Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/bn/bn_kron.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include "internal/cryptlib.h"
11
#include "bn_lcl.h"
12
13
/* least significant word */
14
0
#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
15
16
/* Returns -2 for errors because both -1 and 0 are valid results. */
17
int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
18
0
{
19
0
    int i;
20
0
    int ret = -2;               /* avoid 'uninitialized' warning */
21
0
    int err = 0;
22
0
    BIGNUM *A, *B, *tmp;
23
0
    /*-
24
0
     * In 'tab', only odd-indexed entries are relevant:
25
0
     * For any odd BIGNUM n,
26
0
     *     tab[BN_lsw(n) & 7]
27
0
     * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
28
0
     * Note that the sign of n does not matter.
29
0
     */
30
0
    static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 };
31
0
32
0
    bn_check_top(a);
33
0
    bn_check_top(b);
34
0
35
0
    BN_CTX_start(ctx);
36
0
    A = BN_CTX_get(ctx);
37
0
    B = BN_CTX_get(ctx);
38
0
    if (B == NULL)
39
0
        goto end;
40
0
41
0
    err = !BN_copy(A, a);
42
0
    if (err)
43
0
        goto end;
44
0
    err = !BN_copy(B, b);
45
0
    if (err)
46
0
        goto end;
47
0
48
0
    /*
49
0
     * Kronecker symbol, implemented according to Henri Cohen,
50
0
     * "A Course in Computational Algebraic Number Theory"
51
0
     * (algorithm 1.4.10).
52
0
     */
53
0
54
0
    /* Cohen's step 1: */
55
0
56
0
    if (BN_is_zero(B)) {
57
0
        ret = BN_abs_is_word(A, 1);
58
0
        goto end;
59
0
    }
60
0
61
0
    /* Cohen's step 2: */
62
0
63
0
    if (!BN_is_odd(A) && !BN_is_odd(B)) {
64
0
        ret = 0;
65
0
        goto end;
66
0
    }
67
0
68
0
    /* now  B  is non-zero */
69
0
    i = 0;
70
0
    while (!BN_is_bit_set(B, i))
71
0
        i++;
72
0
    err = !BN_rshift(B, B, i);
73
0
    if (err)
74
0
        goto end;
75
0
    if (i & 1) {
76
0
        /* i is odd */
77
0
        /* (thus  B  was even, thus  A  must be odd!)  */
78
0
79
0
        /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
80
0
        ret = tab[BN_lsw(A) & 7];
81
0
    } else {
82
0
        /* i is even */
83
0
        ret = 1;
84
0
    }
85
0
86
0
    if (B->neg) {
87
0
        B->neg = 0;
88
0
        if (A->neg)
89
0
            ret = -ret;
90
0
    }
91
0
92
0
    /*
93
0
     * now B is positive and odd, so what remains to be done is to compute
94
0
     * the Jacobi symbol (A/B) and multiply it by 'ret'
95
0
     */
96
0
97
0
    while (1) {
98
0
        /* Cohen's step 3: */
99
0
100
0
        /*  B  is positive and odd */
101
0
102
0
        if (BN_is_zero(A)) {
103
0
            ret = BN_is_one(B) ? ret : 0;
104
0
            goto end;
105
0
        }
106
0
107
0
        /* now  A  is non-zero */
108
0
        i = 0;
109
0
        while (!BN_is_bit_set(A, i))
110
0
            i++;
111
0
        err = !BN_rshift(A, A, i);
112
0
        if (err)
113
0
            goto end;
114
0
        if (i & 1) {
115
0
            /* i is odd */
116
0
            /* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
117
0
            ret = ret * tab[BN_lsw(B) & 7];
118
0
        }
119
0
120
0
        /* Cohen's step 4: */
121
0
        /* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
122
0
        if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
123
0
            ret = -ret;
124
0
125
0
        /* (A, B) := (B mod |A|, |A|) */
126
0
        err = !BN_nnmod(B, B, A, ctx);
127
0
        if (err)
128
0
            goto end;
129
0
        tmp = A;
130
0
        A = B;
131
0
        B = tmp;
132
0
        tmp->neg = 0;
133
0
    }
134
0
 end:
135
0
    BN_CTX_end(ctx);
136
0
    if (err)
137
0
        return -2;
138
0
    else
139
0
        return ret;
140
0
}