Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/bn/bn_lcl.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef HEADER_BN_LCL_H
11
# define HEADER_BN_LCL_H
12
13
/*
14
 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15
 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16
 * Configure script and needs to support both 32-bit and 64-bit.
17
 */
18
# include <openssl/opensslconf.h>
19
20
# if !defined(OPENSSL_SYS_UEFI)
21
#  include "internal/bn_conf.h"
22
# endif
23
24
# include "internal/bn_int.h"
25
26
/*
27
 * These preprocessor symbols control various aspects of the bignum headers
28
 * and library code. They're not defined by any "normal" configuration, as
29
 * they are intended for development and testing purposes. NB: defining all
30
 * three can be useful for debugging application code as well as openssl
31
 * itself. BN_DEBUG - turn on various debugging alterations to the bignum
32
 * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up
33
 * mismanagement of bignum internals. You must also define BN_DEBUG.
34
 */
35
/* #define BN_DEBUG */
36
/* #define BN_DEBUG_RAND */
37
38
# ifndef OPENSSL_SMALL_FOOTPRINT
39
#  define BN_MUL_COMBA
40
#  define BN_SQR_COMBA
41
#  define BN_RECURSION
42
# endif
43
44
/*
45
 * This next option uses the C libraries (2 word)/(1 word) function. If it is
46
 * not defined, I use my C version (which is slower). The reason for this
47
 * flag is that when the particular C compiler library routine is used, and
48
 * the library is linked with a different compiler, the library is missing.
49
 * This mostly happens when the library is built with gcc and then linked
50
 * using normal cc.  This would be a common occurrence because gcc normally
51
 * produces code that is 2 times faster than system compilers for the big
52
 * number stuff. For machines with only one compiler (or shared libraries),
53
 * this should be on.  Again this in only really a problem on machines using
54
 * "long long's", are 32bit, and are not using my assembler code.
55
 */
56
# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
57
    defined(OPENSSL_SYS_WIN32) || defined(linux)
58
#  define BN_DIV2W
59
# endif
60
61
/*
62
 * 64-bit processor with LP64 ABI
63
 */
64
# ifdef SIXTY_FOUR_BIT_LONG
65
#  define BN_ULLONG       unsigned long long
66
0
#  define BN_BITS4        32
67
395M
#  define BN_MASK2        (0xffffffffffffffffL)
68
0
#  define BN_MASK2l       (0xffffffffL)
69
0
#  define BN_MASK2h       (0xffffffff00000000L)
70
#  define BN_MASK2h1      (0xffffffff80000000L)
71
166k
#  define BN_DEC_CONV     (10000000000000000000UL)
72
30.3k
#  define BN_DEC_NUM      19
73
30.3k
#  define BN_DEC_FMT1     "%lu"
74
136k
#  define BN_DEC_FMT2     "%019lu"
75
# endif
76
77
/*
78
 * 64-bit processor other than LP64 ABI
79
 */
80
# ifdef SIXTY_FOUR_BIT
81
#  undef BN_LLONG
82
#  undef BN_ULLONG
83
#  define BN_BITS4        32
84
#  define BN_MASK2        (0xffffffffffffffffLL)
85
#  define BN_MASK2l       (0xffffffffL)
86
#  define BN_MASK2h       (0xffffffff00000000LL)
87
#  define BN_MASK2h1      (0xffffffff80000000LL)
88
#  define BN_DEC_CONV     (10000000000000000000ULL)
89
#  define BN_DEC_NUM      19
90
#  define BN_DEC_FMT1     "%llu"
91
#  define BN_DEC_FMT2     "%019llu"
92
# endif
93
94
# ifdef THIRTY_TWO_BIT
95
#  ifdef BN_LLONG
96
#   if defined(_WIN32) && !defined(__GNUC__)
97
#    define BN_ULLONG     unsigned __int64
98
#   else
99
#    define BN_ULLONG     unsigned long long
100
#   endif
101
#  endif
102
#  define BN_BITS4        16
103
#  define BN_MASK2        (0xffffffffL)
104
#  define BN_MASK2l       (0xffff)
105
#  define BN_MASK2h1      (0xffff8000L)
106
#  define BN_MASK2h       (0xffff0000L)
107
#  define BN_DEC_CONV     (1000000000L)
108
#  define BN_DEC_NUM      9
109
#  define BN_DEC_FMT1     "%u"
110
#  define BN_DEC_FMT2     "%09u"
111
# endif
112
113
114
/*-
115
 * Bignum consistency macros
116
 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
117
 * bignum data after direct manipulations on the data. There is also an
118
 * "internal" macro, bn_check_top(), for verifying that there are no leading
119
 * zeroes. Unfortunately, some auditing is required due to the fact that
120
 * bn_fix_top() has become an overabused duct-tape because bignum data is
121
 * occasionally passed around in an inconsistent state. So the following
122
 * changes have been made to sort this out;
123
 * - bn_fix_top()s implementation has been moved to bn_correct_top()
124
 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
125
 *   bn_check_top() is as before.
