Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/bn/bn_exp.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "internal/constant_time_locl.h"
12
#include "bn_lcl.h"
13
14
#include <stdlib.h>
15
#ifdef _WIN32
16
# include <malloc.h>
17
# ifndef alloca
18
#  define alloca _alloca
19
# endif
20
#elif defined(__GNUC__)
21
# ifndef alloca
22
#  define alloca(s) __builtin_alloca((s))
23
# endif
24
#elif defined(__sun)
25
# include <alloca.h>
26
#endif
27
28
#include "rsaz_exp.h"
29
30
#undef SPARC_T4_MONT
31
#if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
32
# include "sparc_arch.h"
33
extern unsigned int OPENSSL_sparcv9cap_P[];
34
# define SPARC_T4_MONT
35
#endif
36
37
/* maximum precomputation table size for *variable* sliding windows */
38
#define TABLE_SIZE      32
39
40
/* this one works - simple but works */
41
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
42
0
{
43
0
    int i, bits, ret = 0;
44
0
    BIGNUM *v, *rr;
45
0
46
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
47
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
48
0
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
49
0
        BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
50
0
        return 0;
51
0
    }
52
0
53
0
    BN_CTX_start(ctx);
54
0
    rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
55
0
    v = BN_CTX_get(ctx);
56
0
    if (rr == NULL || v == NULL)
57
0
        goto err;
58
0
59
0
    if (BN_copy(v, a) == NULL)
60
0
        goto err;
61
0
    bits = BN_num_bits(p);
62
0
63
0
    if (BN_is_odd(p)) {
64
0
        if (BN_copy(rr, a) == NULL)
65
0
            goto err;
66
0
    } else {
67
0
        if (!BN_one(rr))
68
0
            goto err;
69
0
    }
70
0
71
0
    for (i = 1; i < bits; i++) {
72
0
        if (!BN_sqr(v, v, ctx))
73
0
            goto err;
74
0
        if (BN_is_bit_set(p, i)) {
75
0
            if (!BN_mul(rr, rr, v, ctx))
76
0
                goto err;
77
0
        }
78
0
    }
79
0
    if (r != rr && BN_copy(r, rr) == NULL)
80
0
        goto err;
81
0
82
0
    ret = 1;
83
0
 err:
84
0
    BN_CTX_end(ctx);
85
0
    bn_check_top(r);
86
0
    return ret;
87
0
}
88
89
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
90
               BN_CTX *ctx)
91
0
{
92
0
    int ret;
93
0
94
0
    bn_check_top(a);
95
0
    bn_check_top(p);
96
0
    bn_check_top(m);
97
0
98
0
    /*-
99
0
     * For even modulus  m = 2^k*m_odd, it might make sense to compute
100
0
     * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
101
0
     * exponentiation for the odd part), using appropriate exponent
102
0
     * reductions, and combine the results using the CRT.
103
0
     *
104
0
     * For now, we use Montgomery only if the modulus is odd; otherwise,
105
0
     * exponentiation using the reciprocal-based quick remaindering
106
0
     * algorithm is used.
107
0
     *
108
0
     * (Timing obtained with expspeed.c [computations  a^p mod m
109
0
     * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
110
0
     * 4096, 8192 bits], compared to the running time of the
111
0
     * standard algorithm:
112
0
     *
113
0
     *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
114
0
     *                     55 .. 77 %  [UltraSparc processor, but
115
0
     *                                  debug-solaris-sparcv8-gcc conf.]
116
0
     *
117
0
     *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
118
0
     *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
119
0
     *
120
0
     * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
121
0
     * at 2048 and more bits, but at 512 and 1024 bits, it was
122
0
     * slower even than the standard algorithm!
123
0
     *
124
0
     * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
125
0
     * should be obtained when the new Montgomery reduction code
126
0
     * has been integrated into OpenSSL.)
127
0
     */
128
0
129
0
#define MONT_MUL_MOD
130
0
#define MONT_EXP_WORD
131
0
#define RECP_MUL_MOD
132
0
133
0
#ifdef MONT_MUL_MOD
134
0
    if (BN_is_odd(m)) {
135
0
# ifdef MONT_EXP_WORD
136
0
        if (a->top == 1 && !a->neg
137
0
            && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
138
0
            && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
139
0
            && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
140
0
            BN_ULONG A = a->d[0];
141
0
            ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
142
0
        } else
143
0
# endif
144
0
            ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
145
0
    } else
146
0
#endif
147
0
#ifdef RECP_MUL_MOD
148
0
    {
149
0
        ret = BN_mod_exp_recp(r, a, p, m, ctx);
150
0
    }
151
#else
152
    {
153
        ret = BN_mod_exp_simple(r, a, p, m, ctx);
154
    }
155
#endif
156
157
0
    bn_check_top(r);
158
0
    return ret;
159
0
}
160
161
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
162
                    const BIGNUM *m, BN_CTX *ctx)
163
0
{
164
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
165
0
    int start = 1;
166
0
    BIGNUM *aa;
167
0
    /* Table of variables obtained from 'ctx' */
168
0
    BIGNUM *val[TABLE_SIZE];
169
0
    BN_RECP_CTX recp;
170
0
171
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
172
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
173
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
174
0
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
175
0
        BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
176
0
        return 0;
177
0
    }
178
0
179
0
    bits = BN_num_bits(p);
180
0
    if (bits == 0) {
181
0
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
182
0
        if (BN_abs_is_word(m, 1)) {
183
0
            ret = 1;
184
0
            BN_zero(r);
185
0
        } else {
186
0
            ret = BN_one(r);
187
0
        }
188
0
        return ret;
189
0
    }
190
0
191
0
    BN_CTX_start(ctx);
192
0
    aa = BN_CTX_get(ctx);
193
0
    val[0] = BN_CTX_get(ctx);
194
0
    if (val[0] == NULL)
195
0
        goto err;
196
0
197
0
    BN_RECP_CTX_init(&recp);
198
0
    if (m->neg) {
199
0
        /* ignore sign of 'm' */
200
0
        if (!BN_copy(aa, m))
201
0
            goto err;
202
0
        aa->neg = 0;
203
0
        if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
204
0
            goto err;
205
0
    } else {
206
0
        if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
207
0
            goto err;
208
0
    }
209
0
210
0
    if (!BN_nnmod(val[0], a, m, ctx))
211
0
        goto err;               /* 1 */
212
0
    if (BN_is_zero(val[0])) {
213
0
