/src/openssl/crypto/ec/ec_mult.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <string.h> |
12 | | #include <openssl/err.h> |
13 | | |
14 | | #include "internal/cryptlib.h" |
15 | | #include "internal/bn_int.h" |
16 | | #include "ec_lcl.h" |
17 | | #include "internal/refcount.h" |
18 | | |
19 | | /* |
20 | | * This file implements the wNAF-based interleaving multi-exponentiation method |
21 | | * Formerly at: |
22 | | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp |
23 | | * You might now find it here: |
24 | | * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
25 | | * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
26 | | * For multiplication with precomputation, we use wNAF splitting, formerly at: |
27 | | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp |
28 | | */ |
29 | | |
30 | | /* structure for precomputed multiples of the generator */ |
31 | | struct ec_pre_comp_st { |
32 | | const EC_GROUP *group; /* parent EC_GROUP object */ |
33 | | size_t blocksize; /* block size for wNAF splitting */ |
34 | | size_t numblocks; /* max. number of blocks for which we have |
35 | | * precomputation */ |
36 | | size_t w; /* window size */ |
37 | | EC_POINT **points; /* array with pre-calculated multiples of |
38 | | * generator: 'num' pointers to EC_POINT |
39 | | * objects followed by a NULL */ |
40 | | size_t num; /* numblocks * 2^(w-1) */ |
41 | | CRYPTO_REF_COUNT references; |
42 | | CRYPTO_RWLOCK *lock; |
43 | | }; |
44 | | |
45 | | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) |
46 | 0 | { |
47 | 0 | EC_PRE_COMP *ret = NULL; |
48 | 0 |
|
49 | 0 | if (!group) |
50 | 0 | return NULL; |
51 | 0 | |
52 | 0 | ret = OPENSSL_zalloc(sizeof(*ret)); |
53 | 0 | if (ret == NULL) { |
54 | 0 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
55 | 0 | return ret; |
56 | 0 | } |
57 | 0 |
|
58 | 0 | ret->group = group; |
59 | 0 | ret->blocksize = 8; /* default */ |
60 | 0 | ret->w = 4; /* default */ |
61 | 0 | ret->references = 1; |
62 | 0 |
|
63 | 0 | ret->lock = CRYPTO_THREAD_lock_new(); |
64 | 0 | if (ret->lock == NULL) { |
65 | 0 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
66 | 0 | OPENSSL_free(ret); |
67 | 0 | return NULL; |
68 | 0 | } |
69 | 0 | return ret; |
70 | 0 | } |
71 | | |
72 | | EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) |
73 | 0 | { |
74 | 0 | int i; |
75 | 0 | if (pre != NULL) |
76 | 0 | CRYPTO_UP_REF(&pre->references, &i, pre->lock); |
77 | 0 | return pre; |
78 | 0 | } |
79 | | |
80 | | void EC_ec_pre_comp_free(EC_PRE_COMP *pre) |
81 | 0 | { |
82 | 0 | int i; |
83 | 0 |
|
84 | 0 | if (pre == NULL) |
85 | 0 | return; |
86 | 0 | |
87 | 0 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
88 | 0 | REF_PRINT_COUNT("EC_ec", pre); |
89 | 0 | if (i > 0) |
90 | 0 | return; |
91 | 0 | REF_ASSERT_ISNT(i < 0); |
92 | 0 |
|
93 | 0 | if (pre->points != NULL) { |
94 | 0 | EC_POINT **pts; |
95 | 0 |
|
96 | 0 | for (pts = pre->points; *pts != NULL; pts++) |
97 | 0 | EC_POINT_free(*pts); |
98 | 0 | OPENSSL_free(pre->points); |
99 | 0 | } |
100 | 0 | CRYPTO_THREAD_lock_free(pre->lock); |
101 | 0 | OPENSSL_free(pre); |
102 | 0 | } |
103 | | |
104 | 0 | #define EC_POINT_BN_set_flags(P, flags) do { \ |
105 | 0 | BN_set_flags((P)->X, (flags)); \ |
106 | 0 | BN_set_flags((P)->Y, (flags)); \ |
107 | 0 | BN_set_flags((P)->Z, (flags)); \ |
108 | 0 | } while(0) |
109 | | |
110 | | /*- |
111 | | * This functions computes a single point multiplication over the EC group, |
112 | | * using, at a high level, a Montgomery ladder with conditional swaps, with |
113 | | * various timing attack defenses. |
114 | | * |
115 | | * It performs either a fixed point multiplication |
116 | | * (scalar * generator) |
117 | | * when point is NULL, or a variable point multiplication |
118 | | * (scalar * point) |
119 | | * when point is not NULL. |
120 | | * |
121 | | * `scalar` cannot be NULL and should be in the range [0,n) otherwise all |
122 | | * constant time bets are off (where n is the cardinality of the EC group). |
123 | | * |
124 | | * This function expects `group->order` and `group->cardinality` to be well |
125 | | * defined and non-zero: it fails with an error code otherwise. |
126 | | * |
