/src/openssl/crypto/ec/ecp_nistp224.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* Copyright 2011 Google Inc. |
11 | | * |
12 | | * Licensed under the Apache License, Version 2.0 (the "License"); |
13 | | * |
14 | | * you may not use this file except in compliance with the License. |
15 | | * You may obtain a copy of the License at |
16 | | * |
17 | | * http://www.apache.org/licenses/LICENSE-2.0 |
18 | | * |
19 | | * Unless required by applicable law or agreed to in writing, software |
20 | | * distributed under the License is distributed on an "AS IS" BASIS, |
21 | | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
22 | | * See the License for the specific language governing permissions and |
23 | | * limitations under the License. |
24 | | */ |
25 | | |
26 | | /* |
27 | | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication |
28 | | * |
29 | | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation |
30 | | * and Adam Langley's public domain 64-bit C implementation of curve25519 |
31 | | */ |
32 | | |
33 | | #include <openssl/opensslconf.h> |
34 | | #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 |
35 | | NON_EMPTY_TRANSLATION_UNIT |
36 | | #else |
37 | | |
38 | | # include <stdint.h> |
39 | | # include <string.h> |
40 | | # include <openssl/err.h> |
41 | | # include "ec_lcl.h" |
42 | | |
43 | | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 |
44 | | /* even with gcc, the typedef won't work for 32-bit platforms */ |
45 | | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit |
46 | | * platforms */ |
47 | | # else |
48 | | # error "Your compiler doesn't appear to support 128-bit integer types" |
49 | | # endif |
50 | | |
51 | | typedef uint8_t u8; |
52 | | typedef uint64_t u64; |
53 | | |
54 | | /******************************************************************************/ |
55 | | /*- |
56 | | * INTERNAL REPRESENTATION OF FIELD ELEMENTS |
57 | | * |
58 | | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 |
59 | | * using 64-bit coefficients called 'limbs', |
60 | | * and sometimes (for multiplication results) as |
61 | | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 |
62 | | * using 128-bit coefficients called 'widelimbs'. |
63 | | * A 4-limb representation is an 'felem'; |
64 | | * a 7-widelimb representation is a 'widefelem'. |
65 | | * Even within felems, bits of adjacent limbs overlap, and we don't always |
66 | | * reduce the representations: we ensure that inputs to each felem |
67 | | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, |
68 | | * and fit into a 128-bit word without overflow. The coefficients are then |
69 | | * again partially reduced to obtain an felem satisfying a_i < 2^57. |
70 | | * We only reduce to the unique minimal representation at the end of the |
71 | | * computation. |
72 | | */ |
73 | | |
74 | | typedef uint64_t limb; |
75 | | typedef uint128_t widelimb; |
76 | | |
77 | | typedef limb felem[4]; |
78 | | typedef widelimb widefelem[7]; |
79 | | |
80 | | /* |
81 | | * Field element represented as a byte array. 28*8 = 224 bits is also the |
82 | | * group order size for the elliptic curve, and we also use this type for |
83 | | * scalars for point multiplication. |
84 | | */ |
85 | | typedef u8 felem_bytearray[28]; |
86 | | |
87 | | static const felem_bytearray nistp224_curve_params[5] = { |
88 | | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ |
89 | | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, |
90 | | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
91 | | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ |
92 | | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, |
93 | | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE}, |
94 | | {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ |
95 | | 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, |
96 | | 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4}, |
97 | | {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ |
98 | | 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, |
99 | | 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21}, |
100 | | {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ |
101 | | 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, |
102 | | 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34} |
103 | | }; |
104 | | |
105 | | /*- |
106 | | * Precomputed multiples of the standard generator |
107 | | * Points are given in coordinates (X, Y, Z) where Z normally is 1 |
108 | | * (0 for the point at infinity). |
109 | | * For each field element, slice a_0 is word 0, etc. |
110 | | * |
111 | | * The table has 2 * 16 elements, starting with the following: |
112 | | * index | bits | point |
113 | | * ------+---------+------------------------------ |
114 | | * 0 | 0 0 0 0 | 0G |
115 | | * 1 | 0 0 0 1 | 1G |
116 | | * 2 | 0 0 1 0 | 2^56G |
117 | | * 3 | 0 0 1 1 | (2^56 + 1)G |
118 | | * 4 | 0 1 0 0 | 2^112G |
119 | | * 5 | 0 1 0 1 | (2^112 + 1)G |
120 | | * 6 | 0 1 1 0 | (2^112 + 2^56)G |
121 | | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G |
122 | | * 8 | 1 0 0 0 | 2^168G |
123 | | * 9 | 1 0 0 1 | (2^168 + 1)G |
124 | | * 10 | 1 0 1 0 | (2^168 + 2^56)G |
125 | | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G |
126 | | * 12 | 1 1 0 0 | (2^168 + 2^112)G |
127 | | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G |
128 | | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G |
129 | | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G |
130 | | * followed by a copy of this with each element multiplied by 2^28. |
131 | | * |
132 | | * The reason for this is so that we can clock bits into four different |
133 | | * locations when doing simple scalar multiplies against the base point, |
134 | | * and then another four locations using the second 16 elements. |
135 | | */ |
136 | | static const felem gmul[2][16][3] = { |
137 | | {{{0, 0, 0, 0}, |
138 | | {0, 0, 0, 0}, |
139 | | {0, 0, 0, 0}}, |
140 | | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, |
141 | | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, |
142 | | {1, 0, 0, 0}}, |
143 | | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, |
144 | | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, |
145 | | {1, 0, 0, 0}}, |
146 | | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, |
147 | | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, |
148 | | {1, 0, 0, 0}}, |
149 | | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, |
150 | | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, |
151 | | {1, 0, 0, 0}}, |
152 | | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, |
153 | | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, |
154 | | {1, 0, 0, 0}}, |
155 | | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, |
156 | | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, |
157 | | {1, 0, 0, 0}}, |
158 | | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, |
159 | | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, |
160 | | {1, 0, 0, 0}}, |
161 | | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, |
162 | | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, |
163 | | {1, 0, 0, 0}}, |
164 | | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, |
165 | | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, |
166 | | {1, 0, 0, 0}}, |
167 | | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, |
168 | | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, |
169 | | {1, 0, 0, 0}}, |
170 | | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, |
171 | | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, |
172 | | {1, 0, 0, 0}}, |
173 | | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, |
174 | | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, |
175 | | {1, 0, 0, 0}}, |
176 | | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, |
177 | | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, |
178 | | {1, 0, 0, 0}}, |
179 | | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, |
180 | | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, |
181 | | {1, 0, 0, 0}}, |
182 | | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, |
183 | | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, |
184 | | {1, 0, 0, 0}}}, |
185 | | {{{0, 0, 0, 0}, |
186 | | {0, 0, 0, 0}, |
187 | | {0, 0, 0, 0}}, |
188 | | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, |
189 | | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, |
190 | | {1, 0, 0, 0}}, |