126
 * - if BN_DEBUG *is* defined;
127
 *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
128
 *     consistent. (ed: only if BN_DEBUG_RAND is defined)
129
 *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
130
 * The idea is to have debug builds flag up inconsistent bignums when they
131
 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
132
 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
133
 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
134
 * was not appropriate, we convert it permanently to bn_check_top() and track
135
 * down the cause of the bug. Eventually, no internal code should be using the
136
 * bn_fix_top() macro. External applications and libraries should try this with
137
 * their own code too, both in terms of building against the openssl headers
138
 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
139
 * defined. This not only improves external code, it provides more test
140
 * coverage for openssl's own code.
141
 */
142
143
# ifdef BN_DEBUG
144
/*
145
 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
146
 * bn_correct_top, in other words such vectors are permitted to have zeros
147
 * in most significant limbs. Such vectors are used internally to achieve
148
 * execution time invariance for critical operations with private keys.
149
 * It's BN_DEBUG-only flag, because user application is not supposed to
150
 * observe it anyway. Moreover, optimizing compiler would actually remove
151
 * all operations manipulating the bit in question in non-BN_DEBUG build.
152
 */
153
#  define BN_FLG_FIXED_TOP 0x10000
154
#  ifdef BN_DEBUG_RAND
155
#   define bn_pollute(a) \
156
        do { \
157
            const BIGNUM *_bnum1 = (a); \
158
            if (_bnum1->top < _bnum1->dmax) { \
159
                unsigned char _tmp_char; \
160
                /* We cast away const without the compiler knowing, any \
161
                 * *genuinely* constant variables that aren't mutable \
162
                 * wouldn't be constructed with top!=dmax. */ \
163
                BN_ULONG *_not_const; \
164
                memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
165
                RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
166
                memset(_not_const + _bnum1->top, _tmp_char, \
167
                       sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
168
            } \
169
        } while(0)
170
#  else
171
#   define bn_pollute(a)
172
#  endif
173
#  define bn_check_top(a) \
174
        do { \
175
                const BIGNUM *_bnum2 = (a); \
176
                if (_bnum2 != NULL) { \
177
                        int _top = _bnum2->top; \
178
                        (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
179
                                  (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
180
                                            || _bnum2->d[_top - 1] != 0))); \
181
                        bn_pollute(_bnum2); \
182
                } \
183
        } while(0)
184
185
#  define bn_fix_top(a)           bn_check_top(a)
186
187
#  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
188
#  define bn_wcheck_size(bn, words) \
189
        do { \
190
                const BIGNUM *_bnum2 = (bn); \
191
                assert((words) <= (_bnum2)->dmax && \
192
                       (words) >= (_bnum2)->top); \
193
                /* avoid unused variable warning with NDEBUG */ \
194
                (void)(_bnum2); \
195
        } while(0)
196
197
# else                          /* !BN_DEBUG */
198
199
2.44M
#  define BN_FLG_FIXED_TOP 0
200
#  define bn_pollute(a)
201
#  define bn_check_top(a)
202
#  define bn_fix_top(a)           bn_correct_top(a)
203
#  define bn_check_size(bn, bits)
204
#  define bn_wcheck_size(bn, words)
205
206
# endif
207
208
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
209
                          BN_ULONG w);
210
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
211
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
212
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
213
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
214
                      int num);
215
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
216
                      int num);
217
218
struct bignum_st {
219
    BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit
220
                                 * chunks. */
221
    int top;                    /* Index of last used d +1. */
222
    /* The next are internal book keeping for bn_expand. */
223
    int dmax;                   /* Size of the d array. */
224
    int neg;                    /* one if the number is negative */
225
    int flags;
226
};
227
228
/* Used for montgomery multiplication */
229
struct bn_mont_ctx_st {
230
    int ri;                     /* number of bits in R */
231
    BIGNUM RR;                  /* used to convert to montgomery form,
232
                                   possibly zero-padded */
233