127 | | * NB: This says nothing about the constant-timeness of the ladder step |
128 | | * implementation (i.e., the default implementation is based on EC_POINT_add and |
129 | | * EC_POINT_dbl, which of course are not constant time themselves) or the |
130 | | * underlying multiprecision arithmetic. |
131 | | * |
132 | | * The product is stored in `r`. |
133 | | * |
134 | | * This is an internal function: callers are in charge of ensuring that the |
135 | | * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. |
136 | | * |
137 | | * Returns 1 on success, 0 otherwise. |
138 | | */ |
139 | | int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, |
140 | | const BIGNUM *scalar, const EC_POINT *point, |
141 | | BN_CTX *ctx) |
142 | 0 | { |
143 | 0 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
144 | 0 | EC_POINT *p = NULL; |
145 | 0 | EC_POINT *s = NULL; |
146 | 0 | BIGNUM *k = NULL; |
147 | 0 | BIGNUM *lambda = NULL; |
148 | 0 | BIGNUM *cardinality = NULL; |
149 | 0 | int ret = 0; |
150 | 0 |
|
151 | 0 | /* early exit if the input point is the point at infinity */ |
152 | 0 | if (point != NULL && EC_POINT_is_at_infinity(group, point)) |
153 | 0 | return EC_POINT_set_to_infinity(group, r); |
154 | 0 | |
155 | 0 | if (BN_is_zero(group->order)) { |
156 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER); |
157 | 0 | return 0; |
158 | 0 | } |
159 | 0 | if (BN_is_zero(group->cofactor)) { |
160 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR); |
161 | 0 | return 0; |
162 | 0 | } |
163 | 0 |
|
164 | 0 | BN_CTX_start(ctx); |
165 | 0 |
|
166 | 0 | if (((p = EC_POINT_new(group)) == NULL) |
167 | 0 | || ((s = EC_POINT_new(group)) == NULL)) { |
168 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); |
169 | 0 | goto err; |
170 | 0 | } |
171 | 0 |
|
172 | 0 | if (point == NULL) { |
173 | 0 | if (!EC_POINT_copy(p, group->generator)) { |
174 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
175 | 0 | goto err; |
176 | 0 | } |
177 | 0 | } else { |
178 | 0 | if (!EC_POINT_copy(p, point)) { |
179 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
180 | 0 | goto err; |
181 | 0 | } |
182 | 0 | } |
183 | 0 |
|
184 | 0 | EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME); |
185 | 0 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); |
186 | 0 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); |
187 | 0 |
|
188 | 0 | cardinality = BN_CTX_get(ctx); |
189 | 0 | lambda = BN_CTX_get(ctx); |
190 | 0 | k = BN_CTX_get(ctx); |
191 | 0 | if (k == NULL) { |
192 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); |
193 | 0 | goto err; |
194 | 0 | } |
195 | 0 |
|
196 | 0 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) { |
197 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
198 | 0 | goto err; |
199 | 0 | } |
200 | 0 |
|
201 | 0 | /* |
202 | 0 | * Group cardinalities are often on a word boundary. |
203 | 0 | * So when we pad the scalar, some timing diff might |
204 | 0 | * pop if it needs to be expanded due to carries. |
205 | 0 | * So expand ahead of time. |
206 | 0 | */ |
207 | 0 | cardinality_bits = BN_num_bits(cardinality); |
208 | 0 | group_top = bn_get_top(cardinality); |
209 | 0 | if ((bn_wexpand(k, group_top + 1) == NULL) |
210 | 0 | || (bn_wexpand(lambda, group_top + 1) == NULL)) { |
211 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
212 | 0 | goto err; |
213 | 0 | } |
214 | 0 |
|
215 | 0 | if (!BN_copy(k, scalar)) { |
216 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
217 | 0 | goto err; |
218 | 0 | } |
219 | 0 |
|
220 | 0 | BN_set_flags(k, BN_FLG_CONSTTIME); |
221 | 0 |
|
222 | 0 | if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { |
223 | 0 | /*- |
224 | 0 | * this is an unusual input, and we don't guarantee |
225 | 0 | * constant-timeness |
226 | 0 | */ |
227 | 0 | if (!BN_nnmod(k, k, cardinality, ctx)) { |
228 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
229 | 0 | goto err; |
230 | 0 | } |
231 | 0 | } |
232 | 0 |
|
233 | 0 | if (!BN_add(lambda, k, cardinality)) { |
234 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
235 | 0 | goto err; |
236 | 0 | } |
237 | 0 | BN_set_flags(lambda, BN_FLG_CONSTTIME); |
238 | 0 | if (!BN_add(k, lambda, cardinality)) { |
239 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
