Coverage Report

Created: 2018-08-29 13:53

/src/openssl/crypto/bn/bn_mont.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Details about Montgomery multiplication algorithms can be found at
12
 * http://security.ece.orst.edu/publications.html, e.g.
13
 * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
14
 * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
15
 */
16
17
#include "internal/cryptlib.h"
18
#include "bn_lcl.h"
19
20
#define MONT_WORD               /* use the faster word-based algorithm */
21
22
#ifdef MONT_WORD
23
static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
24
#endif
25
26
int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
27
                          BN_MONT_CTX *mont, BN_CTX *ctx)
28
0
{
29
0
    int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);
30
0
31
0
    bn_correct_top(r);
32
0
    bn_check_top(r);
33
0
34
0
    return ret;
35
0
}
36
37
int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
38
                          BN_MONT_CTX *mont, BN_CTX *ctx)
39
0
{
40
0
    BIGNUM *tmp;
41
0
    int ret = 0;
42
0
    int num = mont->N.top;
43
0
44
0
#if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
45
0
    if (num > 1 && a->top == num && b->top == num) {
46
0
        if (bn_wexpand(r, num) == NULL)
47
0
            return 0;
48
0
        if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
49
0
            r->neg = a->neg ^ b->neg;
50
0
            r->top = num;
51
0
            r->flags |= BN_FLG_FIXED_TOP;
52
0
            return 1;
53
0
        }
54
0
    }
55
0
#endif
56
0
57
0
    if ((a->top + b->top) > 2 * num)
58
0
        return 0;
59
0
60
0
    BN_CTX_start(ctx);
61
0
    tmp = BN_CTX_get(ctx);
62
0
    if (tmp == NULL)
63
0
        goto err;
64
0
65
0
    bn_check_top(tmp);
66
0
    if (a == b) {
67
0
        if (!bn_sqr_fixed_top(tmp, a, ctx))
68
0
            goto err;
69
0
    } else {
70
0
        if (!bn_mul_fixed_top(tmp, a, b, ctx))
71
0
            goto err;
72
0
    }
73
0
    /* reduce from aRR to aR */
74
0
#ifdef MONT_WORD
75
0
    if (!bn_from_montgomery_word(r, tmp, mont))
76
0
        goto err;
77
#else
78
    if (!BN_from_montgomery(r, tmp, mont, ctx))
79
        goto err;
80
#endif
81
0
    ret = 1;
82
0
 err:
83
0
    BN_CTX_end(ctx);
84
0
    return ret;
85
0
}
86
87
#ifdef MONT_WORD
88
static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
89
0
{
90
0
    BIGNUM *n;
91
0
    BN_ULONG *ap, *np, *rp, n0, v, carry;
92
0
    int nl, max, i;
93
0
    unsigned int rtop;
94
0
95
0
    n = &(mont->N);
96
0
    nl = n->top;
97
0
    if (nl == 0) {
98
0
        ret->top = 0;
99
0
        return 1;
100
0
    }
101
0
102
0
    max = (2 * nl);             /* carry is stored separately */
103
0
    if (bn_wexpand(r, max) == NULL)
104
0
        return 0;
105
0
106
0
    r->neg ^= n->neg;
107
0
    np = n->d;
108
0
    rp = r->d;
109
0
110
0
    /* clear the top words of T */
111
0
    for (rtop = r->top, i = 0; i < max; i++) {
112
0
        v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1));
113
0
        rp[i] &= v;
114
0
    }
115
0
116
0
    r->top = max;
117
0
    r->flags |= BN_FLG_FIXED_TOP;
118
0
    n0 = mont->n0[0];
119
0
120
0
    /*
121
0
     * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
122
0
     * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
123
0
     * includes |carry| which is stored separately.