        BN_zero(r);
214
0
        ret = 1;
215
0
        goto err;
216
0
    }
217
0
218
0
    window = BN_window_bits_for_exponent_size(bits);
219
0
    if (window > 1) {
220
0
        if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
221
0
            goto err;           /* 2 */
222
0
        j = 1 << (window - 1);
223
0
        for (i = 1; i < j; i++) {
224
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
225
0
                !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
226
0
                goto err;
227
0
        }
228
0
    }
229
0
230
0
    start = 1;                  /* This is used to avoid multiplication etc
231
0
                                 * when there is only the value '1' in the
232
0
                                 * buffer. */
233
0
    wvalue = 0;                 /* The 'value' of the window */
234
0
    wstart = bits - 1;          /* The top bit of the window */
235
0
    wend = 0;                   /* The bottom bit of the window */
236
0
237
0
    if (!BN_one(r))
238
0
        goto err;
239
0
240
0
    for (;;) {
241
0
        if (BN_is_bit_set(p, wstart) == 0) {
242
0
            if (!start)
243
0
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
244
0
                    goto err;
245
0
            if (wstart == 0)
246
0
                break;
247
0
            wstart--;
248
0
            continue;
249
0
        }
250
0
        /*
251
0
         * We now have wstart on a 'set' bit, we now need to work out how bit
252
0
         * a window to do.  To do this we need to scan forward until the last
253
0
         * set bit before the end of the window
254
0
         */
255
0
        j = wstart;
256
0
        wvalue = 1;
257
0
        wend = 0;
258
0
        for (i = 1; i < window; i++) {
259
0
            if (wstart - i < 0)
260
0
                break;
261
0
            if (BN_is_bit_set(p, wstart - i)) {
262
0
                wvalue <<= (i - wend);
263
0
                wvalue |= 1;
264
0
                wend = i;
265
0
            }
266
0
        }
267
0
268
0
        /* wend is the size of the current window */
269
0
        j = wend + 1;
270
0
        /* add the 'bytes above' */
271
0
        if (!start)
272
0
            for (i = 0; i < j; i++) {
273
0
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
274
0
                    goto err;
275
0
            }
276
0
277
0
        /* wvalue will be an odd number < 2^window */
278
0
        if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
279
0
            goto err;
280
0
281
0
        /* move the 'window' down further */
282
0
        wstart -= wend + 1;
283
0
        wvalue = 0;
284
0
        start = 0;
285
0
        if (wstart < 0)
286
0
            break;
287
0
    }
288
0
    ret = 1;
289
0
 err:
290
0
    BN_CTX_end(ctx);
291
0
    BN_RECP_CTX_free(&recp);
292
0
    bn_check_top(r);
293
0
    return ret;
294
0
}
295
296
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
297
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
298
0
{
299
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
300
0
    int start = 1;
301
0
    BIGNUM *d, *r;
302
0
    const BIGNUM *aa;
303
0
    /* Table of variables obtained from 'ctx' */
304
0
    BIGNUM *val[TABLE_SIZE];
305
0
    BN_MONT_CTX *mont = NULL;
306
0
307
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
308
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
309
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
310
0
        return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
311
0
    }
312
0
313
0
    bn_check_top(a);
314
0
    bn_check_top(p);
315
0
    bn_check_top(m);
316
0
317
0
    if (!BN_is_odd(m)) {
318
0
        BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
319
0
        return 0;
320
0
    }
321
0
    bits = BN_num_bits(p);
322
0
    if (bits == 0) {
323
0
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
324
0
        if (BN_abs_is_word(m, 1)) {
325
0
            ret = 1;
326
0
            BN_zero(rr);
327
0
        } else {
328
0
            ret = BN_one(rr);
329
0
        }
330
0
        return ret;
331
0
    }
332
0
333
0
    BN_CTX_start(ctx);
334
0
    d = BN_CTX_get(ctx);
335
0
    r = BN_CTX_get(ctx);
336
0
    val[0] = BN_CTX_get(ctx);
337
0
    if (val[0] == NULL)
338
0
        goto err;
339
0
340
0
    /*
341
0
     * If this is not done, things will break in the montgomery part
342
0
     */
343
0
344
0
    if (in_mont != NULL)
345
0
        mont = in_mont;
346
0
    else {
347
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
348
0
            goto err;
349
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
350
0
            goto err;
351
0
    }
352
0
353
0
    if (a->neg || BN_ucmp(a, m) >= 0) {
354
0
        if (!BN_nnmod(val[0], a, m, ctx))
355
0
            goto err;
356
0
        aa = val[0];
357
0
    } else
358
0
        aa = a;
359
0
    if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
360
0
        goto err;               /* 1 */
361
0
362
0
    window = BN_window_bits_for_exponent_size(bits);
363
0
    if (window > 1) {
364
0
        if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
365
0
            goto err;           /* 2 */
366
0
        j = 1 << (window - 1);
367
0
        for (i = 1; i < j; i++) {
368
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
369
0
                !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
370
0
                goto err;
371
0
        }
372
0
    }
373
0
374
0
    start = 1;                  /* This is used to avoid multiplication etc
375
0
                                 * when there is only the value '1' in the
376
0
                                 * buffer. */
377
0
    wvalue = 0;                 /* The 'value' of the window */
378
0
    wstart = bits - 1;          /* The top bit of the window */
379
0
    wend = 0;                   /* The bottom bit of the window */
380
0
381
0
#if 1                           /* by Shay Gueron's suggestion */
382
0
    j = m->top;                 /* borrow j */
383
0
    if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
384
0
        if (bn_wexpand(r, j) == NULL)
385
0
            goto err;
386
0
        /* 2^(top*BN_BITS2) - m */
387
0
        r->d[0] = (0 - m->d[0]) & BN_MASK2;
388
0
        for (i = 1; i < j; i++)
389
0
            r->d[i] = (~m->d[i]) & BN_MASK2;
390
0
        r->top = j;
391
0
        r->flags |= BN_FLG_FIXED_TOP;
392
0
    } else
393
0
#endif
394
0
    if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
395
0
        goto err;
396
0
    for (;;) {
397
0
        if (BN_is_bit_set(p, wstart) == 0) {