191 | | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, |
192 | | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, |
193 | | {1, 0, 0, 0}}, |
194 | | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, |
195 | | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, |
196 | | {1, 0, 0, 0}}, |
197 | | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, |
198 | | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, |
199 | | {1, 0, 0, 0}}, |
200 | | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, |
201 | | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, |
202 | | {1, 0, 0, 0}}, |
203 | | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, |
204 | | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, |
205 | | {1, 0, 0, 0}}, |
206 | | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, |
207 | | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, |
208 | | {1, 0, 0, 0}}, |
209 | | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, |
210 | | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, |
211 | | {1, 0, 0, 0}}, |
212 | | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, |
213 | | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, |
214 | | {1, 0, 0, 0}}, |
215 | | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, |
216 | | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, |
217 | | {1, 0, 0, 0}}, |
218 | | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, |
219 | | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, |
220 | | {1, 0, 0, 0}}, |
221 | | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, |
222 | | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, |
223 | | {1, 0, 0, 0}}, |
224 | | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, |
225 | | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, |
226 | | {1, 0, 0, 0}}, |
227 | | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, |
228 | | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, |
229 | | {1, 0, 0, 0}}, |
230 | | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, |
231 | | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, |
232 | | {1, 0, 0, 0}}} |
233 | | }; |
234 | | |
235 | | /* Precomputation for the group generator. */ |
236 | | struct nistp224_pre_comp_st { |
237 | | felem g_pre_comp[2][16][3]; |
238 | | CRYPTO_REF_COUNT references; |
239 | | CRYPTO_RWLOCK *lock; |
240 | | }; |
241 | | |
242 | | const EC_METHOD *EC_GFp_nistp224_method(void) |
243 | 0 | { |
244 | 0 | static const EC_METHOD ret = { |
245 | 0 | EC_FLAGS_DEFAULT_OCT, |
246 | 0 | NID_X9_62_prime_field, |
247 | 0 | ec_GFp_nistp224_group_init, |
248 | 0 | ec_GFp_simple_group_finish, |
249 | 0 | ec_GFp_simple_group_clear_finish, |
250 | 0 | ec_GFp_nist_group_copy, |
251 | 0 | ec_GFp_nistp224_group_set_curve, |
252 | 0 | ec_GFp_simple_group_get_curve, |
253 | 0 | ec_GFp_simple_group_get_degree, |
254 | 0 | ec_group_simple_order_bits, |
255 | 0 | ec_GFp_simple_group_check_discriminant, |
256 | 0 | ec_GFp_simple_point_init, |
257 | 0 | ec_GFp_simple_point_finish, |
258 | 0 | ec_GFp_simple_point_clear_finish, |
259 | 0 | ec_GFp_simple_point_copy, |
260 | 0 | ec_GFp_simple_point_set_to_infinity, |
261 | 0 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
262 | 0 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
263 | 0 | ec_GFp_simple_point_set_affine_coordinates, |
264 | 0 | ec_GFp_nistp224_point_get_affine_coordinates, |
265 | 0 | 0 /* point_set_compressed_coordinates */ , |
266 | 0 | 0 /* point2oct */ , |
267 | 0 | 0 /* oct2point */ , |
268 | 0 | ec_GFp_simple_add, |
269 | 0 | ec_GFp_simple_dbl, |
270 | 0 | ec_GFp_simple_invert, |
271 | 0 | ec_GFp_simple_is_at_infinity, |
272 | 0 | ec_GFp_simple_is_on_curve, |
273 | 0 | ec_GFp_simple_cmp, |
274 | 0 | ec_GFp_simple_make_affine, |
275 | 0 | ec_GFp_simple_points_make_affine, |
276 | 0 | ec_GFp_nistp224_points_mul, |
277 | 0 | ec_GFp_nistp224_precompute_mult, |
278 | 0 | ec_GFp_nistp224_have_precompute_mult, |
279 | 0 | ec_GFp_nist_field_mul, |
280 | 0 | ec_GFp_nist_field_sqr, |
281 | 0 | 0 /* field_div */ , |
282 | 0 | 0 /* field_encode */ , |
283 | 0 | 0 /* field_decode */ , |
284 | 0 | 0, /* field_set_to_one */ |
285 | 0 | ec_key_simple_priv2oct, |
286 | 0 | ec_key_simple_oct2priv, |
287 | 0 | 0, /* set private */ |
288 | 0 | ec_key_simple_generate_key, |
289 | 0 | ec_key_simple_check_key, |
290 | 0 | ec_key_simple_generate_public_key, |
291 | 0 | 0, /* keycopy */ |
292 | 0 | 0, /* keyfinish */ |
293 | 0 | ecdh_simple_compute_key, |
294 | 0 | 0, /* field_inverse_mod_ord */ |
295 | 0 | 0, /* blind_coordinates */ |
296 | 0 | 0, /* ladder_pre */ |
297 | 0 | 0, /* ladder_step */ |
298 | 0 | 0 /* ladder_post */ |
299 | 0 | }; |
300 | 0 |
|
301 | 0 | return &ret; |
302 | 0 | } |
303 | | |
304 | | /* |
305 | | * Helper functions to convert field elements to/from internal representation |
306 | | */ |
307 | | static void bin28_to_felem(felem out, const u8 in[28]) |
308 | 0 | { |
309 | 0 | out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff; |
310 | 0 | out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff; |
311 | 0 | out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff; |
312 | 0 | out[3] = (*((const uint64_t *)(in+20))) >> 8; |
313 | 0 | } |
314 | | |
315 | | static void felem_to_bin28(u8 out[28], const felem in) |
316 | 0 | { |
317 | 0 | unsigned i; |
318 | 0 | for (i = 0; i < 7; ++i) { |
319 | 0 | out[i] = in[0] >> (8 * i); |
320 | 0 | out[i + 7] = in[1] >> (8 * i); |
321 | 0 | out[i + 14] = in[2] >> (8 * i); |
322 | 0 | out[i + 21] = in[3] >> (8 * i); |
323 | 0 | } |
324 | 0 | } |
325 | | |
326 | | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ |
327 | | static void flip_endian(u8 *out, const u8 *in, unsigned len) |
328 | 0 | { |
329 | 0 | unsigned i; |
330 | 0 | for (i = 0; i < len; ++i) |
331 | 0 | out[i] = in[len - 1 - i]; |
332 | 0 | } |
333 | | |
334 | | /* From OpenSSL BIGNUM to internal representation */ |
335 | | static int BN_to_felem(felem out, const BIGNUM *bn) |
336 | 0 | { |
337 | 0 | felem_bytearray b_in; |
338 | 0 | felem_bytearray b_out; |
339 | 0 | unsigned num_bytes; |
340 | 0 |
|
341 | 0 | /* BN_bn2bin eats leading zeroes */ |
342 | 0 | memset(b_out, 0, sizeof(b_out)); |
343 | 0 | num_bytes = BN_num_bytes(bn); |
344 | 0 | if (num_bytes > sizeof(b_out)) { |
345 | 0 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
346 | 0 | return 0; |
347 | 0 | } |
348 | 0 | if (BN_is_negative(bn)) { |
349 | 0 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
350 | 0 | return 0; |
351 | 0 | } |
352 | 0 | num_bytes = BN_bn2bin(bn, b_in); |
353 | 0 | flip_endian(b_out, b_in, num_bytes); |
354 | 0 | bin28_to_felem(out, b_out); |
355 | 0 | return 1; |
356 | 0 | } |
357 | | |
358 | | /* From internal representation to OpenSSL BIGNUM */ |
359 | | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) |
360 | 0 | { |
361 | 0 | felem_bytearray b_in, b_out; |
362 | 0 | felem_to_bin28(b_in, in); |
363 | 0 | flip_endian(b_out, b_in, sizeof(b_out)); |
364 | 0 | return BN_bin2bn(b_out, sizeof(b_out), out); |
365 | 0 | } |
366 | | |
367 | | /******************************************************************************/ |
368 | | /*- |
369 | | * FIELD OPERATIONS |
370 | | * |
371 | | * Field operations, using the internal representation of field elements. |
372 | | * NB! These operations are specific to our point multiplication and cannot be |
373 | | * expected to be correct in general - e.g., multiplication with a large scalar |
374 | | * will cause an overflow. |
375 | | * |
376 | | */ |
377 | | |
378 | | static void felem_one(felem out) |
379 | 0 | { |
380 | 0 | out[0] = 1; |
381 | 0 | out[1] = 0; |
382 | 0 | out[2] = 0; |
383 | 0 | out[3] = 0; |
384 | 0 | } |
385 | | |
386 | | static void felem_assign(felem out, const felem in) |
387 | 0 | { |
388 | 0 | out[0] = in[0]; |
389 | 0 | out[1] = in[1]; |
390 | 0 | out[2] = in[2]; |
391 | 0 | out[3] = in[3]; |
392 | 0 | } |
393 | | |
394 | | /* Sum two field elements: out += in */ |
395 | | static void felem_sum(felem out, const felem in) |
396 | 0 | { |
397 | 0 | out[0] += in[0]; |
398 | 0 | out[1] += in[1]; |
399 | 0 | out[2] += in[2]; |
400 | 0 | out[3] += in[3]; |
401 | 0 | } |
402 | | |
403 | | /* Subtract field elements: out -= in */ |
404 | | /* Assumes in[i] < 2^57 */ |
405 | | static void felem_diff(felem out, const felem in) |
406 | 0 | { |
407 | 0 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); |
408 | 0 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); |
