/src/openssl/crypto/bn/bn_prime.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <time.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include "bn_lcl.h" |
14 | | |
15 | | /* |
16 | | * The quick sieve algorithm approach to weeding out primes is Philip |
17 | | * Zimmermann's, as implemented in PGP. I have had a read of his comments |
18 | | * and implemented my own version. |
19 | | */ |
20 | | #include "bn_prime.h" |
21 | | |
22 | | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, |
23 | | const BIGNUM *a1_odd, int k, BN_CTX *ctx, |
24 | | BN_MONT_CTX *mont); |
25 | | static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods); |
26 | | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, |
27 | | const BIGNUM *add, const BIGNUM *rem, |
28 | | BN_CTX *ctx); |
29 | | |
30 | | int BN_GENCB_call(BN_GENCB *cb, int a, int b) |
31 | 0 | { |
32 | 0 | /* No callback means continue */ |
33 | 0 | if (!cb) |
34 | 0 | return 1; |
35 | 0 | switch (cb->ver) { |
36 | 0 | case 1: |
37 | 0 | /* Deprecated-style callbacks */ |
38 | 0 | if (!cb->cb.cb_1) |
39 | 0 | return 1; |
40 | 0 | cb->cb.cb_1(a, b, cb->arg); |
41 | 0 | return 1; |
42 | 0 | case 2: |
43 | 0 | /* New-style callbacks */ |
44 | 0 | return cb->cb.cb_2(a, b, cb); |
45 | 0 | default: |
46 | 0 | break; |
47 | 0 | } |
48 | 0 | /* Unrecognised callback type */ |
49 | 0 | return 0; |
50 | 0 | } |
51 | | |
52 | | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, |
53 | | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) |
54 | 0 | { |
55 | 0 | BIGNUM *t; |
56 | 0 | int found = 0; |
57 | 0 | int i, j, c1 = 0; |
58 | 0 | BN_CTX *ctx = NULL; |
59 | 0 | prime_t *mods = NULL; |
60 | 0 | int checks = BN_prime_checks_for_size(bits); |
61 | 0 |
|
62 | 0 | if (bits < 2) { |
63 | 0 | /* There are no prime numbers this small. */ |
64 | 0 | BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); |
65 | 0 | return 0; |
66 | 0 | } else if (bits == 2 && safe) { |
67 | 0 | /* The smallest safe prime (7) is three bits. */ |
68 | 0 | BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); |
69 | 0 | return 0; |
70 | 0 | } |
71 | 0 |
|
72 | 0 | mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); |
73 | 0 | if (mods == NULL) |
74 | 0 | goto err; |
75 | 0 | |
76 | 0 | ctx = BN_CTX_new(); |
77 | 0 | if (ctx == NULL) |
78 | 0 | goto err; |
79 | 0 | BN_CTX_start(ctx); |
80 | 0 | t = BN_CTX_get(ctx); |
81 | 0 | if (t == NULL) |
82 | 0 | goto err; |
83 | 0 | loop: |
84 | 0 | /* make a random number and set the top and bottom bits */ |
85 | 0 | if (add == NULL) { |
86 | 0 | if (!probable_prime(ret, bits, mods)) |
87 | 0 | goto err; |
88 | 0 | } else { |
89 | 0 | if (safe) { |
90 | 0 | if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) |
91 | 0 | goto err; |
92 | 0 | } else { |
93 | 0 | if (!bn_probable_prime_dh(ret, bits, add, rem, ctx)) |
94 | 0 | goto err; |
95 | 0 | } |
96 | 0 | } |
97 | 0 | |
98 | 0 | if (!BN_GENCB_call(cb, 0, c1++)) |
99 | 0 | /* aborted */ |