398
0
            if (!start) {
399
0
                if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
400
0
                    goto err;
401
0
            }
402
0
            if (wstart == 0)
403
0
                break;
404
0
            wstart--;
405
0
            continue;
406
0
        }
407
0
        /*
408
0
         * We now have wstart on a 'set' bit, we now need to work out how bit
409
0
         * a window to do.  To do this we need to scan forward until the last
410
0
         * set bit before the end of the window
411
0
         */
412
0
        j = wstart;
413
0
        wvalue = 1;
414
0
        wend = 0;
415
0
        for (i = 1; i < window; i++) {
416
0
            if (wstart - i < 0)
417
0
                break;
418
0
            if (BN_is_bit_set(p, wstart - i)) {
419
0
                wvalue <<= (i - wend);
420
0
                wvalue |= 1;
421
0
                wend = i;
422
0
            }
423
0
        }
424
0
425
0
        /* wend is the size of the current window */
426
0
        j = wend + 1;
427
0
        /* add the 'bytes above' */
428
0
        if (!start)
429
0
            for (i = 0; i < j; i++) {
430
0
                if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
431
0
                    goto err;
432
0
            }
433
0
434
0
        /* wvalue will be an odd number < 2^window */
435
0
        if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
436
0
            goto err;
437
0
438
0
        /* move the 'window' down further */
439
0
        wstart -= wend + 1;
440
0
        wvalue = 0;
441
0
        start = 0;
442
0
        if (wstart < 0)
443
0
            break;
444
0
    }
445
0
    /*
446
0
     * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
447
0
     * removes padding [if any] and makes return value suitable for public
448
0
     * API consumer.
449
0
     */
450
#if defined(SPARC_T4_MONT)
451
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
452
        j = mont->N.top;        /* borrow j */
453
        val[0]->d[0] = 1;       /* borrow val[0] */
454
        for (i = 1; i < j; i++)
455
            val[0]->d[i] = 0;
456
        val[0]->top = j;
457
        if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
458
            goto err;
459
    } else
460
#endif
461
0
    if (!BN_from_montgomery(rr, r, mont, ctx))
462
0
        goto err;
463
0
    ret = 1;
464
0
 err:
465
0
    if (in_mont == NULL)
466
0
        BN_MONT_CTX_free(mont);
467
0
    BN_CTX_end(ctx);
468
0
    bn_check_top(rr);
469
0
    return ret;
470
0
}
471
472
static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
473
0
{
474
0
    BN_ULONG ret = 0;
475
0
    int wordpos;
476
0
477
0
    wordpos = bitpos / BN_BITS2;
478
0
    bitpos %= BN_BITS2;
479
0
    if (wordpos >= 0 && wordpos < a->top) {
480
0
        ret = a->d[wordpos] & BN_MASK2;
481
0
        if (bitpos) {
482
0
            ret >>= bitpos;
483
0
            if (++wordpos < a->top)
484
0
                ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
485
0
        }
486
0
    }
487
0
488
0
    return ret & BN_MASK2;
489
0
}
490
491
/*
492
 * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
493
 * layout so that accessing any of these table values shows the same access
494
 * pattern as far as cache lines are concerned.  The following functions are
495
 * used to transfer a BIGNUM from/to that table.
496
 */
497
498
static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
499
                                        unsigned char *buf, int idx,
500
                                        int window)
501
0
{
502
0
    int i, j;
503
0
    int width = 1 << window;
504
0
    BN_ULONG *table = (BN_ULONG *)buf;
505
0
506
0
    if (top > b->top)
507
0
        top = b->top;           /* this works because 'buf' is explicitly
508
0
                                 * zeroed */
509
0
    for (i = 0, j = idx; i < top; i++, j += width) {
510
0
        table[j] = b->d[i];
511
0
    }
512
0
513
0
    return 1;
514
0
}
515
516
static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
517
                                          unsigned char *buf, int idx,
518
                                          int window)
519
0
{
520
0
    int i, j;
521
0
    int width = 1 << window;
522
0
    /*
523
0
     * We declare table 'volatile' in order to discourage compiler
524
0
     * from reordering loads from the table. Concern is that if
525
0
     * reordered in specific manner loads might give away the
526
0
     * information we are trying to conceal. Some would argue that
527
0
     * compiler can reorder them anyway, but it can as well be
528
0
     * argued that doing so would be violation of standard...
529
0
     */
530
0
    volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
531
0
532
0
    if (bn_wexpand(b, top) == NULL)
533
0
        return 0;
534
0
535
0
    if (window <= 3) {
536
0
        for (i = 0; i < top; i++, table += width) {
537
0
            BN_ULONG acc = 0;
538
0
539
0
            for (j = 0; j < width; j++) {
540
0
                acc |= table[j] &
541
0
                       ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
542
0
            }
543
0
544
0
            b->d[i] = acc;
545
0
        }
546
0
    } else {
547
0
        int xstride = 1 << (window - 2);
548
0
        BN_ULONG y0, y1, y2, y3;
549
0
550
0
        i = idx >> (window - 2);        /* equivalent of idx / xstride */
551
0
        idx &= xstride - 1;             /* equivalent of idx % xstride */
552
0
553
0
        y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
554
0
        y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
555
0
        y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
556
0
        y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
557
0
558
0
        for (i = 0; i < top; i++, table += width) {
559
0
            BN_ULONG acc = 0;
560
0
561
0
            for (j = 0; j < xstride; j++) {
562
0
                acc |= ( (table[j + 0 * xstride] & y0) |
563
0
                         (table[j + 1 * xstride] & y1) |
564
0
                         (table[j + 2 * xstride] & y2) |
565
0
                         (table[j + 3 * xstride] & y3) )
566
0
                       & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
567
0
            }
568
0
569
0
            b->d[i] = acc;
570
0
        }
571
0
    }
572
0
573
0
    b->top = top;
574
0
    b->flags |= BN_FLG_FIXED_TOP;
575
0
    return 1;
576
0
}
577
578
/*
579
 * Given a pointer value, compute the next address that is a cache line
580
 * multiple.