    BIGNUM N;                   /* The modulus */
234
    BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
235
                                 * stored for bignum algorithm) */
236
    BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
237
                                 * changed with 0.9.9, was "BN_ULONG n0;"
238
                                 * before) */
239
    int flags;
240
};
241
242
/*
243
 * Used for reciprocal division/mod functions It cannot be shared between
244
 * threads
245
 */
246
struct bn_recp_ctx_st {
247
    BIGNUM N;                   /* the divisor */
248
    BIGNUM Nr;                  /* the reciprocal */
249
    int num_bits;
250
    int shift;
251
    int flags;
252
};
253
254
/* Used for slow "generation" functions. */
255
struct bn_gencb_st {
256
    unsigned int ver;           /* To handle binary (in)compatibility */
257
    void *arg;                  /* callback-specific data */
258
    union {
259
        /* if (ver==1) - handles old style callbacks */
260
        void (*cb_1) (int, int, void *);
261
        /* if (ver==2) - new callback style */
262
        int (*cb_2) (int, int, BN_GENCB *);
263
    } cb;
264
};
265
266
/*-
267
 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
268
 *
269
 *
270
 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
271
 * the number of multiplications is a constant plus on average
272
 *
273
 *    2^(w-1) + (b-w)/(w+1);
274
 *
275
 * here  2^(w-1)  is for precomputing the table (we actually need
276
 * entries only for windows that have the lowest bit set), and
277
 * (b-w)/(w+1)  is an approximation for the expected number of
278
 * w-bit windows, not counting the first one.
279
 *
280
 * Thus we should use
281
 *
282
 *    w >= 6  if        b > 671
283
 *     w = 5  if  671 > b > 239
284
 *     w = 4  if  239 > b >  79
285
 *     w = 3  if   79 > b >  23
286
 *    w <= 2  if   23 > b
287
 *
288
 * (with draws in between).  Very small exponents are often selected
289
 * with low Hamming weight, so we use  w = 1  for b <= 23.
290
 */
291
# define BN_window_bits_for_exponent_size(b) \
292
0
                ((b) > 671 ? 6 : \
293
0
                 (b) > 239 ? 5 : \
294
0
                 (b) >  79 ? 4 : \
295
0
                 (b) >  23 ? 3 : 1)
296
297
/*
298
 * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
299
 * line width of the target processor is at least the following value.
300
 */
301
0
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
302
0
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
303
304
/*
305
 * Window sizes optimized for fixed window size modular exponentiation
306
 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
307
 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
308
 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
309
 * defined for cache line sizes of 32 and 64, cache line sizes where
310
 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
311
 * used on processors that have a 128 byte or greater cache line size.
312
 */
313
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
314
315
#  define BN_window_bits_for_ctime_exponent_size(b) \
316
0
                ((b) > 937 ? 6 : \
317
0
                 (b) > 306 ? 5 : \
318
0
                 (b) >  89 ? 4 : \
319
0
                 (b) >  22 ? 3 : 1)
320
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
321
322
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
323
324
#  define BN_window_bits_for_ctime_exponent_size(b) \
325
                ((b) > 306 ? 5 : \
326
                 (b) >  89 ? 4 : \
327
                 (b) >  22 ? 3 : 1)
328
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
329
330
# endif
331
332
/* Pentium pro 16,16,16,32,64 */
333
/* Alpha       16,16,16,16.64 */
334
195k
# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
335
230k
# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
336
0
# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
337
0
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
338
# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
339
340
/*
341
 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
342
 * size_t was used to perform integer-only operations on pointers.  This
343
 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
344
 * is still only 32 bits.  What's needed in these cases is an integer type
345
 * with the same size as a pointer, which size_t is not certain to be. The
346
 * only fix here is VMS-specific.
347
 */
348
# if defined(OPENSSL_SYS_VMS)
349
#  if __INITIAL_POINTER_SIZE == 64
350
#   define PTR_SIZE_INT long long
351
#  else                         /* __INITIAL_POINTER_SIZE == 64 */
352
#   define PTR_SIZE_INT int
353
#  endif                        /* __INITIAL_POINTER_SIZE == 64 [else] */
354
# elif !defined(PTR_SIZE_INT)   /* defined(OPENSSL_SYS_VMS) */
355
0
#  define PTR_SIZE_INT size_t
356
# endif                         /* defined(OPENSSL_SYS_VMS) [else] */
357
358
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
359
/*
360
 * BN_UMULT_HIGH section.
