/src/openssl/crypto/bn/bn_gcd.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib.h" |
11 | | #include "bn_lcl.h" |
12 | | |
13 | | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); |
14 | | |
15 | | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
16 | 0 | { |
17 | 0 | BIGNUM *a, *b, *t; |
18 | 0 | int ret = 0; |
19 | 0 |
|
20 | 0 | bn_check_top(in_a); |
21 | 0 | bn_check_top(in_b); |
22 | 0 |
|
23 | 0 | BN_CTX_start(ctx); |
24 | 0 | a = BN_CTX_get(ctx); |
25 | 0 | b = BN_CTX_get(ctx); |
26 | 0 | if (b == NULL) |
27 | 0 | goto err; |
28 | 0 | |
29 | 0 | if (BN_copy(a, in_a) == NULL) |
30 | 0 | goto err; |
31 | 0 | if (BN_copy(b, in_b) == NULL) |
32 | 0 | goto err; |
33 | 0 | a->neg = 0; |
34 | 0 | b->neg = 0; |
35 | 0 |
|
36 | 0 | if (BN_cmp(a, b) < 0) { |
37 | 0 | t = a; |
38 | 0 | a = b; |
39 | 0 | b = t; |
40 | 0 | } |
41 | 0 | t = euclid(a, b); |
42 | 0 | if (t == NULL) |
43 | 0 | goto err; |
44 | 0 | |
45 | 0 | if (BN_copy(r, t) == NULL) |
46 | 0 | goto err; |
47 | 0 | ret = 1; |
48 | 0 | err: |
49 | 0 | BN_CTX_end(ctx); |
50 | 0 | bn_check_top(r); |
51 | 0 | return ret; |
52 | 0 | } |
53 | | |
54 | | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) |
55 | 0 | { |
56 | 0 | BIGNUM *t; |
57 | 0 | int shifts = 0; |
58 | 0 |
|
59 | 0 | bn_check_top(a); |
60 | 0 | bn_check_top(b); |
61 | 0 |
|
62 | 0 | /* 0 <= b <= a */ |
63 | 0 | while (!BN_is_zero(b)) { |
64 | 0 | /* 0 < b <= a */ |
65 | 0 |
|
66 | 0 | if (BN_is_odd(a)) { |
67 | 0 | if (BN_is_odd(b)) { |
68 | 0 | if (!BN_sub(a, a, b)) |
69 | 0 | goto err; |
70 | 0 | if (!BN_rshift1(a, a)) |
71 | 0 | goto err; |
72 | 0 | if (BN_cmp(a, b) < 0) { |
73 | 0 | t = a; |
74 | 0 | a = b; |
75 | 0 | b = t; |
76 | 0 | } |
77 | 0 | } else { /* a odd - b even */ |
78 | 0 |
|
79 | 0 | if (!BN_rshift1(b, b)) |
80 | 0 | goto err; |
81 | 0 | if (BN_cmp(a, b) < 0) { |
82 | 0 | t = a; |
83 | 0 | a = b; |
84 | 0 | b = t; |
85 | 0 | } |
86 | 0 | } |
87 | 0 | } else { /* a is even */ |
88 | 0 |
|
89 | 0 | if (BN_is_odd(b)) { |
90 | 0 | if (!BN_rshift1(a, a)) |
91 | 0 | goto err; |
92 | 0 | if (BN_cmp(a, b) < 0) { |
93 | 0 | t = a; |
94 | 0 | a = b; |
95 | 0 | b = t; |
96 | 0 | } |
97 | 0 | } else { /* a even - b even */ |
98 | 0 |
|
99 | 0 | if (!BN_rshift1(a, a)) |
100 | 0 | goto err; |
101 | 0 | if (!BN_rshift1(b, b)) |
102 | 0 | goto err; |
103 | 0 | shifts++; |
104 | 0 | } |
105 | 0 | } |
106 | 0 | /* 0 <= b <= a */ |
107 | 0 | } |
108 | 0 |
|
109 | 0 | if (shifts) { |
110 | 0 | if (!BN_lshift(a, a, shifts)) |
111 | 0 | goto err; |
112 | 0 | } |
113 | 0 | bn_check_top(a); |
114 | 0 | return a; |
115 | 0 | err: |
116 | 0 | return NULL; |
117 | 0 | } |
118 | | |
119 | | /* solves ax == 1 (mod n) */ |
120 | | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, |
121 | | const BIGNUM *a, const BIGNUM *n, |
122 | | BN_CTX *ctx); |
123 | | |
124 | | BIGNUM *BN_mod_inverse(BIGNUM *in, |
125 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
126 | 0 | { |
127 | 0 | BIGNUM *rv; |
