Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/blake2/blake2b.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Derived from the BLAKE2 reference implementation written by Samuel Neves.
12
 * Copyright 2012, Samuel Neves <sneves@dei.uc.pt>
13
 * More information about the BLAKE2 hash function and its implementations
14
 * can be found at https://blake2.net.
15
 */
16
17
#include <assert.h>
18
#include <string.h>
19
#include <openssl/crypto.h>
20
21
#include "blake2_locl.h"
22
#include "blake2_impl.h"
23
24
static const uint64_t blake2b_IV[8] =
25
{
26
    0x6a09e667f3bcc908U, 0xbb67ae8584caa73bU,
27
    0x3c6ef372fe94f82bU, 0xa54ff53a5f1d36f1U,
28
    0x510e527fade682d1U, 0x9b05688c2b3e6c1fU,
29
    0x1f83d9abfb41bd6bU, 0x5be0cd19137e2179U
30
};
31
32
static const uint8_t blake2b_sigma[12][16] =
33
{
34
    {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,
35
    { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 } ,
36
    { 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 } ,
37
    {  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 } ,
38
    {  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 } ,
39
    {  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 } ,
40
    { 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 } ,
41
    { 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 } ,
42
    {  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 } ,
43
    { 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13 , 0 } ,
44
    {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,
45
    { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 }
46
};
47
48
/* Set that it's the last block we'll compress */
49
static ossl_inline void blake2b_set_lastblock(BLAKE2B_CTX *S)
50
0
{
51
0
    S->f[0] = -1;
52
0
}
53
54
/* Initialize the hashing state. */
55
static ossl_inline void blake2b_init0(BLAKE2B_CTX *S)
56
0
{
57
0
    int i;
58
0
59
0
    memset(S, 0, sizeof(BLAKE2B_CTX));
60
0
    for (i = 0; i < 8; ++i) {
61
0
        S->h[i] = blake2b_IV[i];
62
0
    }
63
0
}
64
65
/* init xors IV with input parameter block */
66
static void blake2b_init_param(BLAKE2B_CTX *S, const BLAKE2B_PARAM *P)
67
0
{
68
0
    size_t i;
69
0
    const uint8_t *p = (const uint8_t *)(P);
70
0
    blake2b_init0(S);
71
0
72
0
    /* The param struct is carefully hand packed, and should be 64 bytes on
73
0
     * every platform. */
74
0
    assert(sizeof(BLAKE2B_PARAM) == 64);
75
0
    /* IV XOR ParamBlock */
76
0
    for (i = 0; i < 8; ++i) {
77
0
        S->h[i] ^= load64(p + sizeof(S->h[i]) * i);
78
0
    }
79
0
}
80
81
/* Initialize the hashing context.  Always returns 1. */
82
int BLAKE2b_Init(BLAKE2B_CTX *c)
83
0
{
84
0
    BLAKE2B_PARAM P[1];
85
0
    P->digest_length = BLAKE2B_DIGEST_LENGTH;
86
0
    P->key_length    = 0;
87
0
    P->fanout        = 1;
88
0
    P->depth         = 1;
89
0
    store32(P->leaf_length, 0);
90
0
    store64(P->node_offset, 0);
91
0
    P->node_depth    = 0;
92
0
    P->inner_length  = 0;
93
0
    memset(P->reserved, 0, sizeof(P->reserved));
94
0
    memset(P->salt,     0, sizeof(P->salt));
95
0
    memset(P->personal, 0, sizeof(P->personal));
96
0
    blake2b_init_param(c, P);
97
0
    return 1;
98
0
}
99
100
/* Permute the state while xoring in the block of data. */
101
static void blake2b_compress(BLAKE2B_CTX *S,
102
                            const uint8_t *blocks,
103
                            size_t len)
104
0
{
105
0
    uint64_t m[16];
106
0
    uint64_t v[16];
107
0
    int i;
108
0
    size_t increment;
109
0
110
0
    /*
111
0
     * There are two distinct usage vectors for this function:
112
0
     *
113
0
     * a) BLAKE2b_Update uses it to process complete blocks,
114
0
     *    possibly more than one at a time;
115
0
     *
116
0
     * b) BLAK2b_Final uses it to process last block, always
117
0
     *    single but possibly incomplete, in which case caller
118
0
     *    pads input with zeros.
119
0
     */
120
0
    assert(len < BLAKE2B_BLOCKBYTES || len % BLAKE2B_BLOCKBYTES == 0);
121
0
122
0
    /*
123
0
     * Since last block is always processed with separate call,
124
0
     * |len| not being multiple of complete blocks can be observed
125
0
     * only with |len| being less than BLAKE2B_BLOCKBYTES ("less"
126
0
     * including even zero), which is why following assignment doesn't
127
0
     * have to reside inside the main loop below.