361
 * If the compiler doesn't support 2*N integer type, then you have to
362
 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
363
 * shifts and additions which unavoidably results in severe performance
364
 * penalties. Of course provided that the hardware is capable of producing
365
 * 2*N result... That's when you normally start considering assembler
366
 * implementation. However! It should be pointed out that some CPUs (e.g.,
367
 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
368
 * the upper half of the product placing the result into a general
369
 * purpose register. Now *if* the compiler supports inline assembler,
370
 * then it's not impossible to implement the "bignum" routines (and have
371
 * the compiler optimize 'em) exhibiting "native" performance in C. That's
372
 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
373
 * support 2*64 integer type, which is also used here.
374
 */
375
#  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
376
      (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
377
#   define BN_UMULT_HIGH(a,b)          (((__uint128_t)(a)*(b))>>64)
378
0
#   define BN_UMULT_LOHI(low,high,a,b) ({       \
379
0
        __uint128_t ret=(__uint128_t)(a)*(b);   \
380
0
        (high)=ret>>64; (low)=ret;      })
381
#  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
382
#   if defined(__DECC)
383
#    include <c_asm.h>
384
#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
385
#   elif defined(__GNUC__) && __GNUC__>=2
386
#    define BN_UMULT_HIGH(a,b)   ({     \
387
        register BN_ULONG ret;          \
388
        asm ("umulh     %1,%2,%0"       \
389
             : "=r"(ret)                \
390
             : "r"(a), "r"(b));         \
391
        ret;                      })
392
#   endif                       /* compiler */
393
#  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
394
#   if defined(__GNUC__) && __GNUC__>=2
395
#    define BN_UMULT_HIGH(a,b)   ({     \
396
        register BN_ULONG ret;          \
397
        asm ("mulhdu    %0,%1,%2"       \
398
             : "=r"(ret)                \
399
             : "r"(a), "r"(b));         \
400
        ret;                      })
401
#   endif                       /* compiler */
402
#  elif (defined(__x86_64) || defined(__x86_64__)) && \
403
       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
404
#   if defined(__GNUC__) && __GNUC__>=2
405
#    define BN_UMULT_HIGH(a,b)   ({     \
406
        register BN_ULONG ret,discard;  \
407
        asm ("mulq      %3"             \
408
             : "=a"(discard),"=d"(ret)  \
409
             : "a"(a), "g"(b)           \
410
             : "cc");                   \
411
        ret;                      })
412
#    define BN_UMULT_LOHI(low,high,a,b) \
413
        asm ("mulq      %3"             \
414
                : "=a"(low),"=d"(high)  \
415
                : "a"(a),"g"(b)         \
416
                : "cc");
417
#   endif
418
#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
419
#   if defined(_MSC_VER) && _MSC_VER>=1400
420
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
421
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
422
                          unsigned __int64 *h);
423
#    pragma intrinsic(__umulh,_umul128)
424
#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
425
#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
426
#   endif
427
#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
428
#   if defined(__GNUC__) && __GNUC__>=2
429
#    define BN_UMULT_HIGH(a,b) ({       \
430
        register BN_ULONG ret;          \
431
        asm ("dmultu    %1,%2"          \
432
             : "=h"(ret)                \
433
             : "r"(a), "r"(b) : "l");   \
434
        ret;                    })
435
#    define BN_UMULT_LOHI(low,high,a,b) \
436
        asm ("dmultu    %2,%3"          \
437
             : "=l"(low),"=h"(high)     \
438
             : "r"(a), "r"(b));
439
#   endif
440
#  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
441
#   if defined(__GNUC__) && __GNUC__>=2
442
#    define BN_UMULT_HIGH(a,b)   ({     \
443
        register BN_ULONG ret;          \
444
        asm ("umulh     %0,%1,%2"       \
445
             : "=r"(ret)                \
446
             : "r"(a), "r"(b));         \
447
        ret;                      })
448
#   endif
449
#  endif                        /* cpu */
450
# endif                         /* OPENSSL_NO_ASM */
451
452
# ifdef BN_DEBUG_RAND
453
#  define bn_clear_top2max(a) \
454
        { \
455
        int      ind = (a)->dmax - (a)->top; \
456
        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
457
        for (; ind != 0; ind--) \
458
                *(++ftl) = 0x0; \
459
        }
460
# else
461
#  define bn_clear_top2max(a)
462
# endif
463
464
# ifdef BN_LLONG
465
/*******************************************************************
466
 * Using the long long type, has to be twice as wide as BN_ULONG...