240 | 0 | goto err; |
241 | 0 | } |
242 | 0 | /* |
243 | 0 | * lambda := scalar + cardinality |
244 | 0 | * k := scalar + 2*cardinality |
245 | 0 | */ |
246 | 0 | kbit = BN_is_bit_set(lambda, cardinality_bits); |
247 | 0 | BN_consttime_swap(kbit, k, lambda, group_top + 1); |
248 | 0 |
|
249 | 0 | group_top = bn_get_top(group->field); |
250 | 0 | if ((bn_wexpand(s->X, group_top) == NULL) |
251 | 0 | || (bn_wexpand(s->Y, group_top) == NULL) |
252 | 0 | || (bn_wexpand(s->Z, group_top) == NULL) |
253 | 0 | || (bn_wexpand(r->X, group_top) == NULL) |
254 | 0 | || (bn_wexpand(r->Y, group_top) == NULL) |
255 | 0 | || (bn_wexpand(r->Z, group_top) == NULL) |
256 | 0 | || (bn_wexpand(p->X, group_top) == NULL) |
257 | 0 | || (bn_wexpand(p->Y, group_top) == NULL) |
258 | 0 | || (bn_wexpand(p->Z, group_top) == NULL)) { |
259 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
260 | 0 | goto err; |
261 | 0 | } |
262 | 0 |
|
263 | 0 | /*- |
264 | 0 | * Apply coordinate blinding for EC_POINT. |
265 | 0 | * |
266 | 0 | * The underlying EC_METHOD can optionally implement this function: |
267 | 0 | * ec_point_blind_coordinates() returns 0 in case of errors or 1 on |
268 | 0 | * success or if coordinate blinding is not implemented for this |
269 | 0 | * group. |
270 | 0 | */ |
271 | 0 | if (!ec_point_blind_coordinates(group, p, ctx)) { |
272 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE); |
273 | 0 | goto err; |
274 | 0 | } |
275 | 0 |
|
276 | 0 | /* Initialize the Montgomery ladder */ |
277 | 0 | if (!ec_point_ladder_pre(group, r, s, p, ctx)) { |
278 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE); |
279 | 0 | goto err; |
280 | 0 | } |
281 | 0 |
|
282 | 0 | /* top bit is a 1, in a fixed pos */ |
283 | 0 | pbit = 1; |
284 | 0 |
|
285 | 0 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
286 | 0 | BN_consttime_swap(c, (a)->X, (b)->X, w); \ |
287 | 0 | BN_consttime_swap(c, (a)->Y, (b)->Y, w); \ |
288 | 0 | BN_consttime_swap(c, (a)->Z, (b)->Z, w); \ |
289 | 0 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
290 | 0 | (a)->Z_is_one ^= (t); \ |
291 | 0 | (b)->Z_is_one ^= (t); \ |
292 | 0 | } while(0) |
293 | 0 |
|
294 | 0 | /*- |
295 | 0 | * The ladder step, with branches, is |
296 | 0 | * |
297 | 0 | * k[i] == 0: S = add(R, S), R = dbl(R) |
298 | 0 | * k[i] == 1: R = add(S, R), S = dbl(S) |
299 | 0 | * |
300 | 0 | * Swapping R, S conditionally on k[i] leaves you with state |
301 | 0 | * |
302 | 0 | * k[i] == 0: T, U = R, S |
303 | 0 | * k[i] == 1: T, U = S, R |
304 | 0 | * |
305 | 0 | * Then perform the ECC ops. |
306 | 0 | * |
307 | 0 | * U = add(T, U) |
308 | 0 | * T = dbl(T) |
309 | 0 | * |
310 | 0 | * Which leaves you with state |
311 | 0 | * |
312 | 0 | * k[i] == 0: U = add(R, S), T = dbl(R) |
313 | 0 | * k[i] == 1: U = add(S, R), T = dbl(S) |
314 | 0 | * |
315 | 0 | * Swapping T, U conditionally on k[i] leaves you with state |
316 | 0 | * |
317 | 0 | * k[i] == 0: R, S = T, U |
318 | 0 | * k[i] == 1: R, S = U, T |
319 | 0 | * |
320 | 0 | * Which leaves you with state |
321 | 0 | * |
322 | 0 | * k[i] == 0: S = add(R, S), R = dbl(R) |
323 | 0 | * k[i] == 1: R = add(S, R), S = dbl(S) |
324 | 0 | * |
325 | 0 | * So we get the same logic, but instead of a branch it's a |
326 | 0 | * conditional swap, followed by ECC ops, then another conditional swap. |
327 | 0 | * |
328 | 0 | * Optimization: The end of iteration i and start of i-1 looks like |
329 | 0 | * |
330 | 0 | * ... |
331 | 0 | * CSWAP(k[i], R, S) |
332 | 0 | * ECC |
333 | 0 | * CSWAP(k[i], R, S) |
334 | 0 | * (next iteration) |
335 | 0 | * CSWAP(k[i-1], R, S) |
336 | 0 | * ECC |
337 | 0 | * CSWAP(k[i-1], R, S) |
338 | 0 | * ... |
339 | 0 | * |
340 | 0 | * So instead of two contiguous swaps, you can merge the condition |
341 | 0 | * bits and do a single swap. |
342 | 0 | * |
343 | 0 | * k[i] k[i-1] Outcome |
344 | 0 | * 0 0 No Swap |
345 | 0 | * 0 1 Swap |
346 | 0 | * 1 0 Swap |
347 | 0 | * 1 1 No Swap |
348 | 0 | * |
349 | 0 | * This is XOR. pbit tracks the previous bit of k. |
350 | 0 | */ |
351 | 0 |
|
352 | 0 | for (i = cardinality_bits - 1; i >= 0; i--) { |
353 | 0 | kbit = BN_is_bit_set(k, i) ^ pbit; |
354 | 0 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