128
0
     */
129
0
    increment = len < BLAKE2B_BLOCKBYTES ? len : BLAKE2B_BLOCKBYTES;
130
0
131
0
    for (i = 0; i < 8; ++i) {
132
0
        v[i] = S->h[i];
133
0
    }
134
0
135
0
    do {
136
0
        for (i = 0; i < 16; ++i) {
137
0
            m[i] = load64(blocks + i * sizeof(m[i]));
138
0
        }
139
0
140
0
        /* blake2b_increment_counter */
141
0
        S->t[0] += increment;
142
0
        S->t[1] += (S->t[0] < increment);
143
0
144
0
        v[8]  = blake2b_IV[0];
145
0
        v[9]  = blake2b_IV[1];
146
0
        v[10] = blake2b_IV[2];
147
0
        v[11] = blake2b_IV[3];
148
0
        v[12] = S->t[0] ^ blake2b_IV[4];
149
0
        v[13] = S->t[1] ^ blake2b_IV[5];
150
0
        v[14] = S->f[0] ^ blake2b_IV[6];
151
0
        v[15] = S->f[1] ^ blake2b_IV[7];
152
0
#define G(r,i,a,b,c,d) \
153
0
        do { \
154
0
            a = a + b + m[blake2b_sigma[r][2*i+0]]; \
155
0
            d = rotr64(d ^ a, 32); \
156
0
            c = c + d; \
157
0
            b = rotr64(b ^ c, 24); \
158
0
            a = a + b + m[blake2b_sigma[r][2*i+1]]; \
159
0
            d = rotr64(d ^ a, 16); \
160
0
            c = c + d; \
161
0
            b = rotr64(b ^ c, 63); \
162
0
        } while (0)
163
0
#define ROUND(r)  \
164
0
        do { \
165
0
            G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
166
0
            G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
167
0
            G(r,2,v[ 2],v[ 6],v[10],v[14]); \
168
0
            G(r,3,v[ 3],v[ 7],v[11],v[15]); \
169
0
            G(r,4,v[ 0],v[ 5],v[10],v[15]); \
170
0
            G(r,5,v[ 1],v[ 6],v[11],v[12]); \
171
0
            G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
172
0
            G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
173
0
        } while (0)
174
#if defined(OPENSSL_SMALL_FOOTPRINT)
175
        /* 3x size reduction on x86_64, almost 7x on ARMv8, 9x on ARMv4 */
176
        for (i = 0; i < 12; i++) {
177
            ROUND(i);
178
        }
179
#else
180
0
        ROUND(0);
181
0
        ROUND(1);
182
0
        ROUND(2);
183
0
        ROUND(3);
184
0
        ROUND(4);
185
0
        ROUND(5);
186
0
        ROUND(6);
187
0
        ROUND(7);
188
0
        ROUND(8);
189
0
        ROUND(9);
190
0
        ROUND(10);
191
0
        ROUND(11);
192
0
#endif
193
0
194
0
        for (i = 0; i < 8; ++i) {
195
0
            S->h[i] = v[i] ^= v[i + 8] ^ S->h[i];
196
0
        }
197
0
#undef G
198
0
#undef ROUND
199
0
        blocks += increment;
200
0
        len -= increment;
201
0
    } while (len);
202
0
}
203
204
/* Absorb the input data into the hash state.  Always returns 1. */
205
int BLAKE2b_Update(BLAKE2B_CTX *c, const void *data, size_t datalen)
206
0
{
207
0
    const uint8_t *in = data;
208
0
    size_t fill;
209
0
210
0
    /*
211
0
     * Intuitively one would expect intermediate buffer, c->buf, to
212
0
     * store incomplete blocks. But in this case we are interested to
213
0
     * temporarily stash even complete blocks, because last one in the
214
0
     * stream has to be treated in special way, and at this point we
215
0
     * don't know if last block in *this* call is last one "ever". This
216
0
     * is the reason for why |datalen| is compared as >, and not >=.
217
0
     */
218
0
    fill = sizeof(c->buf) - c->buflen;
219
0
    if (datalen > fill) {
220
0
        if (c->buflen) {
221
0
            memcpy(c->buf + c->buflen, in, fill); /* Fill buffer */
222
0
            blake2b_compress(c, c->buf, BLAKE2B_BLOCKBYTES);
223
0
            c->buflen = 0;
224
0
            in += fill;
225
0
            datalen -= fill;
226
0
        }
227
0
        if (datalen > BLAKE2B_BLOCKBYTES) {
228
0
            size_t stashlen = datalen % BLAKE2B_BLOCKBYTES;
229
0
            /*
230
0
             * If |datalen| is a multiple of the blocksize, stash
231
0
             * last complete block, it can be final one...
232
0
             */
233
0
            stashlen = stashlen ? stashlen : BLAKE2B_BLOCKBYTES;
234
0
            datalen -= stashlen;
235
0
            blake2b_compress(c, in, datalen);
236
0
            in += datalen;
237
0
            datalen = stashlen;
238
0
        }
239
0
    }
240
0
241
0
    assert(datalen <= BLAKE2B_BLOCKBYTES);
242
0
243
0
    memcpy(c->buf + c->buflen, in, datalen);
244
0
    c->buflen += datalen; /* Be lazy, do not compress */
245
0
246
0
    return 1;
247
0
}
248
249
/*
250
 * Calculate the final hash and save it in md.
251
 * Always returns 1.
252
 */
253
int BLAKE2b_Final(unsigned char *md, BLAKE2B_CTX *c)
254
0
{
255
0
    int i;
256
0
257
0
    blake2b_set_lastblock(c);
258
0
    /* Padding */
259
0
    memset(c->buf + c->buflen, 0, sizeof(c->buf) - c->buflen);
260
0
    blake2b_compress(c, c->buf, c->buflen);
261
0
262
0
    /* Output full hash to message digest */
263
0
    for (i = 0; i < 8; ++i) {
264
0
        store64(md + sizeof(c->h[i]) * i, c->h[i]);
265
0
    }
266
0
267
0
    OPENSSL_cleanse(c, sizeof(BLAKE2B_CTX));
268
0
    return 1;
269
0
}