581
 */
582
#define MOD_EXP_CTIME_ALIGN(x_) \
583
0
        ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
584
585
/*
586
 * This variant of BN_mod_exp_mont() uses fixed windows and the special
587
 * precomputation memory layout to limit data-dependency to a minimum to
588
 * protect secret exponents (cf. the hyper-threading timing attacks pointed
589
 * out by Colin Percival,
590
 * http://www.daemonology.net/hyperthreading-considered-harmful/)
591
 */
592
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
593
                              const BIGNUM *m, BN_CTX *ctx,
594
                              BN_MONT_CTX *in_mont)
595
0
{
596
0
    int i, bits, ret = 0, window, wvalue, wmask, window0;
597
0
    int top;
598
0
    BN_MONT_CTX *mont = NULL;
599
0
600
0
    int numPowers;
601
0
    unsigned char *powerbufFree = NULL;
602
0
    int powerbufLen = 0;
603
0
    unsigned char *powerbuf = NULL;
604
0
    BIGNUM tmp, am;
605
#if defined(SPARC_T4_MONT)
606
    unsigned int t4 = 0;
607
#endif
608
609
0
    bn_check_top(a);
610
0
    bn_check_top(p);
611
0
    bn_check_top(m);
612
0
613
0
    if (!BN_is_odd(m)) {
614
0
        BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
615
0
        return 0;
616
0
    }
617
0
618
0
    top = m->top;
619
0
620
0
    /*
621
0
     * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
622
0
     * whether the top bits are zero.
623
0
     */
624
0
    bits = p->top * BN_BITS2;
625
0
    if (bits == 0) {
626
0
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
627
0
        if (BN_abs_is_word(m, 1)) {
628
0
            ret = 1;
629
0
            BN_zero(rr);
630
0
        } else {
631
0
            ret = BN_one(rr);
632
0
        }
633
0
        return ret;
634
0
    }
635
0
636
0
    BN_CTX_start(ctx);
637
0
638
0
    /*
639
0
     * Allocate a montgomery context if it was not supplied by the caller. If
640
0
     * this is not done, things will break in the montgomery part.
641
0
     */
642
0
    if (in_mont != NULL)
643
0
        mont = in_mont;
644
0
    else {
645
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
646
0
            goto err;
647
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
648
0
            goto err;
649
0
    }
650
0
651
0
#ifdef RSAZ_ENABLED
652
0
    if (!a->neg) {
653
0
        /*
654
0
         * If the size of the operands allow it, perform the optimized
655
0
         * RSAZ exponentiation. For further information see
656
0
         * crypto/bn/rsaz_exp.c and accompanying assembly modules.
657
0
         */
658
0
        if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
659
0
            && rsaz_avx2_eligible()) {
660
0
            if (NULL == bn_wexpand(rr, 16))
661
0
                goto err;
662
0
            RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
663
0
                                   mont->n0[0]);
664
0
            rr->top = 16;
665
0
            rr->neg = 0;
666
0
            bn_correct_top(rr);
667
0
            ret = 1;
668
0
            goto err;
669
0
        } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
670
0
            if (NULL == bn_wexpand(rr, 8))
671
0
                goto err;
672
0
            RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
673
0
            rr->top = 8;
674
0
            rr->neg = 0;
675
0
            bn_correct_top(rr);
676
0
            ret = 1;
677
0
            goto err;
678
0
        }
679
0
    }
680
0
#endif
681
0
682
0
    /* Get the window size to use with size of p. */
683
0
    window = BN_window_bits_for_ctime_exponent_size(bits);
684
#if defined(SPARC_T4_MONT)
685
    if (window >= 5 && (top & 15) == 0 && top <= 64 &&
686
        (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
687
        (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
688
        window = 5;
689
    else
690
#endif
691
#if defined(OPENSSL_BN_ASM_MONT5)
692
0
    if (window >= 5) {
693
0
        window = 5;             /* ~5% improvement for RSA2048 sign, and even
694
0
                                 * for RSA4096 */
695
0
        /* reserve space for mont->N.d[] copy */
696
0
        powerbufLen += top * sizeof(mont->N.d[0]);
697
0
    }
698
0
#endif
699
0
    (void)0;
700
0
701
0
    /*
702
0
     * Allocate a buffer large enough to hold all of the pre-computed powers
703
0
     * of am, am itself and tmp.