100 | 0 | goto err; |
101 | 0 | |
102 | 0 | if (!safe) { |
103 | 0 | i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); |
104 | 0 | if (i == -1) |
105 | 0 | goto err; |
106 | 0 | if (i == 0) |
107 | 0 | goto loop; |
108 | 0 | } else { |
109 | 0 | /* |
110 | 0 | * for "safe prime" generation, check that (p-1)/2 is prime. Since a |
111 | 0 | * prime is odd, We just need to divide by 2 |
112 | 0 | */ |
113 | 0 | if (!BN_rshift1(t, ret)) |
114 | 0 | goto err; |
115 | 0 | |
116 | 0 | for (i = 0; i < checks; i++) { |
117 | 0 | j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb); |
118 | 0 | if (j == -1) |
119 | 0 | goto err; |
120 | 0 | if (j == 0) |
121 | 0 | goto loop; |
122 | 0 | |
123 | 0 | j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb); |
124 | 0 | if (j == -1) |
125 | 0 | goto err; |
126 | 0 | if (j == 0) |
127 | 0 | goto loop; |
128 | 0 | |
129 | 0 | if (!BN_GENCB_call(cb, 2, c1 - 1)) |
130 | 0 | goto err; |
131 | 0 | /* We have a safe prime test pass */ |
132 | 0 | } |
133 | 0 | } |
134 | 0 | /* we have a prime :-) */ |
135 | 0 | found = 1; |
136 | 0 | err: |
137 | 0 | OPENSSL_free(mods); |
138 | 0 | if (ctx != NULL) |
139 | 0 | BN_CTX_end(ctx); |
140 | 0 | BN_CTX_free(ctx); |
141 | 0 | bn_check_top(ret); |
142 | 0 | return found; |
143 | 0 | } |
144 | | |
145 | | int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, |
146 | | BN_GENCB *cb) |
147 | 0 | { |
148 | 0 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); |
149 | 0 | } |
150 | | |
151 | | int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, |
152 | | int do_trial_division, BN_GENCB *cb) |
153 | 0 | { |
154 | 0 | int i, j, ret = -1; |
155 | 0 | int k; |
156 | 0 | BN_CTX *ctx = NULL; |
157 | 0 | BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */ |
158 | 0 | BN_MONT_CTX *mont = NULL; |
159 | 0 |
|
160 | 0 | /* Take care of the really small primes 2 & 3 */ |
161 | 0 | if (BN_is_word(a, 2) || BN_is_word(a, 3)) |
162 | 0 | return 1; |
163 | 0 | |
164 | 0 | /* Check odd and bigger than 1 */ |
165 | 0 | if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0) |
166 | 0 | return 0; |
167 | 0 | |
168 | 0 | if (checks == BN_prime_checks) |
169 | 0 | checks = BN_prime_checks_for_size(BN_num_bits(a)); |
170 | 0 |
|
171 | 0 | /* first look for small factors */ |
172 | 0 | if (do_trial_division) { |
173 | 0 | for (i = 1; i < NUMPRIMES; i++) { |
174 | 0 | BN_ULONG mod = BN_mod_word(a, primes[i]); |
175 | 0 | if (mod == (BN_ULONG)-1) |
176 | 0 | goto err; |
177 | 0 | if (mod == 0) |
178 | 0 | return BN_is_word(a, primes[i]); |
179 | 0 | } |
180 | 0 | if (!BN_GENCB_call(cb, 1, -1)) |
181 | 0 | goto err; |
182 | 0 | } |
183 | 0 | |
184 | 0 | if (ctx_passed != NULL) |
185 | 0 | ctx = ctx_passed; |
186 | 0 | else if ((ctx = BN_CTX_new()) == NULL) |
187 | 0 | goto err; |
188 | 0 | BN_CTX_start(ctx); |
189 | 0 |
|
190 | 0 | A1 = BN_CTX_get(ctx); |
191 | 0 | A3 = BN_CTX_get(ctx); |
192 | 0 | A1_odd = BN_CTX_get(ctx); |