355 | 0 |
|
356 | 0 | /* Perform a single step of the Montgomery ladder */ |
357 | 0 | if (!ec_point_ladder_step(group, r, s, p, ctx)) { |
358 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE); |
359 | 0 | goto err; |
360 | 0 | } |
361 | 0 | /* |
362 | 0 | * pbit logic merges this cswap with that of the |
363 | 0 | * next iteration |
364 | 0 | */ |
365 | 0 | pbit ^= kbit; |
366 | 0 | } |
367 | 0 | /* one final cswap to move the right value into r */ |
368 | 0 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
369 | 0 | #undef EC_POINT_CSWAP |
370 | 0 |
|
371 | 0 | /* Finalize ladder (and recover full point coordinates) */ |
372 | 0 | if (!ec_point_ladder_post(group, r, s, p, ctx)) { |
373 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE); |
374 | 0 | goto err; |
375 | 0 | } |
376 | 0 |
|
377 | 0 | ret = 1; |
378 | 0 |
|
379 | 0 | err: |
380 | 0 | EC_POINT_free(p); |
381 | 0 | EC_POINT_free(s); |
382 | 0 | BN_CTX_end(ctx); |
383 | 0 |
|
384 | 0 | return ret; |
385 | 0 | } |
386 | | |
387 | | #undef EC_POINT_BN_set_flags |
388 | | |
389 | | /* |
390 | | * TODO: table should be optimised for the wNAF-based implementation, |
391 | | * sometimes smaller windows will give better performance (thus the |
392 | | * boundaries should be increased) |
393 | | */ |
394 | | #define EC_window_bits_for_scalar_size(b) \ |
395 | 0 | ((size_t) \ |
396 | 0 | ((b) >= 2000 ? 6 : \ |
397 | 0 | (b) >= 800 ? 5 : \ |
398 | 0 | (b) >= 300 ? 4 : \ |
399 | 0 | (b) >= 70 ? 3 : \ |
400 | 0 | (b) >= 20 ? 2 : \ |
401 | 0 | 1)) |
402 | | |
403 | | /*- |
404 | | * Compute |
405 | | * \sum scalars[i]*points[i], |
406 | | * also including |
407 | | * scalar*generator |
408 | | * in the addition if scalar != NULL |
409 | | */ |
410 | | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
411 | | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], |
412 | | BN_CTX *ctx) |
413 | 0 | { |
414 | 0 | const EC_POINT *generator = NULL; |
415 | 0 | EC_POINT *tmp = NULL; |
416 | 0 | size_t totalnum; |
417 | 0 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ |
418 | 0 | size_t pre_points_per_block = 0; |
419 | 0 | size_t i, j; |
420 | 0 | int k; |
421 | 0 | int r_is_inverted = 0; |
422 | 0 | int r_is_at_infinity = 1; |
423 | 0 | size_t *wsize = NULL; /* individual window sizes */ |
424 | 0 | signed char **wNAF = NULL; /* individual wNAFs */ |
425 | 0 | size_t *wNAF_len = NULL; |
426 | 0 | size_t max_len = 0; |
427 | 0 | size_t num_val; |
428 | 0 | EC_POINT **val = NULL; /* precomputation */ |
429 | 0 | EC_POINT **v; |
430 | 0 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or |
431 | 0 | * 'pre_comp->points' */ |
432 | 0 | const EC_PRE_COMP *pre_comp = NULL; |
433 | 0 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be |
434 | 0 | * treated like other scalars, i.e. |
435 | 0 | * precomputation is not available */ |
436 | 0 | int ret = 0; |
437 | 0 |
|
438 | 0 | if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) { |
439 | 0 | /*- |
440 | 0 | * Handle the common cases where the scalar is secret, enforcing a |
441 | 0 | * scalar multiplication implementation based on a Montgomery ladder, |
442 | 0 | * with various timing attack defenses. |
443 | 0 | */ |
444 | 0 | if ((scalar != NULL) && (num == 0)) { |
445 | 0 | /*- |
446 | 0 | * In this case we want to compute scalar * GeneratorPoint: this |
447 | 0 | * codepath is reached most prominently by (ephemeral) key |
448 | 0 | * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, |
449 | 0 | * ECDH keygen/first half), where the scalar is always secret. This |
450 | 0 | * is why we ignore if BN_FLG_CONSTTIME is actually set and we |
451 | 0 | * always call the ladder version. |
452 | 0 | */ |
453 | 0 | return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
454 | 0 | } |
455 | 0 | if ((scalar == NULL) && (num == 1)) { |
456 | 0 | /*- |
457 | 0 | * In this case we want to compute scalar * VariablePoint: this |
458 | 0 | * codepath is reached most prominently by the second half of ECDH, |
459 | 0 | * where the secret scalar is multiplied by the peer's public point. |
460 | 0 | * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is |
461 | 0 | * actually set and we always call the ladder version. |