704
0
     */
705
0
    numPowers = 1 << window;
706
0
    powerbufLen += sizeof(m->d[0]) * (top * numPowers +
707
0
                                      ((2 * top) >
708
0
                                       numPowers ? (2 * top) : numPowers));
709
0
#ifdef alloca
710
0
    if (powerbufLen < 3072)
711
0
        powerbufFree =
712
0
            alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
713
0
    else
714
0
#endif
715
0
        if ((powerbufFree =
716
0
             OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
717
0
            == NULL)
718
0
        goto err;
719
0
720
0
    powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
721
0
    memset(powerbuf, 0, powerbufLen);
722
0
723
0
#ifdef alloca
724
0
    if (powerbufLen < 3072)
725
0
        powerbufFree = NULL;
726
0
#endif
727
0
728
0
    /* lay down tmp and am right after powers table */
729
0
    tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
730
0
    am.d = tmp.d + top;
731
0
    tmp.top = am.top = 0;
732
0
    tmp.dmax = am.dmax = top;
733
0
    tmp.neg = am.neg = 0;
734
0
    tmp.flags = am.flags = BN_FLG_STATIC_DATA;
735
0
736
0
    /* prepare a^0 in Montgomery domain */
737
0
#if 1                           /* by Shay Gueron's suggestion */
738
0
    if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
739
0
        /* 2^(top*BN_BITS2) - m */
740
0
        tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
741
0
        for (i = 1; i < top; i++)
742
0
            tmp.d[i] = (~m->d[i]) & BN_MASK2;
743
0
        tmp.top = top;
744
0
    } else
745
0
#endif
746
0
    if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
747
0
        goto err;
748
0
749
0
    /* prepare a^1 in Montgomery domain */
750
0
    if (a->neg || BN_ucmp(a, m) >= 0) {
751
0
        if (!BN_nnmod(&am, a, m, ctx))
752
0
            goto err;
753
0
        if (!bn_to_mont_fixed_top(&am, &am, mont, ctx))
754
0
            goto err;
755
0
    } else if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
756
0
        goto err;
757
0
758
#if defined(SPARC_T4_MONT)
759
    if (t4) {
760
        typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
761
                                       const BN_ULONG *n0, const void *table,
762
                                       int power, int bits);
763
        int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
764
                              const BN_ULONG *n0, const void *table,
765
                              int power, int bits);
766
        int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
767
                               const BN_ULONG *n0, const void *table,
768
                               int power, int bits);
769
        int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
770
                               const BN_ULONG *n0, const void *table,
771
                               int power, int bits);
772
        int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
773
                               const BN_ULONG *n0, const void *table,
774
                               int power, int bits);
775
        static const bn_pwr5_mont_f pwr5_funcs[4] = {
776
            bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
777
            bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
778
        };
779
        bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
780
781
        typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
782
                                      const void *bp, const BN_ULONG *np,
783
                                      const BN_ULONG *n0);
784
        int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
785
                             const BN_ULONG *np, const BN_ULONG *n0);
786
        int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
787
                              const void *bp, const BN_ULONG *np,
788
                              const BN_ULONG *n0);
789
        int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
790
                              const void *bp, const BN_ULONG *np,
791
                              const BN_ULONG *n0);
792
        int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
793
                              const void *bp, const BN_ULONG *np,
794
                              const BN_ULONG *n0);
795
        static const bn_mul_mont_f mul_funcs[4] = {
796
            bn_mul_mont_t4_8, bn_mul_mont_t4_16,
797
            bn_mul_mont_t4_24, bn_mul_mont_t4_32
798
        };
799
        bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
800
801
        void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
802
                              const void *bp, const BN_ULONG *np,
803
                              const BN_ULONG *n0, int num);
804
        void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
805
                            const void *bp, const BN_ULONG *np,
806
                            const BN_ULONG *n0, int num);
807
        void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
808
                                    const void *table, const BN_ULONG *np,
809
                                    const BN_ULONG *n0, int num, int power);
810
        void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
811
                                   void *table, size_t power);
812
        void bn_gather5_t4(BN_ULONG *out, size_t num,
813
                           void *table, size_t power);
814
        void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
815
816
        BN_ULONG *np = mont->N.d, *n0 = mont->n0;
817
        int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
818
                                                * than 32 */
819
820
        /*
821
         * BN_to_montgomery can contaminate words above .top [in
822
         * BN_DEBUG[_DEBUG] build]...
823
         */
824
        for (i = am.top; i < top; i++)
825
            am.d[i] = 0;
826
        for (i = tmp.top; i < top; i++)
827
            tmp.d[i] = 0;
828
829
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
830
        bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
831
        if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
832
            !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
833
            bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
834
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
835
836
        for (i = 3; i < 32; i++) {
837
            /* Calculate a^i = a^(i-1) * a */
838
            if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
839
                !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
840
                bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
841
            bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
842
        }
843
844
        /* switch to 64-bit domain */
845
        np = alloca(top * sizeof(BN_ULONG));
846
        top /= 2;
847
        bn_flip_t4(np, mont->N.d, top);
848
849
        /*
850
         * The exponent may not have a whole number of fixed-size windows.
851
         * To simplify the main loop, the initial window has between 1 and
852
         * full-window-size bits such that what remains is always a whole
853
         * number of windows
854
         */
855
        window0 = (bits - 1) % 5 + 1;
856
        wmask = (1 << window0) - 1;
857
        bits -= window0;
858
        wvalue = bn_get_bits(p, bits) & wmask;
859
        bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
860
861
        /*
862
         * Scan the exponent one window at a time starting from the most
863
         * significant bits.
864
         */
865
        while (bits > 0) {
866
            if (bits < stride)
867
                stride = bits;
868
            bits -= stride;
869
            wvalue = bn_get_bits(p, bits);
870
871
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
872
                continue;
873
            /* retry once and fall back */
874
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
875
                continue;
876
877
            bits += stride - 5;
878
            wvalue >>= stride - 5;
879
            wvalue &= 31;
880
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
881
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
882
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
883
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
884
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
885
            bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
886
                                   wvalue);
887
        }
888
889
        bn_flip_t4(tmp.d, tmp.d, top);
890
        top *= 2;
891
        /* back to 32-bit domain */
892
        tmp.top = top;
893
        bn_correct_top(&tmp);
894
        OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
895
    } else
896
#endif
897
#if defined(OPENSSL_BN_ASM_MONT5)
898
0
    if (window == 5 && top > 1) {
899
0
        /*
900
0
         * This optimization uses ideas from http://eprint.iacr.org/2011/239,
901
0
         * specifically optimization of cache-timing attack countermeasures
902
0
         * and pre-computation optimization.
903
0
         */
904
0
905
0
        /*
906
0
         * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
907
0
         * 512-bit RSA is hardly relevant, we omit it to spare size...