409 | 0 | static const limb two58m42m2 = (((limb) 1) << 58) - |
410 | 0 | (((limb) 1) << 42) - (((limb) 1) << 2); |
411 | 0 |
|
412 | 0 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
413 | 0 | out[0] += two58p2; |
414 | 0 | out[1] += two58m42m2; |
415 | 0 | out[2] += two58m2; |
416 | 0 | out[3] += two58m2; |
417 | 0 |
|
418 | 0 | out[0] -= in[0]; |
419 | 0 | out[1] -= in[1]; |
420 | 0 | out[2] -= in[2]; |
421 | 0 | out[3] -= in[3]; |
422 | 0 | } |
423 | | |
424 | | /* Subtract in unreduced 128-bit mode: out -= in */ |
425 | | /* Assumes in[i] < 2^119 */ |
426 | | static void widefelem_diff(widefelem out, const widefelem in) |
427 | 0 | { |
428 | 0 | static const widelimb two120 = ((widelimb) 1) << 120; |
429 | 0 | static const widelimb two120m64 = (((widelimb) 1) << 120) - |
430 | 0 | (((widelimb) 1) << 64); |
431 | 0 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - |
432 | 0 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); |
433 | 0 |
|
434 | 0 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
435 | 0 | out[0] += two120; |
436 | 0 | out[1] += two120m64; |
437 | 0 | out[2] += two120m64; |
438 | 0 | out[3] += two120; |
439 | 0 | out[4] += two120m104m64; |
440 | 0 | out[5] += two120m64; |
441 | 0 | out[6] += two120m64; |
442 | 0 |
|
443 | 0 | out[0] -= in[0]; |
444 | 0 | out[1] -= in[1]; |
445 | 0 | out[2] -= in[2]; |
446 | 0 | out[3] -= in[3]; |
447 | 0 | out[4] -= in[4]; |
448 | 0 | out[5] -= in[5]; |
449 | 0 | out[6] -= in[6]; |
450 | 0 | } |
451 | | |
452 | | /* Subtract in mixed mode: out128 -= in64 */ |
453 | | /* in[i] < 2^63 */ |
454 | | static void felem_diff_128_64(widefelem out, const felem in) |
455 | 0 | { |
456 | 0 | static const widelimb two64p8 = (((widelimb) 1) << 64) + |
457 | 0 | (((widelimb) 1) << 8); |
458 | 0 | static const widelimb two64m8 = (((widelimb) 1) << 64) - |
459 | 0 | (((widelimb) 1) << 8); |
460 | 0 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - |
461 | 0 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); |
462 | 0 |
|
463 | 0 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
464 | 0 | out[0] += two64p8; |
465 | 0 | out[1] += two64m48m8; |
466 | 0 | out[2] += two64m8; |
467 | 0 | out[3] += two64m8; |
468 | 0 |
|
469 | 0 | out[0] -= in[0]; |
470 | 0 | out[1] -= in[1]; |
471 | 0 | out[2] -= in[2]; |
472 | 0 | out[3] -= in[3]; |
473 | 0 | } |
474 | | |
475 | | /* |
476 | | * Multiply a field element by a scalar: out = out * scalar The scalars we |
477 | | * actually use are small, so results fit without overflow |
478 | | */ |
479 | | static void felem_scalar(felem out, const limb scalar) |
480 | 0 | { |
481 | 0 | out[0] *= scalar; |
482 | 0 | out[1] *= scalar; |
483 | 0 | out[2] *= scalar; |
484 | 0 | out[3] *= scalar; |
485 | 0 | } |
486 | | |
487 | | /* |
488 | | * Multiply an unreduced field element by a scalar: out = out * scalar The |
489 | | * scalars we actually use are small, so results fit without overflow |
490 | | */ |
491 | | static void widefelem_scalar(widefelem out, const widelimb scalar) |
492 | 0 | { |
493 | 0 | out[0] *= scalar; |
494 | 0 | out[1] *= scalar; |
495 | 0 | out[2] *= scalar; |
496 | 0 | out[3] *= scalar; |
497 | 0 | out[4] *= scalar; |
498 | 0 | out[5] *= scalar; |
499 | 0 | out[6] *= scalar; |
500 | 0 | } |
501 | | |
502 | | /* Square a field element: out = in^2 */ |
503 | | static void felem_square(widefelem out, const felem in) |
504 | 0 | { |
505 | 0 | limb tmp0, tmp1, tmp2; |
506 | 0 | tmp0 = 2 * in[0]; |
507 | 0 | tmp1 = 2 * in[1]; |
508 | 0 | tmp2 = 2 * in[2]; |
509 | 0 | out[0] = ((widelimb) in[0]) * in[0]; |
510 | 0 | out[1] = ((widelimb) in[0]) * tmp1; |
511 | 0 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; |
512 | 0 | out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2; |
513 | 0 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; |
514 | 0 | out[5] = ((widelimb) in[3]) * tmp2; |
515 | 0 | out[6] = ((widelimb) in[3]) * in[3]; |
516 | 0 | } |
517 | | |
518 | | /* Multiply two field elements: out = in1 * in2 */ |
519 | | static void felem_mul(widefelem out, const felem in1, const felem in2) |
520 | 0 | { |
521 | 0 | out[0] = ((widelimb) in1[0]) * in2[0]; |
522 | 0 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; |
523 | 0 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + |
524 | 0 | ((widelimb) in1[2]) * in2[0]; |
525 | 0 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + |
526 | 0 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; |
527 | 0 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + |
528 | 0 | ((widelimb) in1[3]) * in2[1]; |
529 | 0 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; |
530 | 0 | out[6] = ((widelimb) in1[3]) * in2[3]; |
531 | 0 | } |
532 | | |
533 | | /*- |
534 | | * Reduce seven 128-bit coefficients to four 64-bit coefficients. |
535 | | * Requires in[i] < 2^126, |
536 | | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ |
537 | | static void felem_reduce(felem out, const widefelem in) |
538 | 0 | { |
539 | 0 | static const widelimb two127p15 = (((widelimb) 1) << 127) + |
540 | 0 | (((widelimb) 1) << 15); |
541 | 0 | static const widelimb two127m71 = (((widelimb) 1) << 127) - |
542 | 0 | (((widelimb) 1) << 71); |
543 | 0 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - |
544 | 0 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); |
545 | 0 | widelimb output[5]; |
546 | 0 |
|
547 | 0 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ |
548 | 0 | output[0] = in[0] + two127p15; |
549 | 0 | output[1] = in[1] + two127m71m55; |
550 | 0 | output[2] = in[2] + two127m71; |
551 | 0 | output[3] = in[3]; |
552 | 0 | output[4] = in[4]; |
553 | 0 |
|
554 | 0 | /* Eliminate in[4], in[5], in[6] */ |
555 | 0 | output[4] += in[6] >> 16; |
556 | 0 | output[3] += (in[6] & 0xffff) << 40; |
557 | 0 | output[2] -= in[6]; |
558 | 0 |
|
559 | 0 | output[3] += in[5] >> 16; |
560 | 0 | output[2] += (in[5] & 0xffff) << 40; |
561 | 0 | output[1] -= in[5]; |
562 | 0 |
|
563 | 0 | output[2] += output[4] >> 16; |
564 | 0 | output[1] += (output[4] & 0xffff) << 40; |
565 | 0 | output[0] -= output[4]; |
566 | 0 |
|
567 | 0 | /* Carry 2 -> 3 -> 4 */ |
568 | 0 | output[3] += output[2] >> 56; |
569 | 0 | output[2] &= 0x00ffffffffffffff; |
570 | 0 |
|
571 | 0 | output[4] = output[3] >> 56; |
572 | 0 | output[3] &= 0x00ffffffffffffff; |
573 | 0 |
|
574 | 0 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ |
575 | 0 |
|
576 | 0 | /* Eliminate output[4] */ |
577 | 0 | output[2] += output[4] >> 16; |
578 | 0 | /* output[2] < 2^56 + 2^56 = 2^57 */ |
579 | 0 | output[1] += (output[4] & 0xffff) << 40; |
580 | 0 | output[0] -= output[4]; |
581 | 0 |
|
582 | 0 | /* Carry 0 -> 1 -> 2 -> 3 */ |
583 | 0 | output[1] += output[0] >> 56; |
584 | 0 | out[0] = output[0] & 0x00ffffffffffffff; |
585 | 0 |
|
586 | 0 | output[2] += output[1] >> 56; |
587 | 0 | /* output[2] < 2^57 + 2^72 */ |
588 | 0 | out[1] = output[1] & 0x00ffffffffffffff; |
589 | 0 | output[3] += output[2] >> 56; |
590 | 0 | /* output[3] <= 2^56 + 2^16 */ |
591 | 0 | out[2] = output[2] & 0x00ffffffffffffff; |
592 | 0 |
|
593 | 0 | /*- |
594 | 0 | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, |
595 | 0 | * out[3] <= 2^56 + 2^16 (due to final carry), |
596 | 0 | * so out < 2*p |
597 | 0 | */ |
598 | 0 | out[3] = output[3]; |
599 | 0 | } |
600 | | |
601 | | static void felem_square_reduce(felem out, const felem in) |
602 | 0 | { |
603 | 0 | widefelem tmp; |
604 | 0 | felem_square(tmp, in); |
605 | 0 | felem_reduce(out, tmp); |
606 | 0 | } |
607 | | |
608 | | static void felem_mul_reduce(felem out, const felem in1, const felem in2) |
609 | 0 | { |
610 | 0 | widefelem tmp; |
611 | 0 | felem_mul(tmp, in1, in2); |
612 | 0 | felem_reduce(out, tmp); |
613 | 0 | } |
614 | | |
615 | | /* |
616 | | * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always |
617 | | * call felem_reduce first) |
618 | | */ |
619 | | static void felem_contract(felem out, const felem in) |
620 | 0 | { |
621 | 0 | static const int64_t two56 = ((limb) 1) << 56; |
622 | 0 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ |
623 | 0 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ |
624 | 0 | int64_t tmp[4], a; |
625 | 0 | tmp[0] = in[0]; |
626 | 0 | tmp[1] = in[1]; |
627 | 0 | tmp[2] = in[2]; |
628 | 0 | tmp[3] = in[3]; |
629 | 0 | /* Case 1: a = 1 iff in >= 2^224 */ |
630 | 0 | a = (in[3] >> 56); |
631 | 0 | tmp[0] -= a; |
632 | 0 | tmp[1] += a << 40; |
633 | 0 | tmp[3] &= 0x00ffffffffffffff; |
634 | 0 | /* |