467
 */
468
#  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
469
#  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
470
471
#  define mul_add(r,a,w,c) { \
472
        BN_ULLONG t; \
473
        t=(BN_ULLONG)w * (a) + (r) + (c); \
474
        (r)= Lw(t); \
475
        (c)= Hw(t); \
476
        }
477
478
#  define mul(r,a,w,c) { \
479
        BN_ULLONG t; \
480
        t=(BN_ULLONG)w * (a) + (c); \
481
        (r)= Lw(t); \
482
        (c)= Hw(t); \
483
        }
484
485
#  define sqr(r0,r1,a) { \
486
        BN_ULLONG t; \
487
        t=(BN_ULLONG)(a)*(a); \
488
        (r0)=Lw(t); \
489
        (r1)=Hw(t); \
490
        }
491
492
# elif defined(BN_UMULT_LOHI)
493
#  define mul_add(r,a,w,c) {              \
494
        BN_ULONG high,low,ret,tmp=(a);  \
495
        ret =  (r);                     \
496
        BN_UMULT_LOHI(low,high,w,tmp);  \
497
        ret += (c);                     \
498
        (c) =  (ret<(c))?1:0;           \
499
        (c) += high;                    \
500
        ret += low;                     \
501
        (c) += (ret<low)?1:0;           \
502
        (r) =  ret;                     \
503
        }
504
505
#  define mul(r,a,w,c)    {               \
506
        BN_ULONG high,low,ret,ta=(a);   \
507
        BN_UMULT_LOHI(low,high,w,ta);   \
508
        ret =  low + (c);               \
509
        (c) =  high;                    \
510
        (c) += (ret<low)?1:0;           \
511
        (r) =  ret;                     \
512
        }
513
514
#  define sqr(r0,r1,a)    {               \
515
        BN_ULONG tmp=(a);               \
516
        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
517
        }
518
519
# elif defined(BN_UMULT_HIGH)
520
#  define mul_add(r,a,w,c) {              \
521
        BN_ULONG high,low,ret,tmp=(a);  \
522
        ret =  (r);                     \
523
        high=  BN_UMULT_HIGH(w,tmp);    \
524
        ret += (c);                     \
525
        low =  (w) * tmp;               \
526
        (c) =  (ret<(c))?1:0;           \
527
        (c) += high;                    \
528
        ret += low;                     \
529
        (c) += (ret<low)?1:0;           \
530
        (r) =  ret;                     \
531
        }
532
533
#  define mul(r,a,w,c)    {               \
534
        BN_ULONG high,low,ret,ta=(a);   \
535
        low =  (w) * ta;                \
536
        high=  BN_UMULT_HIGH(w,ta);     \
537
        ret =  low + (c);               \
538
        (c) =  high;                    \
539
        (c) += (ret<low)?1:0;           \
540
        (r) =  ret;                     \
541
        }
542
543
#  define sqr(r0,r1,a)    {               \
544
        BN_ULONG tmp=(a);               \
545
        (r0) = tmp * tmp;               \
546
        (r1) = BN_UMULT_HIGH(tmp,tmp);  \
547
        }
548
549
# else
550
/*************************************************************
551
 * No long long type
552
 */
553
554
#  define LBITS(a)        ((a)&BN_MASK2l)
555
#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
556
#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
557
558
#  define LLBITS(a)       ((a)&BN_MASKl)
559
#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
560
#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
561
562
#  define mul64(l,h,bl,bh) \
563
        { \
564
        BN_ULONG m,m1,lt,ht; \
565
 \
566
        lt=l; \
567
        ht=h; \
568
        m =(bh)*(lt); \
569
        lt=(bl)*(lt); \
570
        m1=(bl)*(ht); \
571
        ht =(bh)*(ht); \
572
        m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
573
        ht+=HBITS(m); \
574
        m1=L2HBITS(m); \
575
        lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
576
        (l)=lt; \
577
        (h)=ht; \
578
        }
579
580
#  define sqr64(lo,ho,in) \
581
        { \
582
        BN_ULONG l,h,m; \
583
 \
584
        h=(in); \
585
        l=LBITS(h); \
586
        h=HBITS(h); \
587
        m =(l)*(h); \
588
        l*=l; \
589
        h*=h; \
590
        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
591
        m =(m&BN_MASK2l)<<(BN_BITS4+1); \
592
        l=(l+m)&BN_MASK2; if (l < m) h++; \
593
        (lo)=l; \
594
        (ho)=h; \
595
        }
596
597
#  define mul_add(r,a,bl,bh,c) { \
598