128 | 0 | int noinv; |
129 | 0 | rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); |
130 | 0 | if (noinv) |
131 | 0 | BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); |
132 | 0 | return rv; |
133 | 0 | } |
134 | | |
135 | | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
136 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
137 | | int *pnoinv) |
138 | 0 | { |
139 | 0 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
140 | 0 | BIGNUM *ret = NULL; |
141 | 0 | int sign; |
142 | 0 |
|
143 | 0 | /* This is invalid input so we don't worry about constant time here */ |
144 | 0 | if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { |
145 | 0 | if (pnoinv != NULL) |
146 | 0 | *pnoinv = 1; |
147 | 0 | return NULL; |
148 | 0 | } |
149 | 0 |
|
150 | 0 | if (pnoinv != NULL) |
151 | 0 | *pnoinv = 0; |
152 | 0 |
|
153 | 0 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |
154 | 0 | || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |
155 | 0 | return BN_mod_inverse_no_branch(in, a, n, ctx); |
156 | 0 | } |
157 | 0 | |
158 | 0 | bn_check_top(a); |
159 | 0 | bn_check_top(n); |
160 | 0 |
|
161 | 0 | BN_CTX_start(ctx); |
162 | 0 | A = BN_CTX_get(ctx); |
163 | 0 | B = BN_CTX_get(ctx); |
164 | 0 | X = BN_CTX_get(ctx); |
165 | 0 | D = BN_CTX_get(ctx); |
166 | 0 | M = BN_CTX_get(ctx); |
167 | 0 | Y = BN_CTX_get(ctx); |
168 | 0 | T = BN_CTX_get(ctx); |
169 | 0 | if (T == NULL) |
170 | 0 | goto err; |
171 | 0 | |
172 | 0 | if (in == NULL) |
173 | 0 | R = BN_new(); |
174 | 0 | else |
175 | 0 | R = in; |
176 | 0 | if (R == NULL) |
177 | 0 | goto err; |
178 | 0 | |
179 | 0 | BN_one(X); |
180 | 0 | BN_zero(Y); |
181 | 0 | if (BN_copy(B, a) == NULL) |
182 | 0 | goto err; |
183 | 0 | if (BN_copy(A, n) == NULL) |
184 | 0 | goto err; |
185 | 0 | A->neg = 0; |
186 | 0 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
187 | 0 | if (!BN_nnmod(B, B, A, ctx)) |
188 | 0 | goto err; |
189 | 0 | } |
190 | 0 | sign = -1; |
191 | 0 | /*- |
192 | 0 | * From B = a mod |n|, A = |n| it follows that |
193 | 0 | * |
194 | 0 | * 0 <= B < A, |
195 | 0 | * -sign*X*a == B (mod |n|), |
196 | 0 | * sign*Y*a == A (mod |n|). |
197 | 0 | */ |
198 | 0 |
|
199 | 0 | if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { |
200 | 0 | /* |
201 | 0 | * Binary inversion algorithm; requires odd modulus. This is faster |
202 | 0 | * than the general algorithm if the modulus is sufficiently small |
203 | 0 | * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit |
204 | 0 | * systems) |
205 | 0 | */ |
206 | 0 | int shift; |
207 | 0 |
|
208 | 0 | while (!BN_is_zero(B)) { |
209 | 0 | /*- |
210 | 0 | * 0 < B < |n|, |
211 | 0 | * 0 < A <= |n|, |
212 | 0 | * (1) -sign*X*a == B (mod |n|), |
213 | 0 | * (2) sign*Y*a == A (mod |n|) |
214 | 0 | */ |
215 | 0 |
|
216 | 0 | /* |
217 | 0 | * Now divide B by the maximum possible power of two in the |
218 | 0 | * integers, and divide X by the same value mod |n|. When we're |
219 | 0 | * done, (1) still holds. |
220 | 0 | */ |