124
0
     */
125
0
    for (carry = 0, i = 0; i < nl; i++, rp++) {
126
0
        v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2);
127
0
        v = (v + carry + rp[nl]) & BN_MASK2;
128
0
        carry |= (v != rp[nl]);
129
0
        carry &= (v <= rp[nl]);
130
0
        rp[nl] = v;
131
0
    }
132
0
133
0
    if (bn_wexpand(ret, nl) == NULL)
134
0
        return 0;
135
0
    ret->top = nl;
136
0
    ret->flags |= BN_FLG_FIXED_TOP;
137
0
    ret->neg = r->neg;
138
0
139
0
    rp = ret->d;
140
0
141
0
    /*
142
0
     * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap|
143
0
     * includes |carry| which is stored separately.
144
0
     */
145
0
    ap = &(r->d[nl]);
146
0
147
0
    carry -= bn_sub_words(rp, ap, np, nl);
148
0
    /*
149
0
     * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note
150
0
     * |carry| cannot be 1. That would imply the subtraction did not fit in
151
0
     * |nl| words, and we know at most one subtraction is needed.
152
0
     */
153
0
    for (i = 0; i < nl; i++) {
154
0
        rp[i] = (carry & ap[i]) | (~carry & rp[i]);
155
0
        ap[i] = 0;
156
0
    }
157
0
158
0
    return 1;
159
0
}
160
#endif                          /* MONT_WORD */
161
162
int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
163
                       BN_CTX *ctx)
164
0
{
165
0
    int retn;
166
0
167
0
    retn = bn_from_mont_fixed_top(ret, a, mont, ctx);
168
0
    bn_correct_top(ret);
169
0
    bn_check_top(ret);
170
0
171
0
    return retn;
172
0
}
173
174
int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
175
                           BN_CTX *ctx)
176
0
{
177
0
    int retn = 0;
178
0
#ifdef MONT_WORD
179
0
    BIGNUM *t;
180
0
181
0
    BN_CTX_start(ctx);
182
0
    if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) {
183
0
        retn = bn_from_montgomery_word(ret, t, mont);
184
0
    }
185
0
    BN_CTX_end(ctx);
186
#else                           /* !MONT_WORD */
187
    BIGNUM *t1, *t2;
188
189
    BN_CTX_start(ctx);
190
    t1 = BN_CTX_get(ctx);
191
    t2 = BN_CTX_get(ctx);
192
    if (t2 == NULL)
193
        goto err;
194
195
    if (!BN_copy(t1, a))
196
        goto err;
197
    BN_mask_bits(t1, mont->ri);
198
199
    if (!BN_mul(t2, t1, &mont->Ni, ctx))
200
        goto err;
201
    BN_mask_bits(t2, mont->ri);
202
203
    if (!BN_mul(t1, t2, &mont->N, ctx))
204
        goto err;
205
    if (!BN_add(t2, a, t1))
206
        goto err;
207
    if (!BN_rshift(ret, t2, mont->ri))
208
        goto err;
209
210
    if (BN_ucmp(ret, &(mont->N)) >= 0) {
211
        if (!BN_usub(ret, ret, &(mont->N)))
212
            goto err;
213
    }
214
    retn = 1;
215
    bn_check_top(ret);
216
 err:
217
    BN_CTX_end(ctx);
218
#endif                          /* MONT_WORD */
219
    return retn;
220
0
}
221
222
int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
223
                         BN_CTX *ctx)
224
0
{
225
0
    return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
226
0
}
227
228
BN_MONT_CTX *BN_MONT_CTX_new(void)
229
0
{
230
0
    BN_MONT_CTX *ret;
231
0
232
0
    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
233
0
        BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE);
234
0
        return NULL;
235
0
    }
236
0
237
0
    BN_MONT_CTX_init(ret);
238
0
    ret->flags = BN_FLG_MALLOCED;
239
0
    return ret;
240
0
}
241
242
void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
243
0
{
244
0
    ctx->ri = 0;
245
0
    bn_init(&ctx->RR);
246
0
    bn_init(&ctx->N);
247
0
    bn_init(&ctx->Ni);
248
0
    ctx->n0[0] = ctx->n0[1] = 0;
249
0
    ctx->flags = 0;
250
0
}
251
252
void BN_MONT_CTX_free(BN_MONT_CTX *mont)
253