193 | 0 | check = BN_CTX_get(ctx); |
194 | 0 | if (check == NULL) |
195 | 0 | goto err; |
196 | 0 | |
197 | 0 | /* compute A1 := a - 1 */ |
198 | 0 | if (!BN_copy(A1, a) || !BN_sub_word(A1, 1)) |
199 | 0 | goto err; |
200 | 0 | /* compute A3 := a - 3 */ |
201 | 0 | if (!BN_copy(A3, a) || !BN_sub_word(A3, 3)) |
202 | 0 | goto err; |
203 | 0 | |
204 | 0 | /* write A1 as A1_odd * 2^k */ |
205 | 0 | k = 1; |
206 | 0 | while (!BN_is_bit_set(A1, k)) |
207 | 0 | k++; |
208 | 0 | if (!BN_rshift(A1_odd, A1, k)) |
209 | 0 | goto err; |
210 | 0 | |
211 | 0 | /* Montgomery setup for computations mod a */ |
212 | 0 | mont = BN_MONT_CTX_new(); |
213 | 0 | if (mont == NULL) |
214 | 0 | goto err; |
215 | 0 | if (!BN_MONT_CTX_set(mont, a, ctx)) |
216 | 0 | goto err; |
217 | 0 | |
218 | 0 | for (i = 0; i < checks; i++) { |
219 | 0 | /* 1 < check < a-1 */ |
220 | 0 | if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2)) |
221 | 0 | goto err; |
222 | 0 | |
223 | 0 | j = witness(check, a, A1, A1_odd, k, ctx, mont); |
224 | 0 | if (j == -1) |
225 | 0 | goto err; |
226 | 0 | if (j) { |
227 | 0 | ret = 0; |
228 | 0 | goto err; |
229 | 0 | } |
230 | 0 | if (!BN_GENCB_call(cb, 1, i)) |
231 | 0 | goto err; |
232 | 0 | } |
233 | 0 | ret = 1; |
234 | 0 | err: |
235 | 0 | if (ctx != NULL) { |
236 | 0 | BN_CTX_end(ctx); |
237 | 0 | if (ctx_passed == NULL) |
238 | 0 | BN_CTX_free(ctx); |
239 | 0 | } |
240 | 0 | BN_MONT_CTX_free(mont); |
241 | 0 |
|
242 | 0 | return ret; |
243 | 0 | } |
244 | | |
245 | | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, |
246 | | const BIGNUM *a1_odd, int k, BN_CTX *ctx, |
247 | | BN_MONT_CTX *mont) |
248 | 0 | { |
249 | 0 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ |
250 | 0 | return -1; |
251 | 0 | if (BN_is_one(w)) |
252 | 0 | return 0; /* probably prime */ |
253 | 0 | if (BN_cmp(w, a1) == 0) |
254 | 0 | return 0; /* w == -1 (mod a), 'a' is probably prime */ |
255 | 0 | while (--k) { |
256 | 0 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ |
257 | 0 | return -1; |
258 | 0 | if (BN_is_one(w)) |
259 | 0 | return 1; /* 'a' is composite, otherwise a previous 'w' |
260 | 0 | * would have been == -1 (mod 'a') */ |
261 | 0 | if (BN_cmp(w, a1) == 0) |
262 | 0 | return 0; /* w == -1 (mod a), 'a' is probably prime */ |
263 | 0 | } |
264 | 0 | /* |
265 | 0 | * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and |
266 | 0 | * it is neither -1 nor +1 -- so 'a' cannot be prime |
267 | 0 | */ |
268 | 0 | bn_check_top(w); |
269 | 0 | return 1; |
270 | 0 | } |
271 | | |
272 | | static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods) |
273 | 0 | { |
274 | 0 | int i; |
275 | 0 | BN_ULONG delta; |
276 | 0 | BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; |
277 | 0 | char is_single_word = bits <= BN_BITS2; |
278 | 0 |
|
279 | 0 | again: |
280 | 0 | /* TODO: Not all primes are private */ |
281 | 0 | if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) |
282 | 0 | return 0; |