221 | 0 | shift = 0; |
222 | 0 | while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ |
223 | 0 | shift++; |
224 | 0 |
|
225 | 0 | if (BN_is_odd(X)) { |
226 | 0 | if (!BN_uadd(X, X, n)) |
227 | 0 | goto err; |
228 | 0 | } |
229 | 0 | /* |
230 | 0 | * now X is even, so we can easily divide it by two |
231 | 0 | */ |
232 | 0 | if (!BN_rshift1(X, X)) |
233 | 0 | goto err; |
234 | 0 | } |
235 | 0 | if (shift > 0) { |
236 | 0 | if (!BN_rshift(B, B, shift)) |
237 | 0 | goto err; |
238 | 0 | } |
239 | 0 | |
240 | 0 | /* |
241 | 0 | * Same for A and Y. Afterwards, (2) still holds. |
242 | 0 | */ |
243 | 0 | shift = 0; |
244 | 0 | while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ |
245 | 0 | shift++; |
246 | 0 |
|
247 | 0 | if (BN_is_odd(Y)) { |
248 | 0 | if (!BN_uadd(Y, Y, n)) |
249 | 0 | goto err; |
250 | 0 | } |
251 | 0 | /* now Y is even */ |
252 | 0 | if (!BN_rshift1(Y, Y)) |
253 | 0 | goto err; |
254 | 0 | } |
255 | 0 | if (shift > 0) { |
256 | 0 | if (!BN_rshift(A, A, shift)) |
257 | 0 | goto err; |
258 | 0 | } |
259 | 0 | |
260 | 0 | /*- |
261 | 0 | * We still have (1) and (2). |
262 | 0 | * Both A and B are odd. |
263 | 0 | * The following computations ensure that |
264 | 0 | * |
265 | 0 | * 0 <= B < |n|, |
266 | 0 | * 0 < A < |n|, |
267 | 0 | * (1) -sign*X*a == B (mod |n|), |
268 | 0 | * (2) sign*Y*a == A (mod |n|), |
269 | 0 | * |
270 | 0 | * and that either A or B is even in the next iteration. |
271 | 0 | */ |
272 | 0 | if (BN_ucmp(B, A) >= 0) { |
273 | 0 | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
274 | 0 | if (!BN_uadd(X, X, Y)) |
275 | 0 | goto err; |
276 | 0 | /* |
277 | 0 | * NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
278 | 0 | * actually makes the algorithm slower |
279 | 0 | */ |
280 | 0 | if (!BN_usub(B, B, A)) |
281 | 0 | goto err; |
282 | 0 | } else { |
283 | 0 | /* sign*(X + Y)*a == A - B (mod |n|) */ |
284 | 0 | if (!BN_uadd(Y, Y, X)) |
285 | 0 | goto err; |
286 | 0 | /* |
287 | 0 | * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
288 | 0 | */ |
289 | 0 | if (!BN_usub(A, A, B)) |
290 | 0 | goto err; |
291 | 0 | } |
292 | 0 | } |
293 | 0 | } else { |
294 | 0 | /* general inversion algorithm */ |
295 | 0 |
|
296 | 0 | while (!BN_is_zero(B)) { |
297 | 0 | BIGNUM *tmp; |
298 | 0 |
|
299 | 0 | /*- |
300 | 0 | * 0 < B < A, |
301 | 0 | * (*) -sign*X*a == B (mod |n|), |
302 | 0 | * sign*Y*a == A (mod |n|) |
303 | 0 | */ |
304 | 0 |
|
305 | 0 | /* (D, M) := (A/B, A%B) ... */ |
306 | 0 | if (BN_num_bits(A) == BN_num_bits(B)) { |
307 | 0 | if (!BN_one(D)) |
308 | 0 | goto err; |
309 | 0 | if (!BN_sub(M, A, B)) |
310 | 0 | goto err; |
311 | 0 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
312 | 0 | /* A/B is 1, 2, or 3 */ |
313 | 0 | if (!BN_lshift1(T, B)) |
314 | 0 | goto err; |
315 | 0 | if (BN_ucmp(A, T) < 0) { |
316 | 0 | /* A < 2*B, so D=1 */ |
317 | 0 | if (!BN_one(D)) |
318 | 0 | goto err; |
319 | 0 | if (!BN_sub(M, A, B)) |
320 | 0 | goto err; |
321 | 0 | } else { |