908
0
         */
909
0
        void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
910
0
                                 const void *table, const BN_ULONG *np,
911
0
                                 const BN_ULONG *n0, int num, int power);
912
0
        void bn_scatter5(const BN_ULONG *inp, size_t num,
913
0
                         void *table, size_t power);
914
0
        void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
915
0
        void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
916
0
                       const void *table, const BN_ULONG *np,
917
0
                       const BN_ULONG *n0, int num, int power);
918
0
        int bn_get_bits5(const BN_ULONG *ap, int off);
919
0
        int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
920
0
                               const BN_ULONG *not_used, const BN_ULONG *np,
921
0
                               const BN_ULONG *n0, int num);
922
0
923
0
        BN_ULONG *n0 = mont->n0, *np;
924
0
925
0
        /*
926
0
         * BN_to_montgomery can contaminate words above .top [in
927
0
         * BN_DEBUG[_DEBUG] build]...
928
0
         */
929
0
        for (i = am.top; i < top; i++)
930
0
            am.d[i] = 0;
931
0
        for (i = tmp.top; i < top; i++)
932
0
            tmp.d[i] = 0;
933
0
934
0
        /*
935
0
         * copy mont->N.d[] to improve cache locality
936
0
         */
937
0
        for (np = am.d + top, i = 0; i < top; i++)
938
0
            np[i] = mont->N.d[i];
939
0
940
0
        bn_scatter5(tmp.d, top, powerbuf, 0);
941
0
        bn_scatter5(am.d, am.top, powerbuf, 1);
942
0
        bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
943
0
        bn_scatter5(tmp.d, top, powerbuf, 2);
944
0
945
# if 0
946
        for (i = 3; i < 32; i++) {
947
            /* Calculate a^i = a^(i-1) * a */
948
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
949
            bn_scatter5(tmp.d, top, powerbuf, i);
950
        }
951
# else
952
        /* same as above, but uses squaring for 1/2 of operations */
953
0
        for (i = 4; i < 32; i *= 2) {
954
0
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
955
0
            bn_scatter5(tmp.d, top, powerbuf, i);
956
0
        }
957
0
        for (i = 3; i < 8; i += 2) {
958
0
            int j;
959
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
960
0
            bn_scatter5(tmp.d, top, powerbuf, i);
961
0
            for (j = 2 * i; j < 32; j *= 2) {
962
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
963
0
                bn_scatter5(tmp.d, top, powerbuf, j);
964
0
            }
965
0
        }
966
0
        for (; i < 16; i += 2) {
967
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
968
0
            bn_scatter5(tmp.d, top, powerbuf, i);
969
0
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
970
0
            bn_scatter5(tmp.d, top, powerbuf, 2 * i);
971
0
        }
972
0
        for (; i < 32; i += 2) {
973
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
974
0
            bn_scatter5(tmp.d, top, powerbuf, i);
975
0
        }
976
0
# endif
977
0
        /*
978
0
         * The exponent may not have a whole number of fixed-size windows.
979
0
         * To simplify the main loop, the initial window has between 1 and
980
0
         * full-window-size bits such that what remains is always a whole
981
0
         * number of windows
982
0
         */
983
0
        window0 = (bits - 1) % 5 + 1;
984
0
        wmask = (1 << window0) - 1;
985
0
        bits -= window0;
986
0
        wvalue = bn_get_bits(p, bits) & wmask;
987
0
        bn_gather5(tmp.d, top, powerbuf, wvalue);
988
0
989
0
        /*
990
0
         * Scan the exponent one window at a time starting from the most
991
0
         * significant bits.
992
0
         */
993
0
        if (top & 7) {
994
0
            while (bits > 0) {
995
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
996
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
997
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
998
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
999
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1000
0
                bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
1001
0
                                    bn_get_bits5(p->d, bits -= 5));
1002
0
            }
1003
0
        } else {
1004
0
            while (bits > 0) {
1005
0
                bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
1006
0
                          bn_get_bits5(p->d, bits -= 5));
1007
0
            }
1008
0
        }
1009
0
1010
0
        ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
1011
0
        tmp.top = top;
1012
0
        bn_correct_top(&tmp);
1013
0
        if (ret) {
1014
0
            if (!BN_copy(rr, &tmp))
1015
0
                ret = 0;
1016
0
            goto err;           /* non-zero ret means it's not error */
1017
0
        }
1018
0
    } else
1019
0
#endif
1020
0
    {
1021
0
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
1022
0
            goto err;
1023
0
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
1024
0
            goto err;
1025
0
1026
0
        /*
1027
0
         * If the window size is greater than 1, then calculate
1028
0
         * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
1029
0
         * powers could instead be computed as (a^(i/2))^2 to use the slight
1030
0
         * performance advantage of sqr over mul).
1031
0
         */
1032
0
        if (window > 1) {
1033
0
            if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
1034
0
                goto err;
1035
0
            if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
1036
0
                                              window))
1037
0
                goto err;
1038
0
            for (i = 3; i < numPowers; i++) {
1039
0
                /* Calculate a^i = a^(i-1) * a */
1040
0
                if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
1041
0
                    goto err;
1042
0
                if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
1043
0
                                                  window))
1044
0
                    goto err;
1045
0
            }
1046
0
        }
1047
0
1048
0
        /*
1049
0
         * The exponent may not have a whole number of fixed-size windows.
1050
0
         * To simplify the main loop, the initial window has between 1 and
1051
0
         * full-window-size bits such that what remains is always a whole
1052
0
         * number of windows
1053
0
         */
1054
0
        window0 = (bits - 1) % window + 1;
1055
0
        wmask = (1 << window0) - 1;
1056
0
        bits -= window0;
1057
0
        wvalue = bn_get_bits(p, bits) & wmask;
1058
0
        if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
1059
0
                                            window))
1060
0
            goto err;
1061
0
1062
0
        wmask = (1 << window) - 1;
1063
0
        /*
1064
0
         * Scan the exponent one window at a time starting from the most
1065
0
         * significant bits.