635 | 0 | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 |
636 | 0 | * and the lower part is non-zero |
637 | 0 | */ |
638 | 0 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | |
639 | 0 | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); |
640 | 0 | a &= 0x00ffffffffffffff; |
641 | 0 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ |
642 | 0 | a = (a - 1) >> 63; |
643 | 0 | /* subtract 2^224 - 2^96 + 1 if a is all-one */ |
644 | 0 | tmp[3] &= a ^ 0xffffffffffffffff; |
645 | 0 | tmp[2] &= a ^ 0xffffffffffffffff; |
646 | 0 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; |
647 | 0 | tmp[0] -= 1 & a; |
648 | 0 |
|
649 | 0 | /* |
650 | 0 | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be |
651 | 0 | * non-zero, so we only need one step |
652 | 0 | */ |
653 | 0 | a = tmp[0] >> 63; |
654 | 0 | tmp[0] += two56 & a; |
655 | 0 | tmp[1] -= 1 & a; |
656 | 0 |
|
657 | 0 | /* carry 1 -> 2 -> 3 */ |
658 | 0 | tmp[2] += tmp[1] >> 56; |
659 | 0 | tmp[1] &= 0x00ffffffffffffff; |
660 | 0 |
|
661 | 0 | tmp[3] += tmp[2] >> 56; |
662 | 0 | tmp[2] &= 0x00ffffffffffffff; |
663 | 0 |
|
664 | 0 | /* Now 0 <= out < p */ |
665 | 0 | out[0] = tmp[0]; |
666 | 0 | out[1] = tmp[1]; |
667 | 0 | out[2] = tmp[2]; |
668 | 0 | out[3] = tmp[3]; |
669 | 0 | } |
670 | | |
671 | | /* |
672 | | * Get negative value: out = -in |
673 | | * Requires in[i] < 2^63, |
674 | | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 |
675 | | */ |
676 | | static void felem_neg(felem out, const felem in) |
677 | 0 | { |
678 | 0 | widefelem tmp = {0}; |
679 | 0 | felem_diff_128_64(tmp, in); |
680 | 0 | felem_reduce(out, tmp); |
681 | 0 | } |
682 | | |
683 | | /* |
684 | | * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field |
685 | | * elements are reduced to in < 2^225, so we only need to check three cases: |
686 | | * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 |
687 | | */ |
688 | | static limb felem_is_zero(const felem in) |
689 | 0 | { |
690 | 0 | limb zero, two224m96p1, two225m97p2; |
691 | 0 |
|
692 | 0 | zero = in[0] | in[1] | in[2] | in[3]; |
693 | 0 | zero = (((int64_t) (zero) - 1) >> 63) & 1; |
694 | 0 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
695 | 0 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); |
696 | 0 | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; |
697 | 0 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
698 | 0 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); |
699 | 0 | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; |
700 | 0 | return (zero | two224m96p1 | two225m97p2); |
701 | 0 | } |
702 | | |
703 | | static int felem_is_zero_int(const void *in) |
704 | 0 | { |
705 | 0 | return (int)(felem_is_zero(in) & ((limb) 1)); |
706 | 0 | } |
707 | | |
708 | | /* Invert a field element */ |
709 | | /* Computation chain copied from djb's code */ |
710 | | static void felem_inv(felem out, const felem in) |
711 | 0 | { |
712 | 0 | felem ftmp, ftmp2, ftmp3, ftmp4; |
713 | 0 | widefelem tmp; |
714 | 0 | unsigned i; |
715 | 0 |
|
716 | 0 | felem_square(tmp, in); |
717 | 0 | felem_reduce(ftmp, tmp); /* 2 */ |
718 | 0 | felem_mul(tmp, in, ftmp); |
719 | 0 | felem_reduce(ftmp, tmp); /* 2^2 - 1 */ |
720 | 0 | felem_square(tmp, ftmp); |
721 | 0 | felem_reduce(ftmp, tmp); /* 2^3 - 2 */ |
722 | 0 | felem_mul(tmp, in, ftmp); |
723 | 0 | felem_reduce(ftmp, tmp); /* 2^3 - 1 */ |
724 | 0 | felem_square(tmp, ftmp); |
725 | 0 | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ |
726 | 0 | felem_square(tmp, ftmp2); |
727 | 0 | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ |
728 | 0 | felem_square(tmp, ftmp2); |
729 | 0 | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ |
730 | 0 | felem_mul(tmp, ftmp2, ftmp); |
731 | 0 | felem_reduce(ftmp, tmp); /* 2^6 - 1 */ |
732 | 0 | felem_square(tmp, ftmp); |
733 | 0 | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ |
734 | 0 | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ |
735 | 0 | felem_square(tmp, ftmp2); |
736 | 0 | felem_reduce(ftmp2, tmp); |
737 | 0 | } |
738 | 0 | felem_mul(tmp, ftmp2, ftmp); |
739 | 0 | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ |
740 | 0 | felem_square(tmp, ftmp2); |
741 | 0 | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ |
742 | 0 | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ |
743 | 0 | felem_square(tmp, ftmp3); |
744 | 0 | felem_reduce(ftmp3, tmp); |
745 | 0 | } |
746 | 0 | felem_mul(tmp, ftmp3, ftmp2); |
747 | 0 | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ |
748 | 0 | felem_square(tmp, ftmp2); |
749 | 0 | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ |
750 | 0 | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ |
751 | 0 | felem_square(tmp, ftmp3); |
752 | 0 | felem_reduce(ftmp3, tmp); |
753 | 0 | } |
754 | 0 | felem_mul(tmp, ftmp3, ftmp2); |
755 | 0 | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ |
756 | 0 | felem_square(tmp, ftmp3); |
757 | 0 | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ |
758 | 0 | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ |
759 | 0 | felem_square(tmp, ftmp4); |
760 | 0 | felem_reduce(ftmp4, tmp); |
761 | 0 | } |
762 | 0 | felem_mul(tmp, ftmp3, ftmp4); |
763 | 0 | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ |
764 | 0 | felem_square(tmp, ftmp3); |
765 | 0 | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ |
766 | 0 | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ |
767 | 0 | felem_square(tmp, ftmp4); |
768 | 0 | felem_reduce(ftmp4, tmp); |
769 | 0 | } |
770 | 0 | felem_mul(tmp, ftmp2, ftmp4); |
771 | 0 | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ |
772 | 0 | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ |
773 | 0 | felem_square(tmp, ftmp2); |
774 | 0 | felem_reduce(ftmp2, tmp); |
775 | 0 | } |
776 | 0 | felem_mul(tmp, ftmp2, ftmp); |
777 | 0 | felem_reduce(ftmp, tmp); /* 2^126 - 1 */ |
778 | 0 | felem_square(tmp, ftmp); |
779 | 0 | felem_reduce(ftmp, tmp); /* 2^127 - 2 */ |
780 | 0 | felem_mul(tmp, ftmp, in); |
781 | 0 | felem_reduce(ftmp, tmp); /* 2^127 - 1 */ |
782 | 0 | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ |
783 | 0 | felem_square(tmp, ftmp); |
784 | 0 | felem_reduce(ftmp, tmp); |
785 | 0 | } |
786 | 0 | felem_mul(tmp, ftmp, ftmp3); |
787 | 0 | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ |
788 | 0 | } |
789 | | |
790 | | /* |
791 | | * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy |
792 | | * out to itself. |
793 | | */ |
794 | | static void copy_conditional(felem out, const felem in, limb icopy) |
795 | 0 | { |
796 | 0 | unsigned i; |
797 | 0 | /* |
798 | 0 | * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one |
799 | 0 | */ |
800 | 0 | const limb copy = -icopy; |
801 | 0 | for (i = 0; i < 4; ++i) { |
802 | 0 | const limb tmp = copy & (in[i] ^ out[i]); |
803 | 0 | out[i] ^= tmp; |
804 | 0 | } |
805 | 0 | } |
806 | | |
807 | | /******************************************************************************/ |
808 | | /*- |
809 | | * ELLIPTIC CURVE POINT OPERATIONS |
810 | | * |
811 | | * Points are represented in Jacobian projective coordinates: |
812 | | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), |
813 | | * or to the point at infinity if Z == 0. |
814 | | * |
815 | | */ |
816 | | |
817 | | /*- |
818 | | * Double an elliptic curve point: |
819 | | * (X', Y', Z') = 2 * (X, Y, Z), where |
820 | | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 |
821 | | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4 |
822 | | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z |
823 | | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, |
824 | | * while x_out == y_in is not (maybe this works, but it's not tested). |
825 | | */ |
826 | | static void |
827 | | point_double(felem x_out, felem y_out, felem z_out, |
828 | | const felem x_in, const felem y_in, const felem z_in) |
829 | 0 | { |
830 | 0 | widefelem tmp, tmp2; |
831 | 0 | felem delta, gamma, beta, alpha, ftmp, ftmp2; |
832 | 0 |
|
833 | 0 | felem_assign(ftmp, x_in); |
834 | 0 | felem_assign(ftmp2, x_in); |
835 | 0 |
|
836 | 0 | /* delta = z^2 */ |
837 | 0 | felem_square(tmp, z_in); |
838 | 0 | felem_reduce(delta, tmp); |
839 | 0 |
|
840 | 0 | /* gamma = y^2 */ |
841 | 0 | felem_square(tmp, y_in); |
842 | 0 | felem_reduce(gamma, tmp); |
843 | 0 |
|
844 | 0 | /* beta = x*gamma */ |
845 | 0 | felem_mul(tmp, x_in, gamma); |
846 | 0 | felem_reduce(beta, tmp); |
847 | 0 |
|
848 | 0 | /* alpha = 3*(x-delta)*(x+delta) */ |