283 | 0 | /* we now have a random number 'rnd' to test. */ |
284 | 0 | for (i = 1; i < NUMPRIMES; i++) { |
285 | 0 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); |
286 | 0 | if (mod == (BN_ULONG)-1) |
287 | 0 | return 0; |
288 | 0 | mods[i] = (prime_t) mod; |
289 | 0 | } |
290 | 0 | /* |
291 | 0 | * If bits is so small that it fits into a single word then we |
292 | 0 | * additionally don't want to exceed that many bits. |
293 | 0 | */ |
294 | 0 | if (is_single_word) { |
295 | 0 | BN_ULONG size_limit; |
296 | 0 |
|
297 | 0 | if (bits == BN_BITS2) { |
298 | 0 | /* |
299 | 0 | * Shifting by this much has undefined behaviour so we do it a |
300 | 0 | * different way |
301 | 0 | */ |
302 | 0 | size_limit = ~((BN_ULONG)0) - BN_get_word(rnd); |
303 | 0 | } else { |
304 | 0 | size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1; |
305 | 0 | } |
306 | 0 | if (size_limit < maxdelta) |
307 | 0 | maxdelta = size_limit; |
308 | 0 | } |
309 | 0 | delta = 0; |
310 | 0 | loop: |
311 | 0 | if (is_single_word) { |
312 | 0 | BN_ULONG rnd_word = BN_get_word(rnd); |
313 | 0 |
|
314 | 0 | /*- |
315 | 0 | * In the case that the candidate prime is a single word then |
316 | 0 | * we check that: |
317 | 0 | * 1) It's greater than primes[i] because we shouldn't reject |
318 | 0 | * 3 as being a prime number because it's a multiple of |
319 | 0 | * three. |
320 | 0 | * 2) That it's not a multiple of a known prime. We don't |
321 | 0 | * check that rnd-1 is also coprime to all the known |
322 | 0 | * primes because there aren't many small primes where |
323 | 0 | * that's true. |
324 | 0 | */ |
325 | 0 | for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) { |
326 | 0 | if ((mods[i] + delta) % primes[i] == 0) { |
327 | 0 | delta += 2; |
328 | 0 | if (delta > maxdelta) |
329 | 0 | goto again; |
330 | 0 | goto loop; |
331 | 0 | } |
332 | 0 | } |
333 | 0 | } else { |
334 | 0 | for (i = 1; i < NUMPRIMES; i++) { |
335 | 0 | /* |
336 | 0 | * check that rnd is not a prime and also that gcd(rnd-1,primes) |
337 | 0 | * == 1 (except for 2) |
338 | 0 | */ |
339 | 0 | if (((mods[i] + delta) % primes[i]) <= 1) { |
340 | 0 | delta += 2; |
341 | 0 | if (delta > maxdelta) |
342 | 0 | goto again; |
343 | 0 | goto loop; |
344 | 0 | } |
345 | 0 | } |
346 | 0 | } |
347 | 0 | if (!BN_add_word(rnd, delta)) |
348 | 0 | return 0; |
349 | 0 | if (BN_num_bits(rnd) != bits) |
350 | 0 | goto again; |
351 | 0 | bn_check_top(rnd); |
352 | 0 | return 1; |
353 | 0 | } |
354 | | |
355 | | int bn_probable_prime_dh(BIGNUM *rnd, int bits, |
356 | | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx) |
357 | 0 | { |
358 | 0 | int i, ret = 0; |
359 | 0 | BIGNUM *t1; |
360 | 0 |
|
361 | 0 | BN_CTX_start(ctx); |
362 | 0 | if ((t1 = BN_CTX_get(ctx)) == NULL) |
363 | 0 | goto err; |
364 | 0 | |
365 | 0 | if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) |
366 | 0 | goto err; |
367 | 0 | |
368 | 0 | /* we need ((rnd-rem) % add) == 0 */ |
369 | 0 | |