1066
0
         */
1067
0
        while (bits > 0) {
1068
0
1069
0
            /* Square the result window-size times */
1070
0
            for (i = 0; i < window; i++)
1071
0
                if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
1072
0
                    goto err;
1073
0
1074
0
            /*
1075
0
             * Get a window's worth of bits from the exponent
1076
0
             * This avoids calling BN_is_bit_set for each bit, which
1077
0
             * is not only slower but also makes each bit vulnerable to
1078
0
             * EM (and likely other) side-channel attacks like One&Done
1079
0
             * (for details see "One&Done: A Single-Decryption EM-Based
1080
0
             *  Attack on OpenSSL’s Constant-Time Blinded RSA" by M. Alam,
1081
0
             *  H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
1082
0
             *  M. Prvulovic, in USENIX Security'18)
1083
0
             */
1084
0
            bits -= window;
1085
0
            wvalue = bn_get_bits(p, bits) & wmask;
1086
0
            /*
1087
0
             * Fetch the appropriate pre-computed value from the pre-buf
1088
0
             */
1089
0
            if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
1090
0
                                                window))
1091
0
                goto err;
1092
0
1093
0
            /* Multiply the result into the intermediate result */
1094
0
            if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
1095
0
                goto err;
1096
0
        }
1097
0
    }
1098
0
1099
0
    /*
1100
0
     * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
1101
0
     * removes padding [if any] and makes return value suitable for public
1102
0
     * API consumer.
1103
0
     */
1104
#if defined(SPARC_T4_MONT)
1105
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
1106
        am.d[0] = 1;            /* borrow am */
1107
        for (i = 1; i < top; i++)
1108
            am.d[i] = 0;
1109
        if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
1110
            goto err;
1111
    } else
1112
#endif
1113
0
    if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1114
0
        goto err;
1115
0
    ret = 1;
1116
0
 err:
1117
0
    if (in_mont == NULL)
1118
0
        BN_MONT_CTX_free(mont);
1119
0
    if (powerbuf != NULL) {
1120
0
        OPENSSL_cleanse(powerbuf, powerbufLen);
1121
0
        OPENSSL_free(powerbufFree);
1122
0
    }
1123
0
    BN_CTX_end(ctx);
1124
0
    return ret;
1125
0
}
1126
1127
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1128
                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1129
0
{
1130
0
    BN_MONT_CTX *mont = NULL;
1131
0
    int b, bits, ret = 0;
1132
0
    int r_is_one;
1133
0
    BN_ULONG w, next_w;
1134
0
    BIGNUM *r, *t;
1135
0
    BIGNUM *swap_tmp;
1136
0
#define BN_MOD_MUL_WORD(r, w, m) \
1137
0
                (BN_mul_word(r, (w)) && \
1138
0
                (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
1139
0
                        (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1140
0
    /*
1141
0
     * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1142
0
     * probably more overhead than always using BN_mod (which uses BN_copy if
1143
0
     * a similar test returns true).
1144
0
     */
1145
0
    /*
1146
0
     * We can use BN_mod and do not need BN_nnmod because our accumulator is
1147
0
     * never negative (the result of BN_mod does not depend on the sign of
1148
0
     * the modulus).
1149
0
     */
1150
0
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1151
0
                (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1152
0
1153
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1154
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1155
0
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1156
0
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1157
0
        return 0;
1158
0
    }
1159
0
1160
0
    bn_check_top(p);
1161
0
    bn_check_top(m);
1162
0
1163
0
    if (!BN_is_odd(m)) {
1164
0
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
1165
0
        return 0;
1166
0
    }
1167
0
    if (m->top == 1)
1168
0
        a %= m->d[0];           /* make sure that 'a' is reduced */
1169
0
1170
0
    bits = BN_num_bits(p);
1171
0
    if (bits == 0) {
1172
0
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
1173
0
        if (BN_abs_is_word(m, 1)) {
1174
0
            ret = 1;
1175
0
            BN_zero(rr);
1176
0
        } else {
1177
0
            ret = BN_one(rr);
1178
0
        }
1179
0
        return ret;
1180
0
    }
1181
0
    if (a == 0) {
1182
0
        BN_zero(rr);
1183
0
        ret = 1;
1184
0
        return ret;
1185
0
    }
1186
0
1187
0
    BN_CTX_start(ctx);
1188
0
    r = BN_CTX_get(ctx);
1189
0
    t = BN_CTX_get(ctx);
1190
0
    if (t == NULL)
1191
0
        goto err;
1192
0
1193
0
    if (in_mont != NULL)
1194
0
        mont = in_mont;
1195
0
    else {
1196
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
1197
0
            goto err;
1198
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
1199
0
            goto err;
1200
0
    }
1201
0
1202
0
    r_is_one = 1;               /* except for Montgomery factor */
1203
0
1204
0
    /* bits-1 >= 0 */
1205
0
1206
0
    /* The result is accumulated in the product r*w. */
1207
0
    w = a;                      /* bit 'bits-1' of 'p' is always set */
1208
0
    for (b = bits - 2; b >= 0; b--) {
1209
0
        /* First, square r*w. */
1210
0
        next_w = w * w;
1211
0
        if ((next_w / w) != w) { /* overflow */
1212
0
            if (r_is_one) {
1213
0
                if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1214
0
                    goto err;
1215
0
                r_is_one = 0;
1216
0
            } else {
1217
0
                if (!BN_MOD_MUL_WORD(r, w, m))
1218
0
                    goto err;
1219
0
            }
1220
0
            next_w = 1;
1221
0
        }
1222
0