462 | 0 | */ |
463 | 0 | return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); |
464 | 0 | } |
465 | 0 | } |
466 | 0 | |
467 | 0 | if (scalar != NULL) { |
468 | 0 | generator = EC_GROUP_get0_generator(group); |
469 | 0 | if (generator == NULL) { |
470 | 0 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); |
471 | 0 | goto err; |
472 | 0 | } |
473 | 0 |
|
474 | 0 | /* look if we can use precomputed multiples of generator */ |
475 | 0 |
|
476 | 0 | pre_comp = group->pre_comp.ec; |
477 | 0 | if (pre_comp && pre_comp->numblocks |
478 | 0 | && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == |
479 | 0 | 0)) { |
480 | 0 | blocksize = pre_comp->blocksize; |
481 | 0 |
|
482 | 0 | /* |
483 | 0 | * determine maximum number of blocks that wNAF splitting may |
484 | 0 | * yield (NB: maximum wNAF length is bit length plus one) |
485 | 0 | */ |
486 | 0 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; |
487 | 0 |
|
488 | 0 | /* |
489 | 0 | * we cannot use more blocks than we have precomputation for |
490 | 0 | */ |
491 | 0 | if (numblocks > pre_comp->numblocks) |
492 | 0 | numblocks = pre_comp->numblocks; |
493 | 0 |
|
494 | 0 | pre_points_per_block = (size_t)1 << (pre_comp->w - 1); |
495 | 0 |
|
496 | 0 | /* check that pre_comp looks sane */ |
497 | 0 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { |
498 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
499 | 0 | goto err; |
500 | 0 | } |
501 | 0 | } else { |
502 | 0 | /* can't use precomputation */ |
503 | 0 | pre_comp = NULL; |
504 | 0 | numblocks = 1; |
505 | 0 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of |
506 | 0 | * 'scalars' */ |
507 | 0 | } |
508 | 0 | } |
509 | 0 |
|
510 | 0 | totalnum = num + numblocks; |
511 | 0 |
|
512 | 0 | wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0])); |
513 | 0 | wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0])); |
514 | 0 | /* include space for pivot */ |
515 | 0 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0])); |
516 | 0 | val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0])); |
517 | 0 |
|
518 | 0 | /* Ensure wNAF is initialised in case we end up going to err */ |
519 | 0 | if (wNAF != NULL) |
520 | 0 | wNAF[0] = NULL; /* preliminary pivot */ |
521 | 0 |
|
522 | 0 | if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) { |
523 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
524 | 0 | goto err; |
525 | 0 | } |
526 | 0 |
|
527 | 0 | /* |
528 | 0 | * num_val will be the total number of temporarily precomputed points |
529 | 0 | */ |
530 | 0 | num_val = 0; |
531 | 0 |
|
532 | 0 | for (i = 0; i < num + num_scalar; i++) { |
533 | 0 | size_t bits; |
534 | 0 |
|
535 | 0 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
536 | 0 | wsize[i] = EC_window_bits_for_scalar_size(bits); |
537 | 0 | num_val += (size_t)1 << (wsize[i] - 1); |
538 | 0 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ |
539 | 0 | wNAF[i] = |
540 | 0 | bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], |
541 | 0 | &wNAF_len[i]); |
542 | 0 | if (wNAF[i] == NULL) |
543 | 0 | goto err; |
544 | 0 | if (wNAF_len[i] > max_len) |
545 | 0 | max_len = wNAF_len[i]; |
546 | 0 | } |
547 | 0 |
|
548 | 0 | if (numblocks) { |
549 | 0 | /* we go here iff scalar != NULL */ |
550 | 0 |
|
551 | 0 | if (pre_comp == NULL) { |
552 | 0 | if (num_scalar != 1) { |
553 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
554 | 0 | goto err; |
555 | 0 | } |
556 | 0 | /* we have already generated a wNAF for 'scalar' */ |
557 | 0 | } else { |
558 | 0 | signed char *tmp_wNAF = NULL; |
559 | 0 | size_t tmp_len = 0; |
560 | 0 |
|
561 | 0 | if (num_scalar != 0) { |
562 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
563 | 0 | goto err; |
564 | 0 | } |
565 | 0 |
|
566 | 0 | /* |
567 | 0 | * use the window size for which we have precomputation |
568 | 0 | */ |
569 | 0 | wsize[num] = pre_comp->w; |
570 | 0 | tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); |
571 | 0 | if (!tmp_wNAF) |
572 | 0 | goto err; |
573 | 0 | |
574 | 0 | if (tmp_len <= max_len) { |
575 | 0 | /* |
576 | 0 | * One of the other wNAFs is at least as long as the wNAF |
577 | 0 | * belonging to the generator, so wNAF splitting will not buy |
578 | 0 | * us anything. |