322 | 0 | /* A >= 2*B, so D=2 or D=3 */ |
323 | 0 | if (!BN_sub(M, A, T)) |
324 | 0 | goto err; |
325 | 0 | if (!BN_add(D, T, B)) |
326 | 0 | goto err; /* use D (:= 3*B) as temp */ |
327 | 0 | if (BN_ucmp(A, D) < 0) { |
328 | 0 | /* A < 3*B, so D=2 */ |
329 | 0 | if (!BN_set_word(D, 2)) |
330 | 0 | goto err; |
331 | 0 | /* |
332 | 0 | * M (= A - 2*B) already has the correct value |
333 | 0 | */ |
334 | 0 | } else { |
335 | 0 | /* only D=3 remains */ |
336 | 0 | if (!BN_set_word(D, 3)) |
337 | 0 | goto err; |
338 | 0 | /* |
339 | 0 | * currently M = A - 2*B, but we need M = A - 3*B |
340 | 0 | */ |
341 | 0 | if (!BN_sub(M, M, B)) |
342 | 0 | goto err; |
343 | 0 | } |
344 | 0 | } |
345 | 0 | } else { |
346 | 0 | if (!BN_div(D, M, A, B, ctx)) |
347 | 0 | goto err; |
348 | 0 | } |
349 | 0 | |
350 | 0 | /*- |
351 | 0 | * Now |
352 | 0 | * A = D*B + M; |
353 | 0 | * thus we have |
354 | 0 | * (**) sign*Y*a == D*B + M (mod |n|). |
355 | 0 | */ |
356 | 0 | |
357 | 0 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
358 | 0 |
|
359 | 0 | /* (A, B) := (B, A mod B) ... */ |
360 | 0 | A = B; |
361 | 0 | B = M; |
362 | 0 | /* ... so we have 0 <= B < A again */ |
363 | 0 |
|
364 | 0 | /*- |
365 | 0 | * Since the former M is now B and the former B is now A, |
366 | 0 | * (**) translates into |
367 | 0 | * sign*Y*a == D*A + B (mod |n|), |
368 | 0 | * i.e. |
369 | 0 | * sign*Y*a - D*A == B (mod |n|). |
370 | 0 | * Similarly, (*) translates into |
371 | 0 | * -sign*X*a == A (mod |n|). |
372 | 0 | * |
373 | 0 | * Thus, |
374 | 0 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
375 | 0 | * i.e. |
376 | 0 | * sign*(Y + D*X)*a == B (mod |n|). |
377 | 0 | * |
378 | 0 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
379 | 0 | * -sign*X*a == B (mod |n|), |
380 | 0 | * sign*Y*a == A (mod |n|). |
381 | 0 | * Note that X and Y stay non-negative all the time. |
382 | 0 | */ |
383 | 0 |
|
384 | 0 | /* |
385 | 0 | * most of the time D is very small, so we can optimize tmp := D*X+Y |
386 | 0 | */ |
387 | 0 | if (BN_is_one(D)) { |
388 | 0 | if (!BN_add(tmp, X, Y)) |
389 | 0 | goto err; |
390 | 0 | } else { |
391 | 0 | if (BN_is_word(D, 2)) { |
392 | 0 | if (!BN_lshift1(tmp, X)) |
393 | 0 | goto err; |
394 | 0 | } else if (BN_is_word(D, 4)) { |
395 | 0 | if (!BN_lshift(tmp, X, 2)) |
396 | 0 | goto err; |
397 | 0 | } else if (D->top == 1) { |
398 | 0 | if (!BN_copy(tmp, X)) |
399 | 0 | goto err; |
400 | 0 | if (!BN_mul_word(tmp, D->d[0])) |
401 | 0 | goto err; |
402 | 0 | } else { |
403 | 0 | if (!BN_mul(tmp, D, X, ctx)) |
404 | 0 | goto err; |
405 | 0 | } |
406 | 0 | if (!BN_add(tmp, tmp, Y)) |
407 | 0 | goto err; |
408 | 0 | } |
409 | 0 | |
410 | 0 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
411 | 0 | Y = X; |
412 | 0 | X = tmp; |
413 | 0 | sign = -sign; |
414 | 0 | } |
415 | 0 | } |
416 | 0 |
|
417 | 0 | /*- |
418 | 0 | * The while loop (Euclid's algorithm) ends when |
419 | 0 | * A == gcd(a,n); |
420 | 0 | * we have |
421 | 0 | * sign*Y*a == A (mod |n|), |