849 | 0 | felem_diff(ftmp, delta); |
850 | 0 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ |
851 | 0 | felem_sum(ftmp2, delta); |
852 | 0 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ |
853 | 0 | felem_scalar(ftmp2, 3); |
854 | 0 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ |
855 | 0 | felem_mul(tmp, ftmp, ftmp2); |
856 | 0 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ |
857 | 0 | felem_reduce(alpha, tmp); |
858 | 0 |
|
859 | 0 | /* x' = alpha^2 - 8*beta */ |
860 | 0 | felem_square(tmp, alpha); |
861 | 0 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
862 | 0 | felem_assign(ftmp, beta); |
863 | 0 | felem_scalar(ftmp, 8); |
864 | 0 | /* ftmp[i] < 8 * 2^57 = 2^60 */ |
865 | 0 | felem_diff_128_64(tmp, ftmp); |
866 | 0 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
867 | 0 | felem_reduce(x_out, tmp); |
868 | 0 |
|
869 | 0 | /* z' = (y + z)^2 - gamma - delta */ |
870 | 0 | felem_sum(delta, gamma); |
871 | 0 | /* delta[i] < 2^57 + 2^57 = 2^58 */ |
872 | 0 | felem_assign(ftmp, y_in); |
873 | 0 | felem_sum(ftmp, z_in); |
874 | 0 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ |
875 | 0 | felem_square(tmp, ftmp); |
876 | 0 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ |
877 | 0 | felem_diff_128_64(tmp, delta); |
878 | 0 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ |
879 | 0 | felem_reduce(z_out, tmp); |
880 | 0 |
|
881 | 0 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
882 | 0 | felem_scalar(beta, 4); |
883 | 0 | /* beta[i] < 4 * 2^57 = 2^59 */ |
884 | 0 | felem_diff(beta, x_out); |
885 | 0 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ |
886 | 0 | felem_mul(tmp, alpha, beta); |
887 | 0 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ |
888 | 0 | felem_square(tmp2, gamma); |
889 | 0 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ |
890 | 0 | widefelem_scalar(tmp2, 8); |
891 | 0 | /* tmp2[i] < 8 * 2^116 = 2^119 */ |
892 | 0 | widefelem_diff(tmp, tmp2); |
893 | 0 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ |
894 | 0 | felem_reduce(y_out, tmp); |
895 | 0 | } |
896 | | |
897 | | /*- |
898 | | * Add two elliptic curve points: |
899 | | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where |
900 | | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - |
901 | | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 |
902 | | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - |
903 | | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 |
904 | | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) |
905 | | * |
906 | | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. |
907 | | */ |
908 | | |
909 | | /* |
910 | | * This function is not entirely constant-time: it includes a branch for |
911 | | * checking whether the two input points are equal, (while not equal to the |
912 | | * point at infinity). This case never happens during single point |
913 | | * multiplication, so there is no timing leak for ECDH or ECDSA signing. |
914 | | */ |
915 | | static void point_add(felem x3, felem y3, felem z3, |
916 | | const felem x1, const felem y1, const felem z1, |
917 | | const int mixed, const felem x2, const felem y2, |
918 | | const felem z2) |
919 | 0 | { |
920 | 0 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; |
921 | 0 | widefelem tmp, tmp2; |
922 | 0 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; |
923 | 0 |
|
924 | 0 | if (!mixed) { |
925 | 0 | /* ftmp2 = z2^2 */ |
926 | 0 | felem_square(tmp, z2); |
927 | 0 | felem_reduce(ftmp2, tmp); |
928 | 0 |
|
929 | 0 | /* ftmp4 = z2^3 */ |
930 | 0 | felem_mul(tmp, ftmp2, z2); |
931 | 0 | felem_reduce(ftmp4, tmp); |
932 | 0 |
|
933 | 0 | /* ftmp4 = z2^3*y1 */ |
934 | 0 | felem_mul(tmp2, ftmp4, y1); |
935 | 0 | felem_reduce(ftmp4, tmp2); |
936 | 0 |
|
937 | 0 | /* ftmp2 = z2^2*x1 */ |
938 | 0 | felem_mul(tmp2, ftmp2, x1); |
939 | 0 | felem_reduce(ftmp2, tmp2); |
940 | 0 | } else { |
941 | 0 | /* |
942 | 0 | * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
943 | 0 | */ |
944 | 0 |
|
945 | 0 | /* ftmp4 = z2^3*y1 */ |
946 | 0 | felem_assign(ftmp4, y1); |
947 | 0 |
|
948 | 0 | /* ftmp2 = z2^2*x1 */ |
949 | 0 | felem_assign(ftmp2, x1); |
950 | 0 | } |
951 | 0 |
|
952 | 0 | /* ftmp = z1^2 */ |
953 | 0 | felem_square(tmp, z1); |
954 | 0 | felem_reduce(ftmp, tmp); |
955 | 0 |
|
956 | 0 | /* ftmp3 = z1^3 */ |
957 | 0 | felem_mul(tmp, ftmp, z1); |
958 | 0 | felem_reduce(ftmp3, tmp); |
959 | 0 |
|
960 | 0 | /* tmp = z1^3*y2 */ |
961 | 0 | felem_mul(tmp, ftmp3, y2); |
962 | 0 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
963 | 0 |
|
964 | 0 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ |
965 | 0 | felem_diff_128_64(tmp, ftmp4); |
966 | 0 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
967 | 0 | felem_reduce(ftmp3, tmp); |
968 | 0 |
|
969 | 0 | /* tmp = z1^2*x2 */ |
970 | 0 | felem_mul(tmp, ftmp, x2); |
971 | 0 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
972 | 0 |
|
973 | 0 | /* ftmp = z1^2*x2 - z2^2*x1 */ |
974 | 0 | felem_diff_128_64(tmp, ftmp2); |
975 | 0 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
976 | 0 | felem_reduce(ftmp, tmp); |
977 | 0 |
|
978 | 0 | /* |
979 | 0 | * the formulae are incorrect if the points are equal so we check for |
980 | 0 | * this and do doubling if this happens |
981 | 0 | */ |
982 | 0 | x_equal = felem_is_zero(ftmp); |
983 | 0 | y_equal = felem_is_zero(ftmp3); |
984 | 0 | z1_is_zero = felem_is_zero(z1); |
985 | 0 | z2_is_zero = felem_is_zero(z2); |
986 | 0 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ |
987 | 0 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { |
988 | 0 | point_double(x3, y3, z3, x1, y1, z1); |
989 | 0 | return; |
990 | 0 | } |
991 | 0 | |
992 | 0 | /* ftmp5 = z1*z2 */ |
993 | 0 | if (!mixed) { |
994 | 0 | felem_mul(tmp, z1, z2); |
995 | 0 | felem_reduce(ftmp5, tmp); |
996 | 0 | } else { |
997 | 0 | /* special case z2 = 0 is handled later */ |
998 | 0 | felem_assign(ftmp5, z1); |
999 | 0 | } |
1000 | 0 |
|
1001 | 0 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ |
1002 | 0 | felem_mul(tmp, ftmp, ftmp5); |
1003 | 0 | felem_reduce(z_out, tmp); |
1004 | 0 |
|
1005 | 0 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ |
1006 | 0 | felem_assign(ftmp5, ftmp); |
1007 | 0 | felem_square(tmp, ftmp); |
1008 | 0 | felem_reduce(ftmp, tmp); |
1009 | 0 |
|
1010 | 0 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ |
1011 | 0 | felem_mul(tmp, ftmp, ftmp5); |
1012 | 0 | felem_reduce(ftmp5, tmp); |
1013 | 0 |
|
1014 | 0 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
1015 | 0 | felem_mul(tmp, ftmp2, ftmp); |
1016 | 0 | felem_reduce(ftmp2, tmp); |
1017 | 0 |
|
1018 | 0 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
1019 | 0 | felem_mul(tmp, ftmp4, ftmp5); |
1020 | 0 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
1021 | 0 |
|
1022 | 0 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ |
1023 | 0 | felem_square(tmp2, ftmp3); |
1024 | 0 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ |
1025 | 0 |
|
1026 | 0 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ |
1027 | 0 | felem_diff_128_64(tmp2, ftmp5); |
1028 | 0 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ |
1029 | 0 |
|
1030 | 0 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
1031 | 0 | felem_assign(ftmp5, ftmp2); |
1032 | 0 | felem_scalar(ftmp5, 2); |
1033 | 0 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ |
1034 | 0 |
|
1035 | 0 | /*- |
1036 | 0 | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - |
1037 | 0 | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 |
1038 | 0 | */ |
1039 | 0 | felem_diff_128_64(tmp2, ftmp5); |
1040 | 0 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ |
1041 | 0 | felem_reduce(x_out, tmp2); |
1042 | 0 |
|
1043 | 0 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ |
1044 | 0 | felem_diff(ftmp2, x_out); |
1045 | 0 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ |
1046 | 0 |
|
1047 | 0 | /* |
1048 | 0 | * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) |
1049 | 0 | */ |
1050 | 0 | felem_mul(tmp2, ftmp3, ftmp2); |
1051 | 0 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ |
1052 | 0 |
|
1053 | 0 | /*- |
1054 | 0 | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - |
1055 | 0 | * z2^3*y1*(z1^2*x2 - z2^2*x1)^3 |
1056 | 0 | */ |
1057 | 0 | widefelem_diff(tmp2, tmp); |
1058 | 0 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ |
1059 | 0 | felem_reduce(y_out, tmp2); |
1060 | 0 |
|
1061 | 0 | /* |