579 | 0 | */ |
580 | 0 |
|
581 | 0 | numblocks = 1; |
582 | 0 | totalnum = num + 1; /* don't use wNAF splitting */ |
583 | 0 | wNAF[num] = tmp_wNAF; |
584 | 0 | wNAF[num + 1] = NULL; |
585 | 0 | wNAF_len[num] = tmp_len; |
586 | 0 | /* |
587 | 0 | * pre_comp->points starts with the points that we need here: |
588 | 0 | */ |
589 | 0 | val_sub[num] = pre_comp->points; |
590 | 0 | } else { |
591 | 0 | /* |
592 | 0 | * don't include tmp_wNAF directly into wNAF array - use wNAF |
593 | 0 | * splitting and include the blocks |
594 | 0 | */ |
595 | 0 |
|
596 | 0 | signed char *pp; |
597 | 0 | EC_POINT **tmp_points; |
598 | 0 |
|
599 | 0 | if (tmp_len < numblocks * blocksize) { |
600 | 0 | /* |
601 | 0 | * possibly we can do with fewer blocks than estimated |
602 | 0 | */ |
603 | 0 | numblocks = (tmp_len + blocksize - 1) / blocksize; |
604 | 0 | if (numblocks > pre_comp->numblocks) { |
605 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
606 | 0 | OPENSSL_free(tmp_wNAF); |
607 | 0 | goto err; |
608 | 0 | } |
609 | 0 | totalnum = num + numblocks; |
610 | 0 | } |
611 | 0 |
|
612 | 0 | /* split wNAF in 'numblocks' parts */ |
613 | 0 | pp = tmp_wNAF; |
614 | 0 | tmp_points = pre_comp->points; |
615 | 0 |
|
616 | 0 | for (i = num; i < totalnum; i++) { |
617 | 0 | if (i < totalnum - 1) { |
618 | 0 | wNAF_len[i] = blocksize; |
619 | 0 | if (tmp_len < blocksize) { |
620 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
621 | 0 | OPENSSL_free(tmp_wNAF); |
622 | 0 | goto err; |
623 | 0 | } |
624 | 0 | tmp_len -= blocksize; |
625 | 0 | } else |
626 | 0 | /* |
627 | 0 | * last block gets whatever is left (this could be |
628 | 0 | * more or less than 'blocksize'!) |
629 | 0 | */ |
630 | 0 | wNAF_len[i] = tmp_len; |
631 | 0 |
|
632 | 0 | wNAF[i + 1] = NULL; |
633 | 0 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); |
634 | 0 | if (wNAF[i] == NULL) { |
635 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
636 | 0 | OPENSSL_free(tmp_wNAF); |
637 | 0 | goto err; |
638 | 0 | } |
639 | 0 | memcpy(wNAF[i], pp, wNAF_len[i]); |
640 | 0 | if (wNAF_len[i] > max_len) |
641 | 0 | max_len = wNAF_len[i]; |
642 | 0 |
|
643 | 0 | if (*tmp_points == NULL) { |
644 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
645 | 0 | OPENSSL_free(tmp_wNAF); |
646 | 0 | goto err; |
647 | 0 | } |
648 | 0 | val_sub[i] = tmp_points; |
649 | 0 | tmp_points += pre_points_per_block; |
650 | 0 | pp += blocksize; |
651 | 0 | } |
652 | 0 | OPENSSL_free(tmp_wNAF); |
653 | 0 | } |
654 | 0 | } |
655 | 0 | } |
656 | 0 |
|
657 | 0 | /* |
658 | 0 | * All points we precompute now go into a single array 'val'. |
659 | 0 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a |
660 | 0 | * subarray of 'pre_comp->points' if we already have precomputation. |
661 | 0 | */ |
662 | 0 | val = OPENSSL_malloc((num_val + 1) * sizeof(val[0])); |
663 | 0 | if (val == NULL) { |
664 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
665 | 0 | goto err; |
666 | 0 | } |
667 | 0 | val[num_val] = NULL; /* pivot element */ |
668 | 0 |
|
669 | 0 | /* allocate points for precomputation */ |
670 | 0 | v = val; |
671 | 0 | for (i = 0; i < num + num_scalar; i++) { |
672 | 0 | val_sub[i] = v; |
673 | 0 | for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
674 | 0 | *v = EC_POINT_new(group); |
675 | 0 | if (*v == NULL) |
676 | 0 | goto err; |
677 | 0 | v++; |
678 | 0 | } |
679 | 0 | } |
680 | 0 | if (!(v == val + num_val)) { |
681 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
682 | 0 | goto err; |
683 | 0 | } |
684 | 0 |
|
685 | 0 | if ((tmp = EC_POINT_new(group)) == NULL) |
686 | 0 | goto err; |
687 | 0 | |
688 | 0 | /*- |
689 | 0 | * prepare precomputed values: |
690 | 0 | * val_sub[i][0] := points[i] |
691 | 0 | * val_sub[i][1] := 3 * points[i] |
692 | 0 | * val_sub[i][2] := 5 * points[i] |
693 | 0 | * ... |
694 | 0 | */ |
695 | 0 | for (i = 0; i < num + num_scalar; i++) { |
696 | 0 | if (i < num) { |
697 | 0 | if (!EC_POINT_copy(val_sub[i][0], points[i])) |
698 | 0 | goto err; |
699 | 0 | } else { |
700 | 0 | if (!EC_POINT_copy(val_sub[i][0], generator)) |
701 | 0 | goto err; |
702 | 0 | } |
703 | 0 | |
704 | 0 | if (wsize[i] > 1) { |
705 | 0 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) |