422 | 0 | * where Y is non-negative. |
423 | 0 | */ |
424 | 0 |
|
425 | 0 | if (sign < 0) { |
426 | 0 | if (!BN_sub(Y, n, Y)) |
427 | 0 | goto err; |
428 | 0 | } |
429 | 0 | /* Now Y*a == A (mod |n|). */ |
430 | 0 | |
431 | 0 | if (BN_is_one(A)) { |
432 | 0 | /* Y*a == 1 (mod |n|) */ |
433 | 0 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
434 | 0 | if (!BN_copy(R, Y)) |
435 | 0 | goto err; |
436 | 0 | } else { |
437 | 0 | if (!BN_nnmod(R, Y, n, ctx)) |
438 | 0 | goto err; |
439 | 0 | } |
440 | 0 | } else { |
441 | 0 | if (pnoinv) |
442 | 0 | *pnoinv = 1; |
443 | 0 | goto err; |
444 | 0 | } |
445 | 0 | ret = R; |
446 | 0 | err: |
447 | 0 | if ((ret == NULL) && (in == NULL)) |
448 | 0 | BN_free(R); |
449 | 0 | BN_CTX_end(ctx); |
450 | 0 | bn_check_top(ret); |
451 | 0 | return ret; |
452 | 0 | } |
453 | | |
454 | | /* |
455 | | * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does |
456 | | * not contain branches that may leak sensitive information. |
457 | | */ |
458 | | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, |
459 | | const BIGNUM *a, const BIGNUM *n, |
460 | | BN_CTX *ctx) |
461 | 0 | { |
462 | 0 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
463 | 0 | BIGNUM *ret = NULL; |
464 | 0 | int sign; |
465 | 0 |
|
466 | 0 | bn_check_top(a); |
467 | 0 | bn_check_top(n); |
468 | 0 |
|
469 | 0 | BN_CTX_start(ctx); |
470 | 0 | A = BN_CTX_get(ctx); |
471 | 0 | B = BN_CTX_get(ctx); |
472 | 0 | X = BN_CTX_get(ctx); |
473 | 0 | D = BN_CTX_get(ctx); |
474 | 0 | M = BN_CTX_get(ctx); |
475 | 0 | Y = BN_CTX_get(ctx); |
476 | 0 | T = BN_CTX_get(ctx); |
477 | 0 | if (T == NULL) |
478 | 0 | goto err; |
479 | 0 | |
480 | 0 | if (in == NULL) |
481 | 0 | R = BN_new(); |
482 | 0 | else |
483 | 0 | R = in; |
484 | 0 | if (R == NULL) |
485 | 0 | goto err; |
486 | 0 | |
487 | 0 | BN_one(X); |
488 | 0 | BN_zero(Y); |
489 | 0 | if (BN_copy(B, a) == NULL) |
490 | 0 | goto err; |
491 | 0 | if (BN_copy(A, n) == NULL) |
492 | 0 | goto err; |
493 | 0 | A->neg = 0; |
494 | 0 |
|
495 | 0 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
496 | 0 | /* |
497 | 0 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
498 | 0 | * BN_div_no_branch will be called eventually. |
499 | 0 | */ |
500 | 0 | { |
501 | 0 | BIGNUM local_B; |
502 | 0 | bn_init(&local_B); |
503 | 0 | BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); |
504 | 0 | if (!BN_nnmod(B, &local_B, A, ctx)) |
505 | 0 | goto err; |
506 | 0 | /* Ensure local_B goes out of scope before any further use of B */ |
507 | 0 | } |
508 | 0 | } |
509 | 0 | sign = -1; |
510 | 0 | /*- |
511 | 0 | * From B = a mod |n|, A = |n| it follows that |
512 | 0 | * |
513 | 0 | * 0 <= B < A, |
514 | 0 | * -sign*X*a == B (mod |n|), |
515 | 0 | * sign*Y*a == A (mod |n|). |
516 | 0 | */ |
517 | 0 |
|
518 | 0 | while (!BN_is_zero(B)) { |
519 | 0 | BIGNUM *tmp; |
520 | 0 |
|
521 | 0 | /*- |
522 | 0 | * 0 < B < A, |
523 | 0 | * (*) -sign*X*a == B (mod |n|), |
524 | 0 | * sign*Y*a == A (mod |n|) |
525 | 0 | */ |