1062 | 0 | * the result (x_out, y_out, z_out) is incorrect if one of the inputs is |
1063 | 0 | * the point at infinity, so we need to check for this separately |
1064 | 0 | */ |
1065 | 0 |
|
1066 | 0 | /* |
1067 | 0 | * if point 1 is at infinity, copy point 2 to output, and vice versa |
1068 | 0 | */ |
1069 | 0 | copy_conditional(x_out, x2, z1_is_zero); |
1070 | 0 | copy_conditional(x_out, x1, z2_is_zero); |
1071 | 0 | copy_conditional(y_out, y2, z1_is_zero); |
1072 | 0 | copy_conditional(y_out, y1, z2_is_zero); |
1073 | 0 | copy_conditional(z_out, z2, z1_is_zero); |
1074 | 0 | copy_conditional(z_out, z1, z2_is_zero); |
1075 | 0 | felem_assign(x3, x_out); |
1076 | 0 | felem_assign(y3, y_out); |
1077 | 0 | felem_assign(z3, z_out); |
1078 | 0 | } |
1079 | | |
1080 | | /* |
1081 | | * select_point selects the |idx|th point from a precomputation table and |
1082 | | * copies it to out. |
1083 | | * The pre_comp array argument should be size of |size| argument |
1084 | | */ |
1085 | | static void select_point(const u64 idx, unsigned int size, |
1086 | | const felem pre_comp[][3], felem out[3]) |
1087 | 0 | { |
1088 | 0 | unsigned i, j; |
1089 | 0 | limb *outlimbs = &out[0][0]; |
1090 | 0 |
|
1091 | 0 | memset(out, 0, sizeof(*out) * 3); |
1092 | 0 | for (i = 0; i < size; i++) { |
1093 | 0 | const limb *inlimbs = &pre_comp[i][0][0]; |
1094 | 0 | u64 mask = i ^ idx; |
1095 | 0 | mask |= mask >> 4; |
1096 | 0 | mask |= mask >> 2; |
1097 | 0 | mask |= mask >> 1; |
1098 | 0 | mask &= 1; |
1099 | 0 | mask--; |
1100 | 0 | for (j = 0; j < 4 * 3; j++) |
1101 | 0 | outlimbs[j] |= inlimbs[j] & mask; |
1102 | 0 | } |
1103 | 0 | } |
1104 | | |
1105 | | /* get_bit returns the |i|th bit in |in| */ |
1106 | | static char get_bit(const felem_bytearray in, unsigned i) |
1107 | 0 | { |
1108 | 0 | if (i >= 224) |
1109 | 0 | return 0; |
1110 | 0 | return (in[i >> 3] >> (i & 7)) & 1; |
1111 | 0 | } |
1112 | | |
1113 | | /* |
1114 | | * Interleaved point multiplication using precomputed point multiples: The |
1115 | | * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars |
1116 | | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
1117 | | * generator, using certain (large) precomputed multiples in g_pre_comp. |
1118 | | * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
1119 | | */ |
1120 | | static void batch_mul(felem x_out, felem y_out, felem z_out, |
1121 | | const felem_bytearray scalars[], |
1122 | | const unsigned num_points, const u8 *g_scalar, |
1123 | | const int mixed, const felem pre_comp[][17][3], |
1124 | | const felem g_pre_comp[2][16][3]) |
1125 | 0 | { |
1126 | 0 | int i, skip; |
1127 | 0 | unsigned num; |
1128 | 0 | unsigned gen_mul = (g_scalar != NULL); |
1129 | 0 | felem nq[3], tmp[4]; |
1130 | 0 | u64 bits; |
1131 | 0 | u8 sign, digit; |
1132 | 0 |
|
1133 | 0 | /* set nq to the point at infinity */ |
1134 | 0 | memset(nq, 0, sizeof(nq)); |
1135 | 0 |
|
1136 | 0 | /* |
1137 | 0 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
1138 | 0 | * of the generator (two in each of the last 28 rounds) and additions of |
1139 | 0 | * other points multiples (every 5th round). |
1140 | 0 | */ |
1141 | 0 | skip = 1; /* save two point operations in the first |
1142 | 0 | * round */ |
1143 | 0 | for (i = (num_points ? 220 : 27); i >= 0; --i) { |
1144 | 0 | /* double */ |
1145 | 0 | if (!skip) |
1146 | 0 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
1147 | 0 |
|
1148 | 0 | /* add multiples of the generator */ |
1149 | 0 | if (gen_mul && (i <= 27)) { |
1150 | 0 | /* first, look 28 bits upwards */ |
1151 | 0 | bits = get_bit(g_scalar, i + 196) << 3; |
1152 | 0 | bits |= get_bit(g_scalar, i + 140) << 2; |
1153 | 0 | bits |= get_bit(g_scalar, i + 84) << 1; |
1154 | 0 | bits |= get_bit(g_scalar, i + 28); |
1155 | 0 | /* select the point to add, in constant time */ |
1156 | 0 | select_point(bits, 16, g_pre_comp[1], tmp); |
1157 | 0 |
|
1158 | 0 | if (!skip) { |
1159 | 0 | /* value 1 below is argument for "mixed" */ |
1160 | 0 | point_add(nq[0], nq[1], nq[2], |
1161 | 0 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
1162 | 0 | } else { |
1163 | 0 | memcpy(nq, tmp, 3 * sizeof(felem)); |
1164 | 0 | skip = 0; |
1165 | 0 | } |
1166 | 0 |
|
1167 | 0 | /* second, look at the current position */ |
1168 | 0 | bits = get_bit(g_scalar, i + 168) << 3; |
1169 | 0 | bits |= get_bit(g_scalar, i + 112) << 2; |
1170 | 0 | bits |= get_bit(g_scalar, i + 56) << 1; |
1171 | 0 | bits |= get_bit(g_scalar, i); |
1172 | 0 | /* select the point to add, in constant time */ |
1173 | 0 | select_point(bits, 16, g_pre_comp[0], tmp); |
1174 | 0 | point_add(nq[0], nq[1], nq[2], |
1175 | 0 | nq[0], nq[1], nq[2], |
1176 | 0 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); |
1177 | 0 | } |
1178 | 0 |
|
1179 | 0 | /* do other additions every 5 doublings */ |
1180 | 0 | if (num_points && (i % 5 == 0)) { |
1181 | 0 | /* loop over all scalars */ |
1182 | 0 | for (num = 0; num < num_points; ++num) { |
1183 | 0 | bits = get_bit(scalars[num], i + 4) << 5; |
1184 | 0 | bits |= get_bit(scalars[num], i + 3) << 4; |
1185 | 0 | bits |= get_bit(scalars[num], i + 2) << 3; |
1186 | 0 | bits |= get_bit(scalars[num], i + 1) << 2; |
1187 | 0 | bits |= get_bit(scalars[num], i) << 1; |
1188 | 0 | bits |= get_bit(scalars[num], i - 1); |
1189 | 0 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
1190 | 0 |
|
1191 | 0 | /* select the point to add or subtract */ |
1192 | 0 | select_point(digit, 17, pre_comp[num], tmp); |
1193 | 0 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative |
1194 | 0 | * point */ |
1195 | 0 | copy_conditional(tmp[1], tmp[3], sign); |
1196 | 0 |
|
1197 | 0 | if (!skip) { |
1198 | 0 | point_add(nq[0], nq[1], nq[2], |
1199 | 0 | nq[0], nq[1], nq[2], |
1200 | 0 | mixed, tmp[0], tmp[1], tmp[2]); |
1201 | 0 | } else { |
1202 | 0 | memcpy(nq, tmp, 3 * sizeof(felem)); |
1203 | 0 | skip = 0; |
1204 | 0 | } |
1205 | 0 | } |
1206 | 0 | } |
1207 | 0 | } |
1208 | 0 | felem_assign(x_out, nq[0]); |
1209 | 0 | felem_assign(y_out, nq[1]); |
1210 | 0 | felem_assign(z_out, nq[2]); |
1211 | 0 | } |
1212 | | |
1213 | | /******************************************************************************/ |
1214 | | /* |
1215 | | * FUNCTIONS TO MANAGE PRECOMPUTATION |
1216 | | */ |
1217 | | |
1218 | | static NISTP224_PRE_COMP *nistp224_pre_comp_new(void) |
1219 | 0 | { |
1220 | 0 | NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
1221 | 0 |
|
1222 | 0 | if (!ret) { |
1223 | 0 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
1224 | 0 | return ret; |
1225 | 0 | } |
1226 | 0 |
|
1227 | 0 | ret->references = 1; |
1228 | 0 |
|
1229 | 0 | ret->lock = CRYPTO_THREAD_lock_new(); |
1230 | 0 | if (ret->lock == NULL) { |
1231 | 0 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
1232 | 0 | OPENSSL_free(ret); |
1233 | 0 | return NULL; |
1234 | 0 | } |
1235 | 0 | return ret; |
1236 | 0 | } |
1237 | | |
1238 | | NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p) |
1239 | 0 | { |
1240 | 0 | int i; |
1241 | 0 | if (p != NULL) |
1242 | 0 | CRYPTO_UP_REF(&p->references, &i, p->lock); |
1243 | 0 | return p; |
1244 | 0 | } |
1245 | | |
1246 | | void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p) |
1247 | 0 | { |
1248 | 0 | int i; |
1249 | 0 |
|
1250 | 0 | if (p == NULL) |
1251 | 0 | return; |
1252 | 0 | |
1253 | 0 | CRYPTO_DOWN_REF(&p->references, &i, p->lock); |
1254 | 0 | REF_PRINT_COUNT("EC_nistp224", x); |
1255 | 0 | if (i > 0) |
1256 | 0 | return; |
1257 | 0 | REF_ASSERT_ISNT(i < 0); |
1258 | 0 |
|
1259 | 0 | CRYPTO_THREAD_lock_free(p->lock); |
1260 | 0 | OPENSSL_free(p); |
1261 | 0 | } |
1262 | | |
1263 | | /******************************************************************************/ |
1264 | | /* |
1265 | | * OPENSSL EC_METHOD FUNCTIONS |
1266 | | */ |
1267 | | |
1268 | | int ec_GFp_nistp224_group_init(EC_GROUP *group) |
1269 | 0 | { |
1270 | 0 | int ret; |
1271 | 0 | ret = ec_GFp_simple_group_init(group); |
1272 | 0 | group->a_is_minus3 = 1; |
1273 | 0 | return ret; |
1274 | 0 | } |
1275 | | |
1276 | | int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
1277 | | const BIGNUM *a, const BIGNUM *b, |
1278 | | BN_CTX *ctx) |
1279 | 0 | { |
1280 | 0 | int ret = 0; |
1281 | 0 | BN_CTX *new_ctx = NULL; |
1282 | 0 | BIGNUM *curve_p, *curve_a, *curve_b; |
1283 | 0 |
|
1284 | 0 | if (ctx == NULL) |
1285 | 0 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) |
1286 | 0 | return 0; |
1287 | 0 | BN_CTX_start(ctx); |
1288 | 0 | curve_p = BN_CTX_get(ctx); |