        BN_ULONG l,h; \
599
 \
600
        h= (a); \
601
        l=LBITS(h); \
602
        h=HBITS(h); \
603
        mul64(l,h,(bl),(bh)); \
604
 \
605
        /* non-multiply part */ \
606
        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
607
        (c)=(r); \
608
        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
609
        (c)=h&BN_MASK2; \
610
        (r)=l; \
611
        }
612
613
#  define mul(r,a,bl,bh,c) { \
614
        BN_ULONG l,h; \
615
 \
616
        h= (a); \
617
        l=LBITS(h); \
618
        h=HBITS(h); \
619
        mul64(l,h,(bl),(bh)); \
620
 \
621
        /* non-multiply part */ \
622
        l+=(c); if ((l&BN_MASK2) < (c)) h++; \
623
        (c)=h&BN_MASK2; \
624
        (r)=l&BN_MASK2; \
625
        }
626
# endif                         /* !BN_LLONG */
627
628
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
629
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
630
631
void bn_init(BIGNUM *a);
632
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
633
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
634
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
635
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
636
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
637
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
638
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
639
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
640
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
641
                      int dna, int dnb, BN_ULONG *t);
642
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
643
                           int n, int tna, int tnb, BN_ULONG *t);
644
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
645
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
646
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
647
                          BN_ULONG *t);
648
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
649
                           int cl, int dl);
650
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
651
                const BN_ULONG *np, const BN_ULONG *n0, int num);
652
653
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
654
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
655
                           int *noinv);
656
657
int bn_probable_prime_dh(BIGNUM *rnd, int bits,
658
                         const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
659
660
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
661
103k
{
662
103k
    if (bits > (INT_MAX - BN_BITS2 + 1))
663
0
        return NULL;
664
103k
665
103k
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
666
22.2k
        return a;
667
81.6k
668
81.6k
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
669
81.6k
}
bn_lib.c:bn_expand
Line
Count
Source
661
103k
{
662
103k
    if (bits > (INT_MAX - BN_BITS2 + 1))
663
0
        return NULL;
664
103k
665
103k
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
666
22.2k
        return a;
667
81.6k
668
81.6k
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
669
81.6k
}
Unexecuted instantiation: bn_mont.c:bn_expand
Unexecuted instantiation: bn_mul.c:bn_expand
Unexecuted instantiation: bn_print.c:bn_expand
Unexecuted instantiation: bn_shift.c:bn_expand
Unexecuted instantiation: bn_sqr.c:bn_expand
Unexecuted instantiation: bn_word.c:bn_expand
Unexecuted instantiation: x86_64-gcc.c:bn_expand
Unexecuted instantiation: bn_add.c:bn_expand
Unexecuted instantiation: bn_blind.c:bn_expand
Unexecuted instantiation: bn_ctx.c:bn_expand
Unexecuted instantiation: bn_dh.c:bn_expand
Unexecuted instantiation: bn_div.c:bn_expand
Unexecuted instantiation: bn_exp.c:bn_expand
Unexecuted instantiation: bn_exp2.c:bn_expand
Unexecuted instantiation: bn_gcd.c:bn_expand
Unexecuted instantiation: bn_intern.c:bn_expand
Unexecuted instantiation: bn_kron.c:bn_expand
Unexecuted instantiation: bn_mod.c:bn_expand
Unexecuted instantiation: bn_nist.c:bn_expand
Unexecuted instantiation: bn_prime.c:bn_expand
Unexecuted instantiation: bn_rand.c:bn_expand
Unexecuted instantiation: bn_recp.c:bn_expand
Unexecuted instantiation: bn_sqrt.c:bn_expand
Unexecuted instantiation: bn_srp.c:bn_expand
Unexecuted instantiation: bn_gf2m.c:bn_expand
670
671
#endif