1.76M
{
254
1.76M
    if (mont == NULL)
255
1.76M
        return;
256
0
    BN_clear_free(&mont->RR);
257
0
    BN_clear_free(&mont->N);
258
0
    BN_clear_free(&mont->Ni);
259
0
    if (mont->flags & BN_FLG_MALLOCED)
260
0
        OPENSSL_free(mont);
261
0
}
262
263
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
264
0
{
265
0
    int i, ret = 0;
266
0
    BIGNUM *Ri, *R;
267
0
268
0
    if (BN_is_zero(mod))
269
0
        return 0;
270
0
271
0
    BN_CTX_start(ctx);
272
0
    if ((Ri = BN_CTX_get(ctx)) == NULL)
273
0
        goto err;
274
0
    R = &(mont->RR);            /* grab RR as a temp */
275
0
    if (!BN_copy(&(mont->N), mod))
276
0
        goto err;               /* Set N */
277
0
    if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
278
0
        BN_set_flags(&(mont->N), BN_FLG_CONSTTIME);
279
0
    mont->N.neg = 0;
280
0
281
0
#ifdef MONT_WORD
282
0
    {
283
0
        BIGNUM tmod;
284
0
        BN_ULONG buf[2];
285
0
286
0
        bn_init(&tmod);
287
0
        tmod.d = buf;
288
0
        tmod.dmax = 2;
289
0
        tmod.neg = 0;
290
0
291
0
        if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
292
0
            BN_set_flags(&tmod, BN_FLG_CONSTTIME);
293
0
294
0
        mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2;
295
0
296
# if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
297
        /*
298
         * Only certain BN_BITS2<=32 platforms actually make use of n0[1],
299
         * and we could use the #else case (with a shorter R value) for the
300
         * others.  However, currently only the assembler files do know which
301
         * is which.
302
         */
303
304
        BN_zero(R);
305
        if (!(BN_set_bit(R, 2 * BN_BITS2)))
306
            goto err;
307
308
        tmod.top = 0;
309
        if ((buf[0] = mod->d[0]))
310
            tmod.top = 1;
311
        if ((buf[1] = mod->top > 1 ? mod->d[1] : 0))
312
            tmod.top = 2;
313
314
        if (BN_is_one(&tmod))
315
            BN_zero(Ri);
316
        else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
317
            goto err;
318
        if (!BN_lshift(Ri, Ri, 2 * BN_BITS2))
319
            goto err;           /* R*Ri */
320
        if (!BN_is_zero(Ri)) {
321
            if (!BN_sub_word(Ri, 1))
322
                goto err;
323
        } else {                /* if N mod word size == 1 */
324
325
            if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL)
326
                goto err;
327
            /* Ri-- (mod double word size) */
328
            Ri->neg = 0;
329
            Ri->d[0] = BN_MASK2;
330
            Ri->d[1] = BN_MASK2;
331
            Ri->top = 2;
332
        }
333
        if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
334
            goto err;
335
        /*
336
         * Ni = (R*Ri-1)/N, keep only couple of least significant words:
337
         */
338
        mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
339
        mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
340
# else
341
0
        BN_zero(R);
342
0
        if (!(BN_set_bit(R, BN_BITS2)))
343
0
            goto err;           /* R */
344
0
345
0
        buf[0] = mod->d[0];     /* tmod = N mod word size */
346
0
        buf[1] = 0;
347
0
        tmod.top = buf[0] != 0 ? 1 : 0;
348
0
        /* Ri = R^-1 mod N */
349
0
        if (BN_is_one(&tmod))
350
0
            BN_zero(Ri);
351
0
        else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
352
0
            goto err;
353
0
        if (!BN_lshift(Ri, Ri, BN_BITS2))
354
0
            goto err;           /* R*Ri */
355
0
        if (!BN_is_zero(Ri)) {
356
0
            if (!BN_sub_word(Ri, 1))
357
0