370 | 0 | if (!BN_mod(t1, rnd, add, ctx)) |
371 | 0 | goto err; |
372 | 0 | if (!BN_sub(rnd, rnd, t1)) |
373 | 0 | goto err; |
374 | 0 | if (rem == NULL) { |
375 | 0 | if (!BN_add_word(rnd, 1)) |
376 | 0 | goto err; |
377 | 0 | } else { |
378 | 0 | if (!BN_add(rnd, rnd, rem)) |
379 | 0 | goto err; |
380 | 0 | } |
381 | 0 | |
382 | 0 | /* we now have a random number 'rand' to test. */ |
383 | 0 | |
384 | 0 | loop: |
385 | 0 | for (i = 1; i < NUMPRIMES; i++) { |
386 | 0 | /* check that rnd is a prime */ |
387 | 0 | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); |
388 | 0 | if (mod == (BN_ULONG)-1) |
389 | 0 | goto err; |
390 | 0 | if (mod <= 1) { |
391 | 0 | if (!BN_add(rnd, rnd, add)) |
392 | 0 | goto err; |
393 | 0 | goto loop; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | ret = 1; |
397 | 0 |
|
398 | 0 | err: |
399 | 0 | BN_CTX_end(ctx); |
400 | 0 | bn_check_top(rnd); |
401 | 0 | return ret; |
402 | 0 | } |
403 | | |
404 | | static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, |
405 | | const BIGNUM *rem, BN_CTX *ctx) |
406 | 0 | { |
407 | 0 | int i, ret = 0; |
408 | 0 | BIGNUM *t1, *qadd, *q; |
409 | 0 |
|
410 | 0 | bits--; |
411 | 0 | BN_CTX_start(ctx); |
412 | 0 | t1 = BN_CTX_get(ctx); |
413 | 0 | q = BN_CTX_get(ctx); |
414 | 0 | qadd = BN_CTX_get(ctx); |
415 | 0 | if (qadd == NULL) |
416 | 0 | goto err; |
417 | 0 | |
418 | 0 | if (!BN_rshift1(qadd, padd)) |
419 | 0 | goto err; |
420 | 0 | |
421 | 0 | if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) |
422 | 0 | goto err; |
423 | 0 | |
424 | 0 | /* we need ((rnd-rem) % add) == 0 */ |
425 | 0 | if (!BN_mod(t1, q, qadd, ctx)) |
426 | 0 | goto err; |
427 | 0 | if (!BN_sub(q, q, t1)) |
428 | 0 | goto err; |
429 | 0 | if (rem == NULL) { |
430 | 0 | if (!BN_add_word(q, 1)) |
431 | 0 | goto err; |
432 | 0 | } else { |
433 | 0 | if (!BN_rshift1(t1, rem)) |
434 | 0 | goto err; |
435 | 0 | if (!BN_add(q, q, t1)) |
436 | 0 | goto err; |
437 | 0 | } |
438 | 0 | |
439 | 0 | /* we now have a random number 'rand' to test. */ |
440 | 0 | if (!BN_lshift1(p, q)) |
441 | 0 | goto err; |
442 | 0 | if (!BN_add_word(p, 1)) |
443 | 0 | goto err; |
444 | 0 | |
445 | 0 | loop: |
446 | 0 | for (i = 1; i < NUMPRIMES; i++) { |
447 | 0 | /* check that p and q are prime */ |
448 | 0 | /* |
449 | 0 | * check that for p and q gcd(p-1,primes) == 1 (except for 2) |
450 | 0 | */ |
451 | 0 | BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]); |
452 | 0 | BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]); |
453 | 0 | if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1) |
454 | 0 | goto err; |
455 | 0 | if (pmod == 0 || qmod == 0) { |
456 | 0 | if (!BN_add(p, p, padd)) |
457 | 0 | goto err; |
458 | 0 | if (!BN_add(q, q, qadd)) |
459 | 0 | goto err; |
460 | 0 | goto loop; |
461 | 0 | } |
462 | 0 | } |
463 | 0 | ret = 1; |
464 | 0 |
|
465 | 0 | err: |
466 | 0 | BN_CTX_end(ctx); |
467 | 0 | bn_check_top(p); |
468 | 0 | return ret; |
469 | 0 | } |