(&t, &ttm)) |
520 | 0 | return -2; |
521 | 0 | |
522 | 0 | if (!OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) |
523 | 0 | return -2; |
524 | 0 | |
525 | 0 | if (day > 0 || sec > 0) |
526 | 0 | return 1; |
527 | 0 | if (day < 0 || sec < 0) |
528 | 0 | return -1; |
529 | 0 | return 0; |
530 | 0 | } |
531 | | |
532 | | int ASN1_TIME_normalize(ASN1_TIME *t) |
533 | 0 | { |
534 | 0 | struct tm tm; |
535 | 0 |
|
536 | 0 | if (!ASN1_TIME_to_tm(t, &tm)) |
537 | 0 | return 0; |
538 | 0 | |
539 | 0 | return asn1_time_from_tm(t, &tm, V_ASN1_UNDEF) != NULL; |
540 | 0 | } |
541 | | |
542 | | int ASN1_TIME_compare(const ASN1_TIME *a, const ASN1_TIME *b) |
543 | 0 | { |
544 | 0 | int day, sec; |
545 | 0 |
|
546 | 0 | if (!ASN1_TIME_diff(&day, &sec, b, a)) |
547 | 0 | return -2; |
548 | 0 | if (day > 0 || sec > 0) |
549 | 0 | return 1; |
550 | 0 | if (day < 0 || sec < 0) |
551 | 0 | return -1; |
552 | 0 | return 0; |
553 | 0 | } |