        w = next_w;
1223
0
        if (!r_is_one) {
1224
0
            if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
1225
0
                goto err;
1226
0
        }
1227
0
1228
0
        /* Second, multiply r*w by 'a' if exponent bit is set. */
1229
0
        if (BN_is_bit_set(p, b)) {
1230
0
            next_w = w * a;
1231
0
            if ((next_w / a) != w) { /* overflow */
1232
0
                if (r_is_one) {
1233
0
                    if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1234
0
                        goto err;
1235
0
                    r_is_one = 0;
1236
0
                } else {
1237
0
                    if (!BN_MOD_MUL_WORD(r, w, m))
1238
0
                        goto err;
1239
0
                }
1240
0
                next_w = a;
1241
0
            }
1242
0
            w = next_w;
1243
0
        }
1244
0
    }
1245
0
1246
0
    /* Finally, set r:=r*w. */
1247
0
    if (w != 1) {
1248
0
        if (r_is_one) {
1249
0
            if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1250
0
                goto err;
1251
0
            r_is_one = 0;
1252
0
        } else {
1253
0
            if (!BN_MOD_MUL_WORD(r, w, m))
1254
0
                goto err;
1255
0
        }
1256
0
    }
1257
0
1258
0
    if (r_is_one) {             /* can happen only if a == 1 */
1259
0
        if (!BN_one(rr))
1260
0
            goto err;
1261
0
    } else {
1262
0
        if (!BN_from_montgomery(rr, r, mont, ctx))
1263
0
            goto err;
1264
0
    }
1265
0
    ret = 1;
1266
0
 err:
1267
0
    if (in_mont == NULL)
1268
0
        BN_MONT_CTX_free(mont);
1269
0
    BN_CTX_end(ctx);
1270
0
    bn_check_top(rr);
1271
0
    return ret;
1272
0
}
1273
1274
/* The old fallback, simple version :-) */
1275
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1276
                      const BIGNUM *m, BN_CTX *ctx)
1277
0
{
1278
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
1279
0
    int start = 1;
1280
0
    BIGNUM *d;
1281
0
    /* Table of variables obtained from 'ctx' */
1282
0
    BIGNUM *val[TABLE_SIZE];
1283
0
1284
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1285
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
1286
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1287
0
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1288
0
        BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1289
0
        return 0;
1290
0
    }
1291
0
1292
0
    bits = BN_num_bits(p);
1293
0
    if (bits == 0) {
1294
0
        /* x**0 mod 1, or x**0 mod -1 is still zero. */
1295
0
        if (BN_abs_is_word(m, 1)) {
1296
0
            ret = 1;
1297
0
            BN_zero(r);
1298
0
        } else {
1299
0
            ret = BN_one(r);
1300
0
        }
1301
0
        return ret;
1302
0
    }
1303
0
1304
0
    BN_CTX_start(ctx);
1305
0
    d = BN_CTX_get(ctx);
1306
0
    val[0] = BN_CTX_get(ctx);
1307
0
    if (val[0] == NULL)
1308
0
        goto err;
1309
0
1310
0
    if (!BN_nnmod(val[0], a, m, ctx))
1311
0
        goto err;               /* 1 */
1312
0
    if (BN_is_zero(val[0])) {
1313
0
        BN_zero(r);
1314
0
        ret = 1;
1315
0
        goto err;
1316
0
    }
1317
0
1318
0
    window = BN_window_bits_for_exponent_size(bits);
1319
0
    if (window > 1) {
1320
0
        if (!BN_mod_mul(d, val[0], val[0], m, ctx))
1321
0
            goto err;           /* 2 */
1322
0
        j = 1 << (window - 1);
1323
0
        for (i = 1; i < j; i++) {
1324
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
1325
0
                !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
1326
0
                goto err;
1327
0
        }
1328
0
    }
1329
0
1330
0
    start = 1;                  /* This is used to avoid multiplication etc
1331
0
                                 * when there is only the value '1' in the
1332
0
                                 * buffer. */
1333
0
    wvalue = 0;                 /* The 'value' of the window */
1334
0
    wstart = bits - 1;          /* The top bit of the window */
1335
0
    wend = 0;                   /* The bottom bit of the window */
1336
0
1337
0
    if (!BN_one(r))
1338
0
        goto err;
1339
0
1340
0
    for (;;) {
1341
0
        if (BN_is_bit_set(p, wstart) == 0) {
1342
0
            if (!start)
1343
0
                if (!BN_mod_mul(r, r, r, m, ctx))
1344
0
                    goto err;
1345
0
            if (wstart == 0)
1346
0
                break;
1347
0
            wstart--;
1348
0
            continue;
1349
0
        }
1350
0
        /*
1351
0
         * We now have wstart on a 'set' bit, we now need to work out how bit
1352
0
         * a window to do.  To do this we need to scan forward until the last
1353
0
         * set bit before the end of the window
1354
0
         */
1355
0
        j = wstart;
1356
0
        wvalue = 1;
1357
0
        wend = 0;
1358
0
        for (i = 1; i < window; i++) {
1359
0
            if (wstart - i < 0)
1360
0
                break;
1361
0
            if (BN_is_bit_set(p, wstart - i)) {
1362
0
                wvalue <<= (i - wend);
1363
0
                wvalue |= 1;
1364
0
                wend = i;
1365
0
            }
1366
0
        }
1367
0
1368
0
        /* wend is the size of the current window */
1369
0
        j = wend + 1;
1370
0
        /* add the 'bytes above' */
1371
0
        if (!start)
1372
0
            for (i = 0; i < j; i++) {
1373
0
                if (!BN_mod_mul(r, r, r, m, ctx))
1374
0
                    goto err;
1375
0
            }
1376
0
1377
0
        /* wvalue will be an odd number < 2^window */
1378
0
        if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
1379
0
            goto err;
1380
0
1381
0
        /* move the 'window' down further */
1382
0
        wstart -= wend + 1;
1383
0
        wvalue = 0;
1384
0
        start = 0;
1385
0
        if (wstart < 0)
1386
0
            break;
1387
0
    }
1388
0
    ret = 1;
1389
0
 err:
1390
0
    BN_CTX_end(ctx);
1391
0
    bn_check_top(r);
1392
0
    return ret;
1393
0
}