526 | 0 |
|
527 | 0 | /* |
528 | 0 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
529 | 0 | * BN_div_no_branch will be called eventually. |
530 | 0 | */ |
531 | 0 | { |
532 | 0 | BIGNUM local_A; |
533 | 0 | bn_init(&local_A); |
534 | 0 | BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); |
535 | 0 |
|
536 | 0 | /* (D, M) := (A/B, A%B) ... */ |
537 | 0 | if (!BN_div(D, M, &local_A, B, ctx)) |
538 | 0 | goto err; |
539 | 0 | /* Ensure local_A goes out of scope before any further use of A */ |
540 | 0 | } |
541 | 0 | |
542 | 0 | /*- |
543 | 0 | * Now |
544 | 0 | * A = D*B + M; |
545 | 0 | * thus we have |
546 | 0 | * (**) sign*Y*a == D*B + M (mod |n|). |
547 | 0 | */ |
548 | 0 | |
549 | 0 | tmp = A; /* keep the BIGNUM object, the value does not |
550 | 0 | * matter */ |
551 | 0 |
|
552 | 0 | /* (A, B) := (B, A mod B) ... */ |
553 | 0 | A = B; |
554 | 0 | B = M; |
555 | 0 | /* ... so we have 0 <= B < A again */ |
556 | 0 |
|
557 | 0 | /*- |
558 | 0 | * Since the former M is now B and the former B is now A, |
559 | 0 | * (**) translates into |
560 | 0 | * sign*Y*a == D*A + B (mod |n|), |
561 | 0 | * i.e. |
562 | 0 | * sign*Y*a - D*A == B (mod |n|). |
563 | 0 | * Similarly, (*) translates into |
564 | 0 | * -sign*X*a == A (mod |n|). |
565 | 0 | * |
566 | 0 | * Thus, |
567 | 0 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
568 | 0 | * i.e. |
569 | 0 | * sign*(Y + D*X)*a == B (mod |n|). |
570 | 0 | * |
571 | 0 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
572 | 0 | * -sign*X*a == B (mod |n|), |
573 | 0 | * sign*Y*a == A (mod |n|). |
574 | 0 | * Note that X and Y stay non-negative all the time. |
575 | 0 | */ |
576 | 0 |
|
577 | 0 | if (!BN_mul(tmp, D, X, ctx)) |
578 | 0 | goto err; |
579 | 0 | if (!BN_add(tmp, tmp, Y)) |
580 | 0 | goto err; |
581 | 0 | |
582 | 0 | M = Y; /* keep the BIGNUM object, the value does not |
583 | 0 | * matter */ |
584 | 0 | Y = X; |
585 | 0 | X = tmp; |
586 | 0 | sign = -sign; |
587 | 0 | } |
588 | 0 |
|
589 | 0 | /*- |
590 | 0 | * The while loop (Euclid's algorithm) ends when |
591 | 0 | * A == gcd(a,n); |
592 | 0 | * we have |
593 | 0 | * sign*Y*a == A (mod |n|), |
594 | 0 | * where Y is non-negative. |
595 | 0 | */ |
596 | 0 |
|
597 | 0 | if (sign < 0) { |
598 | 0 | if (!BN_sub(Y, n, Y)) |
599 | 0 | goto err; |
600 | 0 | } |
601 | 0 | /* Now Y*a == A (mod |n|). */ |
602 | 0 | |
603 | 0 | if (BN_is_one(A)) { |
604 | 0 | /* Y*a == 1 (mod |n|) */ |
605 | 0 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
606 | 0 | if (!BN_copy(R, Y)) |
607 | 0 | goto err; |
608 | 0 | } else { |
609 | 0 | if (!BN_nnmod(R, Y, n, ctx)) |
610 | 0 | goto err; |
611 | 0 | } |
612 | 0 | } else { |
613 | 0 | BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); |
614 | 0 | goto err; |
615 | 0 | } |
616 | 0 | ret = R; |
617 | 0 | err: |
618 | 0 | if ((ret == NULL) && (in == NULL)) |
619 | 0 | BN_free(R); |
620 | 0 | BN_CTX_end(ctx); |
621 | 0 | bn_check_top(ret); |
622 | 0 | return ret; |
623 | 0 | } |