1289 | 0 | curve_a = BN_CTX_get(ctx); |
1290 | 0 | curve_b = BN_CTX_get(ctx); |
1291 | 0 | if (curve_b == NULL) |
1292 | 0 | goto err; |
1293 | 0 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); |
1294 | 0 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); |
1295 | 0 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); |
1296 | 0 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
1297 | 0 | ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, |
1298 | 0 | EC_R_WRONG_CURVE_PARAMETERS); |
1299 | 0 | goto err; |
1300 | 0 | } |
1301 | 0 | group->field_mod_func = BN_nist_mod_224; |
1302 | 0 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
1303 | 0 | err: |
1304 | 0 | BN_CTX_end(ctx); |
1305 | 0 | BN_CTX_free(new_ctx); |
1306 | 0 | return ret; |
1307 | 0 | } |
1308 | | |
1309 | | /* |
1310 | | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
1311 | | * (X/Z^2, Y/Z^3) |
1312 | | */ |
1313 | | int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, |
1314 | | const EC_POINT *point, |
1315 | | BIGNUM *x, BIGNUM *y, |
1316 | | BN_CTX *ctx) |
1317 | 0 | { |
1318 | 0 | felem z1, z2, x_in, y_in, x_out, y_out; |
1319 | 0 | widefelem tmp; |
1320 | 0 |
|
1321 | 0 | if (EC_POINT_is_at_infinity(group, point)) { |
1322 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
1323 | 0 | EC_R_POINT_AT_INFINITY); |
1324 | 0 | return 0; |
1325 | 0 | } |
1326 | 0 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || |
1327 | 0 | (!BN_to_felem(z1, point->Z))) |
1328 | 0 | return 0; |
1329 | 0 | felem_inv(z2, z1); |
1330 | 0 | felem_square(tmp, z2); |
1331 | 0 | felem_reduce(z1, tmp); |
1332 | 0 | felem_mul(tmp, x_in, z1); |
1333 | 0 | felem_reduce(x_in, tmp); |
1334 | 0 | felem_contract(x_out, x_in); |
1335 | 0 | if (x != NULL) { |
1336 | 0 | if (!felem_to_BN(x, x_out)) { |
1337 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
1338 | 0 | ERR_R_BN_LIB); |
1339 | 0 | return 0; |
1340 | 0 | } |
1341 | 0 | } |
1342 | 0 | felem_mul(tmp, z1, z2); |
1343 | 0 | felem_reduce(z1, tmp); |
1344 | 0 | felem_mul(tmp, y_in, z1); |
1345 | 0 | felem_reduce(y_in, tmp); |
1346 | 0 | felem_contract(y_out, y_in); |
1347 | 0 | if (y != NULL) { |
1348 | 0 | if (!felem_to_BN(y, y_out)) { |
1349 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
1350 | 0 | ERR_R_BN_LIB); |
1351 | 0 | return 0; |
1352 | 0 | } |
1353 | 0 | } |
1354 | 0 | return 1; |
1355 | 0 | } |
1356 | | |
1357 | | static void make_points_affine(size_t num, felem points[ /* num */ ][3], |
1358 | | felem tmp_felems[ /* num+1 */ ]) |
1359 | 0 | { |
1360 | 0 | /* |
1361 | 0 | * Runs in constant time, unless an input is the point at infinity (which |
1362 | 0 | * normally shouldn't happen). |
1363 | 0 | */ |
1364 | 0 | ec_GFp_nistp_points_make_affine_internal(num, |
1365 | 0 | points, |
1366 | 0 | sizeof(felem), |
1367 | 0 | tmp_felems, |
1368 | 0 | (void (*)(void *))felem_one, |
1369 | 0 | felem_is_zero_int, |
1370 | 0 | (void (*)(void *, const void *)) |
1371 | 0 | felem_assign, |
1372 | 0 | (void (*)(void *, const void *)) |
1373 | 0 | felem_square_reduce, (void (*) |
1374 | 0 | (void *, |
1375 | 0 | const void |
1376 | 0 | *, |
1377 | 0 | const void |
1378 | 0 | *)) |
1379 | 0 | felem_mul_reduce, |
1380 | 0 | (void (*)(void *, const void *)) |
1381 | 0 | felem_inv, |
1382 | 0 | (void (*)(void *, const void *)) |
1383 | 0 | felem_contract); |
1384 | 0 | } |
1385 | | |
1386 | | /* |
1387 | | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
1388 | | * values Result is stored in r (r can equal one of the inputs). |
1389 | | */ |
1390 | | int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, |
1391 | | const BIGNUM *scalar, size_t num, |
1392 | | const EC_POINT *points[], |
1393 | | const BIGNUM *scalars[], BN_CTX *ctx) |
1394 | 0 | { |
1395 | 0 | int ret = 0; |
1396 | 0 | int j; |
1397 | 0 | unsigned i; |
1398 | 0 | int mixed = 0; |
1399 | 0 | BIGNUM *x, *y, *z, *tmp_scalar; |
1400 | 0 | felem_bytearray g_secret; |
1401 | 0 | felem_bytearray *secrets = NULL; |
1402 | 0 | felem (*pre_comp)[17][3] = NULL; |
1403 | 0 | felem *tmp_felems = NULL; |
1404 | 0 | felem_bytearray tmp; |
1405 | 0 | unsigned num_bytes; |
1406 | 0 | int have_pre_comp = 0; |
1407 | 0 | size_t num_points = num; |
1408 | 0 | felem x_in, y_in, z_in, x_out, y_out, z_out; |
1409 | 0 | NISTP224_PRE_COMP *pre = NULL; |
1410 | 0 | const felem(*g_pre_comp)[16][3] = NULL; |
1411 | 0 | EC_POINT *generator = NULL; |
1412 | 0 | const EC_POINT *p = NULL; |
1413 | 0 | const BIGNUM *p_scalar = NULL; |
1414 | 0 |
|
1415 | 0 | BN_CTX_start(ctx); |
1416 | 0 | x = BN_CTX_get(ctx); |
1417 | 0 | y = BN_CTX_get(ctx); |
1418 | 0 | z = BN_CTX_get(ctx); |
1419 | 0 | tmp_scalar = BN_CTX_get(ctx); |
1420 | 0 | if (tmp_scalar == NULL) |
1421 | 0 | goto err; |
1422 | 0 | |
1423 | 0 | if (scalar != NULL) { |
1424 | 0 | pre = group->pre_comp.nistp224; |
1425 | 0 | if (pre) |
1426 | 0 | /* we have precomputation, try to use it */ |
1427 | 0 | g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp; |
1428 | 0 | else |
1429 | 0 | /* try to use the standard precomputation */ |
1430 | 0 | g_pre_comp = &gmul[0]; |
1431 | 0 | generator = EC_POINT_new(group); |
1432 | 0 | if (generator == NULL) |
1433 | 0 | goto err; |
1434 | 0 | /* get the generator from precomputation */ |
1435 | 0 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || |
1436 | 0 | !felem_to_BN(y, g_pre_comp[0][1][1]) || |
1437 | 0 | !felem_to_BN(z, g_pre_comp[0][1][2])) { |
1438 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
1439 | 0 | goto err; |
1440 | 0 | } |
1441 | 0 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, |
1442 | 0 | generator, x, y, z, |
1443 | 0 | ctx)) |
1444 | 0 | goto err; |
1445 | 0 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
1446 | 0 | /* precomputation matches generator */ |
1447 | 0 | have_pre_comp = 1; |
1448 | 0 | else |
1449 | 0 | /* |
1450 | 0 | * we don't have valid precomputation: treat the generator as a |
1451 | 0 | * random point |
1452 | 0 | */ |
1453 | 0 | num_points = num_points + 1; |
1454 | 0 | } |
1455 | 0 |
|
1456 | 0 | if (num_points > 0) { |
1457 | 0 | if (num_points >= 3) { |
1458 | 0 | /* |
1459 | 0 | * unless we precompute multiples for just one or two points, |
1460 | 0 | * converting those into affine form is time well spent |
1461 | 0 | */ |
1462 | 0 | mixed = 1; |
1463 | 0 | } |
1464 | 0 | secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); |
1465 | 0 | pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); |
1466 | 0 | if (mixed) |
1467 | 0 | tmp_felems = |
1468 | 0 | OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1)); |
1469 | 0 | if ((secrets == NULL) || (pre_comp == NULL) |
1470 | 0 | || (mixed && (tmp_felems == NULL))) { |
1471 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
1472 | 0 | goto err; |
1473 | 0 | } |
1474 | 0 |
|
1475 | 0 | /* |
1476 | 0 | * we treat NULL scalars as 0, and NULL points as points at infinity, |
1477 | 0 | * i.e., they contribute nothing to the linear combination |
1478 | 0 | */ |
1479 | 0 | for (i = 0; i < num_points; ++i) { |
1480 | 0 | if (i == num) |
1481 | 0 | /* the generator */ |
1482 | 0 | { |
1483 | 0 | p = EC_GROUP_get0_generator(group); |
1484 | 0 | p_scalar = scalar; |
1485 | 0 | } else |
1486 | 0 | /* the i^th point */ |
1487 | 0 | { |
1488 | 0 | p = points[i]; |
1489 | 0 | p_scalar = scalars[i]; |
1490 | 0 | } |
1491 | 0 | if ((p_scalar != NULL) && (p != NULL)) { |
1492 | 0 | /* reduce scalar to 0 <= scalar < 2^224 */ |
1493 | 0 | if ((BN_num_bits(p_scalar) > 224) |
1494 | 0 | || (BN_is_negative(p_scalar))) { |
1495 | 0 | /* |
1496 | 0 | * this is an unusual input, and we don't guarantee |
1497 | 0 | * constant-timeness |
1498 | 0 | */ |
1499 | 0 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
1500 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
1501 | 0 | goto err; |
1502 | 0 | } |
1503 | 0 | num_bytes = BN_bn2bin(tmp_scalar, tmp); |
1504 | 0 | } else |
1505 | 0 | num_bytes = BN_bn2bin(p_scalar, tmp); |
1506 | 0 | flip_endian(secrets[i], tmp, num_bytes); |
1507 | 0 | /* precompute multiples */ |
1508 | 0 | if ((!BN_to_felem(x_out, p->X)) || |
1509 | 0 | (!BN_to_felem(y_out, p->Y)) || |
1510 | 0 | (!BN_to_felem(z_out, p->Z))) |
1511 | 0 | goto err; |
1512 | 0 | felem_assign(pre_comp[i][1][0], x_out); |
1513 | 0 | felem_assign(pre_comp[i][1][1], y_out); |
1514 | 0 | felem_assign(pre_comp[i][1][2], z_out); |
1515 | 0 | for (j = 2; j <= 16; ++j) { |
1516 | 0 | if (j & 1) { |