706 | 0 | goto err; |
707 | 0 | for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
708 | 0 | if (!EC_POINT_add |
709 | 0 | (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) |
710 | 0 | goto err; |
711 | 0 | } |
712 | 0 | } |
713 | 0 | } |
714 | 0 |
|
715 | 0 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) |
716 | 0 | goto err; |
717 | 0 | |
718 | 0 | r_is_at_infinity = 1; |
719 | 0 |
|
720 | 0 | for (k = max_len - 1; k >= 0; k--) { |
721 | 0 | if (!r_is_at_infinity) { |
722 | 0 | if (!EC_POINT_dbl(group, r, r, ctx)) |
723 | 0 | goto err; |
724 | 0 | } |
725 | 0 | |
726 | 0 | for (i = 0; i < totalnum; i++) { |
727 | 0 | if (wNAF_len[i] > (size_t)k) { |
728 | 0 | int digit = wNAF[i][k]; |
729 | 0 | int is_neg; |
730 | 0 |
|
731 | 0 | if (digit) { |
732 | 0 | is_neg = digit < 0; |
733 | 0 |
|
734 | 0 | if (is_neg) |
735 | 0 | digit = -digit; |
736 | 0 |
|
737 | 0 | if (is_neg != r_is_inverted) { |
738 | 0 | if (!r_is_at_infinity) { |
739 | 0 | if (!EC_POINT_invert(group, r, ctx)) |
740 | 0 | goto err; |
741 | 0 | } |
742 | 0 | r_is_inverted = !r_is_inverted; |
743 | 0 | } |
744 | 0 |
|
745 | 0 | /* digit > 0 */ |
746 | 0 |
|
747 | 0 | if (r_is_at_infinity) { |
748 | 0 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) |
749 | 0 | goto err; |
750 | 0 | r_is_at_infinity = 0; |
751 | 0 | } else { |
752 | 0 | if (!EC_POINT_add |
753 | 0 | (group, r, r, val_sub[i][digit >> 1], ctx)) |
754 | 0 | goto err; |
755 | 0 | } |
756 | 0 | } |
757 | 0 | } |
758 | 0 | } |
759 | 0 | } |
760 | 0 |
|
761 | 0 | if (r_is_at_infinity) { |
762 | 0 | if (!EC_POINT_set_to_infinity(group, r)) |
763 | 0 | goto err; |
764 | 0 | } else { |
765 | 0 | if (r_is_inverted) |
766 | 0 | if (!EC_POINT_invert(group, r, ctx)) |
767 | 0 | goto err; |
768 | 0 | } |
769 | 0 | |
770 | 0 | ret = 1; |
771 | 0 |
|
772 | 0 | err: |
773 | 0 | EC_POINT_free(tmp); |
774 | 0 | OPENSSL_free(wsize); |
775 | 0 | OPENSSL_free(wNAF_len); |
776 | 0 | if (wNAF != NULL) { |
777 | 0 | signed char **w; |
778 | 0 |
|
779 | 0 | for (w = wNAF; *w != NULL; w++) |
780 | 0 | OPENSSL_free(*w); |
781 | 0 |
|
782 | 0 | OPENSSL_free(wNAF); |
783 | 0 | } |
784 | 0 | if (val != NULL) { |
785 | 0 | for (v = val; *v != NULL; v++) |
786 | 0 | EC_POINT_clear_free(*v); |
787 | 0 |
|
788 | 0 | OPENSSL_free(val); |
789 | 0 | } |
790 | 0 | OPENSSL_free(val_sub); |
791 | 0 | return ret; |
792 | 0 | } |
793 | | |
794 | | /*- |
795 | | * ec_wNAF_precompute_mult() |
796 | | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator |
797 | | * for use with wNAF splitting as implemented in ec_wNAF_mul(). |
798 | | * |
799 | | * 'pre_comp->points' is an array of multiples of the generator |
800 | | * of the following form: |
801 | | * points[0] = generator; |
802 | | * points[1] = 3 * generator; |
803 | | * ... |
804 | | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; |
805 | | * points[2^(w-1)] = 2^blocksize * generator; |
806 | | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; |
807 | | * ... |
808 | | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator |
809 | | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator |
810 | | * ... |
811 | | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator |
812 | | * points[2^(w-1)*numblocks] = NULL |
813 | | */ |
814 | | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
815 | 0 | { |
816 | 0 | const EC_POINT *generator; |
817 | 0 | EC_POINT *tmp_point = NULL, *base = NULL, **var; |
818 | 0 | BN_CTX *new_ctx = NULL; |
819 | 0 | const BIGNUM *order; |
820 | 0 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; |
821 | 0 | EC_POINT **points = NULL; |
822 | 0 | EC_PRE_COMP *pre_comp; |
823 | 0 | int ret = 0; |
824 | 0 |
|
825 | 0 | /* if there is an old EC_PRE_COMP object, throw it away */ |
826 | 0 | EC_pre_comp_free(group); |
827 | 0 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) |
828 | 0 | return 0; |
829 | 0 | |
830 | 0 | generator = EC_GROUP_get0_generator(group); |
831 | 0 | if (generator == NULL) { |
832 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); |
833 | 0 | goto err; |
834 | 0 | } |
835 | 0 |
|
836 | 0 | if (ctx == NULL) { |
837 | 0 | ctx = new_ctx = BN_CTX_new(); |
838 | 0 | if (ctx == NULL) |