                goto err;
358
0
        } else {                /* if N mod word size == 1 */
359
0
360
0
            if (!BN_set_word(Ri, BN_MASK2))
361
0
                goto err;       /* Ri-- (mod word size) */
362
0
        }
363
0
        if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
364
0
            goto err;
365
0
        /*
366
0
         * Ni = (R*Ri-1)/N, keep only least significant word:
367
0
         */
368
0
        mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
369
0
        mont->n0[1] = 0;
370
0
# endif
371
0
    }
372
#else                           /* !MONT_WORD */
373
    {                           /* bignum version */
374
        mont->ri = BN_num_bits(&mont->N);
375
        BN_zero(R);
376
        if (!BN_set_bit(R, mont->ri))
377
            goto err;           /* R = 2^ri */
378
        /* Ri = R^-1 mod N */
379
        if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL)
380
            goto err;
381
        if (!BN_lshift(Ri, Ri, mont->ri))
382
            goto err;           /* R*Ri */
383
        if (!BN_sub_word(Ri, 1))
384
            goto err;
385
        /*
386
         * Ni = (R*Ri-1) / N
387
         */
388
        if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx))
389
            goto err;
390
    }
391
#endif
392
393
0
    /* setup RR for conversions */
394
0
    BN_zero(&(mont->RR));
395
0
    if (!BN_set_bit(&(mont->RR), mont->ri * 2))
396
0
        goto err;
397
0
    if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx))
398
0
        goto err;
399
0
400
0
    for (i = mont->RR.top, ret = mont->N.top; i < ret; i++)
401
0
        mont->RR.d[i] = 0;
402
0
    mont->RR.top = ret;
403
0
    mont->RR.flags |= BN_FLG_FIXED_TOP;
404
0
405
0
    ret = 1;
406
0
 err:
407
0
    BN_CTX_end(ctx);
408
0
    return ret;
409
0
}
410
411
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
412
0
{
413
0
    if (to == from)
414
0
        return to;
415
0
416
0
    if (!BN_copy(&(to->RR), &(from->RR)))
417
0
        return NULL;
418
0
    if (!BN_copy(&(to->N), &(from->N)))
419
0
        return NULL;
420
0
    if (!BN_copy(&(to->Ni), &(from->Ni)))
421
0
        return NULL;
422
0
    to->ri = from->ri;
423
0
    to->n0[0] = from->n0[0];
424
0
    to->n0[1] = from->n0[1];
425
0
    return to;
426
0
}
427
428
BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
429
                                    const BIGNUM *mod, BN_CTX *ctx)
430
0
{
431
0
    BN_MONT_CTX *ret;
432
0
433
0
    CRYPTO_THREAD_read_lock(lock);
434
0
    ret = *pmont;
435
0
    CRYPTO_THREAD_unlock(lock);
436
0
    if (ret)
437
0
        return ret;
438
0
439
0
    /*
440
0
     * We don't want to serialise globally while doing our lazy-init math in
441
0
     * BN_MONT_CTX_set. That punishes threads that are doing independent
442
0
     * things. Instead, punish the case where more than one thread tries to
443
0
     * lazy-init the same 'pmont', by having each do the lazy-init math work
444
0
     * independently and only use the one from the thread that wins the race
445
0
     * (the losers throw away the work they've done).
446
0
     */
447
0
    ret = BN_MONT_CTX_new();
448
0
    if (ret == NULL)
449
0
        return NULL;
450
0
    if (!BN_MONT_CTX_set(ret, mod, ctx)) {
451
0
        BN_MONT_CTX_free(ret);
452
0
        return NULL;
453
0
    }
454
0
455
0
    /* The locked compare-and-set, after the local work is done. */
456
0
    CRYPTO_THREAD_write_lock(lock);
457
0
    if (*pmont) {
458
0
        BN_MONT_CTX_free(ret);
459
0
        ret = *pmont;
460
0
    } else
461
0
        *pmont = ret;
462
0
    CRYPTO_THREAD_unlock(lock);
463
0
    return ret;
464
0
}