1517 | 0 | point_add(pre_comp[i][j][0], pre_comp[i][j][1], |
1518 | 0 | pre_comp[i][j][2], pre_comp[i][1][0], |
1519 | 0 | pre_comp[i][1][1], pre_comp[i][1][2], 0, |
1520 | 0 | pre_comp[i][j - 1][0], |
1521 | 0 | pre_comp[i][j - 1][1], |
1522 | 0 | pre_comp[i][j - 1][2]); |
1523 | 0 | } else { |
1524 | 0 | point_double(pre_comp[i][j][0], pre_comp[i][j][1], |
1525 | 0 | pre_comp[i][j][2], pre_comp[i][j / 2][0], |
1526 | 0 | pre_comp[i][j / 2][1], |
1527 | 0 | pre_comp[i][j / 2][2]); |
1528 | 0 | } |
1529 | 0 | } |
1530 | 0 | } |
1531 | 0 | } |
1532 | 0 | if (mixed) |
1533 | 0 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); |
1534 | 0 | } |
1535 | 0 |
|
1536 | 0 | /* the scalar for the generator */ |
1537 | 0 | if ((scalar != NULL) && (have_pre_comp)) { |
1538 | 0 | memset(g_secret, 0, sizeof(g_secret)); |
1539 | 0 | /* reduce scalar to 0 <= scalar < 2^224 */ |
1540 | 0 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { |
1541 | 0 | /* |
1542 | 0 | * this is an unusual input, and we don't guarantee |
1543 | 0 | * constant-timeness |
1544 | 0 | */ |
1545 | 0 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
1546 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
1547 | 0 | goto err; |
1548 | 0 | } |
1549 | 0 | num_bytes = BN_bn2bin(tmp_scalar, tmp); |
1550 | 0 | } else |
1551 | 0 | num_bytes = BN_bn2bin(scalar, tmp); |
1552 | 0 | flip_endian(g_secret, tmp, num_bytes); |
1553 | 0 | /* do the multiplication with generator precomputation */ |
1554 | 0 | batch_mul(x_out, y_out, z_out, |
1555 | 0 | (const felem_bytearray(*))secrets, num_points, |
1556 | 0 | g_secret, |
1557 | 0 | mixed, (const felem(*)[17][3])pre_comp, g_pre_comp); |
1558 | 0 | } else |
1559 | 0 | /* do the multiplication without generator precomputation */ |
1560 | 0 | batch_mul(x_out, y_out, z_out, |
1561 | 0 | (const felem_bytearray(*))secrets, num_points, |
1562 | 0 | NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); |
1563 | 0 | /* reduce the output to its unique minimal representation */ |
1564 | 0 | felem_contract(x_in, x_out); |
1565 | 0 | felem_contract(y_in, y_out); |
1566 | 0 | felem_contract(z_in, z_out); |
1567 | 0 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || |
1568 | 0 | (!felem_to_BN(z, z_in))) { |
1569 | 0 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
1570 | 0 | goto err; |
1571 | 0 | } |
1572 | 0 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); |
1573 | 0 |
|
1574 | 0 | err: |
1575 | 0 | BN_CTX_end(ctx); |
1576 | 0 | EC_POINT_free(generator); |
1577 | 0 | OPENSSL_free(secrets); |
1578 | 0 | OPENSSL_free(pre_comp); |
1579 | 0 | OPENSSL_free(tmp_felems); |
1580 | 0 | return ret; |
1581 | 0 | } |
1582 | | |
1583 | | int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
1584 | 0 | { |
1585 | 0 | int ret = 0; |
1586 | 0 | NISTP224_PRE_COMP *pre = NULL; |
1587 | 0 | int i, j; |
1588 | 0 | BN_CTX *new_ctx = NULL; |
1589 | 0 | BIGNUM *x, *y; |
1590 | 0 | EC_POINT *generator = NULL; |
1591 | 0 | felem tmp_felems[32]; |
1592 | 0 |
|
1593 | 0 | /* throw away old precomputation */ |
1594 | 0 | EC_pre_comp_free(group); |
1595 | 0 | if (ctx == NULL) |
1596 | 0 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) |
1597 | 0 | return 0; |
1598 | 0 | BN_CTX_start(ctx); |
1599 | 0 | x = BN_CTX_get(ctx); |
1600 | 0 | y = BN_CTX_get(ctx); |
1601 | 0 | if (y == NULL) |
1602 | 0 | goto err; |
1603 | 0 | /* get the generator */ |
1604 | 0 | if (group->generator == NULL) |
1605 | 0 | goto err; |
1606 | 0 | generator = EC_POINT_new(group); |
1607 | 0 | if (generator == NULL) |
1608 | 0 | goto err; |
1609 | 0 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); |
1610 | 0 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); |
1611 | 0 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
1612 | 0 | goto err; |
1613 | 0 | if ((pre = nistp224_pre_comp_new()) == NULL) |
1614 | 0 | goto err; |
1615 | 0 | /* |
1616 | 0 | * if the generator is the standard one, use built-in precomputation |
1617 | 0 | */ |
1618 | 0 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
1619 | 0 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
1620 | 0 | goto done; |
1621 | 0 | } |
1622 | 0 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || |
1623 | 0 | (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || |
1624 | 0 | (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z))) |
1625 | 0 | goto err; |
1626 | 0 | /* |
1627 | 0 | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G, |
1628 | 0 | * 2^140*G, 2^196*G for the second one |
1629 | 0 | */ |
1630 | 0 | for (i = 1; i <= 8; i <<= 1) { |
1631 | 0 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
1632 | 0 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], |
1633 | 0 | pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); |
1634 | 0 | for (j = 0; j < 27; ++j) { |
1635 | 0 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
1636 | 0 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], |
1637 | 0 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); |
1638 | 0 | } |
1639 | 0 | if (i == 8) |
1640 | 0 | break; |
1641 | 0 | point_double(pre->g_pre_comp[0][2 * i][0], |
1642 | 0 | pre->g_pre_comp[0][2 * i][1], |
1643 | 0 | pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], |
1644 | 0 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); |
1645 | 0 | for (j = 0; j < 27; ++j) { |
1646 | 0 | point_double(pre->g_pre_comp[0][2 * i][0], |
1647 | 0 | pre->g_pre_comp[0][2 * i][1], |
1648 | 0 | pre->g_pre_comp[0][2 * i][2], |
1649 | 0 | pre->g_pre_comp[0][2 * i][0], |
1650 | 0 | pre->g_pre_comp[0][2 * i][1], |
1651 | 0 | pre->g_pre_comp[0][2 * i][2]); |
1652 | 0 | } |
1653 | 0 | } |
1654 | 0 | for (i = 0; i < 2; i++) { |
1655 | 0 | /* g_pre_comp[i][0] is the point at infinity */ |
1656 | 0 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); |
1657 | 0 | /* the remaining multiples */ |
1658 | 0 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ |
1659 | 0 | point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], |
1660 | 0 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], |
1661 | 0 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], |
1662 | 0 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
1663 | 0 | pre->g_pre_comp[i][2][2]); |
1664 | 0 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ |
1665 | 0 | point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], |
1666 | 0 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], |
1667 | 0 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
1668 | 0 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
1669 | 0 | pre->g_pre_comp[i][2][2]); |
1670 | 0 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ |
1671 | 0 | point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], |
1672 | 0 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], |
1673 | 0 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
1674 | 0 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], |
1675 | 0 | pre->g_pre_comp[i][4][2]); |
1676 | 0 | /* |
1677 | 0 | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G |
1678 | 0 | */ |
1679 | 0 | point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], |
1680 | 0 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], |
1681 | 0 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], |
1682 | 0 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
1683 | 0 | pre->g_pre_comp[i][2][2]); |
1684 | 0 | for (j = 1; j < 8; ++j) { |
1685 | 0 | /* odd multiples: add G resp. 2^28*G */ |
1686 | 0 | point_add(pre->g_pre_comp[i][2 * j + 1][0], |
1687 | 0 | pre->g_pre_comp[i][2 * j + 1][1], |
1688 | 0 | pre->g_pre_comp[i][2 * j + 1][2], |
1689 | 0 | pre->g_pre_comp[i][2 * j][0], |
1690 | 0 | pre->g_pre_comp[i][2 * j][1], |
1691 | 0 | pre->g_pre_comp[i][2 * j][2], 0, |
1692 | 0 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], |
1693 | 0 | pre->g_pre_comp[i][1][2]); |
1694 | 0 | } |
1695 | 0 | } |
1696 | 0 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); |
1697 | 0 |
|
1698 | 0 | done: |
1699 | 0 | SETPRECOMP(group, nistp224, pre); |
1700 | 0 | pre = NULL; |
1701 | 0 | ret = 1; |
1702 | 0 | err: |
1703 | 0 | BN_CTX_end(ctx); |
1704 | 0 | EC_POINT_free(generator); |
1705 | 0 | BN_CTX_free(new_ctx); |
1706 | 0 | EC_nistp224_pre_comp_free(pre); |
1707 | 0 | return ret; |
1708 | 0 | } |
1709 | | |
1710 | | int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) |
1711 | 0 | { |
1712 | 0 | return HAVEPRECOMP(group, nistp224); |
1713 | 0 | } |
1714 | | |
1715 | | #endif |