839 | 0 | goto err; |
840 | 0 | } |
841 | 0 | |
842 | 0 | BN_CTX_start(ctx); |
843 | 0 |
|
844 | 0 | order = EC_GROUP_get0_order(group); |
845 | 0 | if (order == NULL) |
846 | 0 | goto err; |
847 | 0 | if (BN_is_zero(order)) { |
848 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); |
849 | 0 | goto err; |
850 | 0 | } |
851 | 0 |
|
852 | 0 | bits = BN_num_bits(order); |
853 | 0 | /* |
854 | 0 | * The following parameters mean we precompute (approximately) one point |
855 | 0 | * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other |
856 | 0 | * bit lengths, other parameter combinations might provide better |
857 | 0 | * efficiency. |
858 | 0 | */ |
859 | 0 | blocksize = 8; |
860 | 0 | w = 4; |
861 | 0 | if (EC_window_bits_for_scalar_size(bits) > w) { |
862 | 0 | /* let's not make the window too small ... */ |
863 | 0 | w = EC_window_bits_for_scalar_size(bits); |
864 | 0 | } |
865 | 0 |
|
866 | 0 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks |
867 | 0 | * to use for wNAF |
868 | 0 | * splitting */ |
869 | 0 |
|
870 | 0 | pre_points_per_block = (size_t)1 << (w - 1); |
871 | 0 | num = pre_points_per_block * numblocks; /* number of points to compute |
872 | 0 | * and store */ |
873 | 0 |
|
874 | 0 | points = OPENSSL_malloc(sizeof(*points) * (num + 1)); |
875 | 0 | if (points == NULL) { |
876 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
877 | 0 | goto err; |
878 | 0 | } |
879 | 0 |
|
880 | 0 | var = points; |
881 | 0 | var[num] = NULL; /* pivot */ |
882 | 0 | for (i = 0; i < num; i++) { |
883 | 0 | if ((var[i] = EC_POINT_new(group)) == NULL) { |
884 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
885 | 0 | goto err; |
886 | 0 | } |
887 | 0 | } |
888 | 0 |
|
889 | 0 | if ((tmp_point = EC_POINT_new(group)) == NULL |
890 | 0 | || (base = EC_POINT_new(group)) == NULL) { |
891 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
892 | 0 | goto err; |
893 | 0 | } |
894 | 0 |
|
895 | 0 | if (!EC_POINT_copy(base, generator)) |
896 | 0 | goto err; |
897 | 0 | |
898 | 0 | /* do the precomputation */ |
899 | 0 | for (i = 0; i < numblocks; i++) { |
900 | 0 | size_t j; |
901 | 0 |
|
902 | 0 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) |
903 | 0 | goto err; |
904 | 0 | |
905 | 0 | if (!EC_POINT_copy(*var++, base)) |
906 | 0 | goto err; |
907 | 0 | |
908 | 0 | for (j = 1; j < pre_points_per_block; j++, var++) { |
909 | 0 | /* |
910 | 0 | * calculate odd multiples of the current base point |
911 | 0 | */ |
912 | 0 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) |
913 | 0 | goto err; |
914 | 0 | } |
915 | 0 |
|
916 | 0 | if (i < numblocks - 1) { |
917 | 0 | /* |
918 | 0 | * get the next base (multiply current one by 2^blocksize) |
919 | 0 | */ |
920 | 0 | size_t k; |
921 | 0 |
|
922 | 0 | if (blocksize <= 2) { |
923 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); |
924 | 0 | goto err; |
925 | 0 | } |
926 | 0 |
|
927 | 0 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) |
928 | 0 | goto err; |
929 | 0 | for (k = 2; k < blocksize; k++) { |
930 | 0 | if (!EC_POINT_dbl(group, base, base, ctx)) |
931 | 0 | goto err; |
932 | 0 | } |
933 | 0 | } |
934 | 0 | } |
935 | 0 |
|
936 | 0 | if (!EC_POINTs_make_affine(group, num, points, ctx)) |
937 | 0 | goto err; |
938 | 0 | |
939 | 0 | pre_comp->group = group; |
940 | 0 | pre_comp->blocksize = blocksize; |
941 | 0 | pre_comp->numblocks = numblocks; |
942 | 0 | pre_comp->w = w; |
943 | 0 | pre_comp->points = points; |
944 | 0 | points = NULL; |
945 | 0 | pre_comp->num = num; |
946 | 0 | SETPRECOMP(group, ec, pre_comp); |
947 | 0 | pre_comp = NULL; |
948 | 0 | ret = 1; |
949 | 0 |
|
950 | 0 | err: |
951 | 0 | if (ctx != NULL) |
952 | 0 | BN_CTX_end(ctx); |
953 | 0 | BN_CTX_free(new_ctx); |
954 | 0 | EC_ec_pre_comp_free(pre_comp); |
955 | 0 | if (points) { |
956 | 0 | EC_POINT **p; |
957 | 0 |
|
958 | 0 | for (p = points; *p != NULL; p++) |
959 | 0 | EC_POINT_free(*p); |
960 | 0 | OPENSSL_free(points); |
961 | 0 | } |
962 | 0 | EC_POINT_free(tmp_point); |
963 | 0 | EC_POINT_free(base); |
964 | 0 | return ret; |
965 | 0 | } |
966 | | |
967 | | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) |
968 | 0 | { |
969 | 0 | return HAVEPRECOMP(group, ec); |
970 | 0 | } |